Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.031
Filtrar
1.
Plant J ; 119(5): 2564-2577, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032106

RESUMEN

RNA-guided endonucleases originating from the bacterial CRISPR/Cas system are a versatile tool for targeted gene editing. To determine the functional relevance of a gene of interest, deletion of the entire open reading frame (ORF) by two independent double-strand breaks (DSBs) is particularly attractive. This strategy greatly benefits from high editing efficiency, which is strongly influenced by the Cas endonuclease version used. We developed two reporter switch-on assays, for quantitative comparison and optimization of Cas constructs. The assays are based on four components: (i) A reporter gene, the mRNA of which carries a hairpin (HP) loop targeted by (ii) the endoribonuclease Csy4. Cleavage of the mRNA at the HP loop by Csy4 abolishes the translation of the reporter. Csy4 was used as the target for full deletion. (iii) A Cas system targeting sites flanking the Csy4 ORF with a 20-bp spacer either side to preferentially detect full-deletion events. Loss of functional Csy4 would lead to reporter gene expression, allowing indirect quantification of Cas-mediated deletion events. (iv) A reference gene for normalization. We tested these assays on Nicotiana benthamiana leaves and Lotus japonicus calli induced on hypocotyl sections, using Firefly luciferase and mCitrine as reporter genes and Renilla luciferase and hygromycin phosphotransferase II as reference genes, respectively. We observed a >90% correlation between reporter expression and full Csy4 deletion events, demonstrating the validity of these assays. The principle of using the Csy4-HP module as Cas target should be applicable to other editing goals including single DSBs in all organisms.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma de Planta , ARN Guía de Sistemas CRISPR-Cas , Edición Génica/métodos , ARN Guía de Sistemas CRISPR-Cas/genética , Genoma de Planta/genética , Nicotiana/genética , Genes Reporteros
2.
Nano Lett ; 24(2): 566-575, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37962055

RESUMEN

Optical biosensors based on micro/nanofibers are highly valuable for probing and monitoring liquid environments and bioactivity. Most current optical biosensors, however, are still based on glass, semiconductors, or metallic materials, which might not be fully suitable for biologically relevant environments. Here, we introduce biocompatible and flexible microfibers from lotus silk as microenvironmental monitors that exhibit waveguiding of intrinsic fluorescence as well as of coupled light. These features make single-filament monitors excellent building blocks for a variety of sensing functions, including pH probing and detection of bacterial activity. These results pave the way for the development of new and entirely eco-friendly, potentially multiplexed biosensing platforms.


Asunto(s)
Técnicas Biosensibles , Nanofibras , Técnicas Biosensibles/métodos , Seda , Semiconductores , Bacterias
3.
Mol Plant Microbe Interact ; 37(9): 662-675, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38904752

RESUMEN

The symbiosis between Mesorhizobium japonicum R7A and Lotus japonicus Gifu is an important model system for investigating the role of bacterial exopolysaccharides (EPS) in plant-microbe interactions. Previously, we showed that R7A exoB mutants that are affected at an early stage of EPS synthesis and in lipopolysaccharide (LPS) synthesis induce effective nodules on L. japonicus Gifu after a delay, whereas exoU mutants affected in the biosynthesis of the EPS side chain induce small uninfected nodule primordia and are impaired in infection. The presence of a halo around the exoU mutant when grown on Calcofluor-containing media suggested the mutant secreted a truncated version of R7A EPS. A nonpolar ΔexoA mutant defective in the addition of the first glucose residue to the EPS backbone was also severely impaired symbiotically. Here, we used a suppressor screen to show that the severe symbiotic phenotype of the exoU mutant was due to the secretion of an acetylated pentasaccharide, as both monomers and oligomers, by the same Wzx/Wzy system that transports wild-type exopolysaccharide. We also present evidence that the ΔexoA mutant secretes an oligosaccharide by the same transport system, contributing to its symbiotic phenotype. In contrast, ΔexoYF and polar exoA and exoL mutants have a similar phenotype to exoB mutants, forming effective nodules after a delay. These studies provide substantial evidence that secreted incompatible EPS is perceived by the plant, leading to abrogation of the infection process. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Lotus , Mesorhizobium , Polisacáridos Bacterianos , Simbiosis , Polisacáridos Bacterianos/metabolismo , Mesorhizobium/fisiología , Mesorhizobium/genética , Lotus/microbiología , Mutación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Nódulos de las Raíces de las Plantas/microbiología
4.
Funct Integr Genomics ; 24(2): 42, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396290

RESUMEN

Four species of Saussurea, namely S. involucrata, S. orgaadayi, S. bogedaensis, and S. dorogostaiskii, are known as the "snow lotus," which are used as traditional medicines in China (Xinjiang), Kyrgyzstan, Mongolia, and Russia (Southern Siberia). These species are threatened globally, because of illegal harvesting and climate change. Furthermore, the taxonomic classification and identification of these threatened species remain unclear owing to limited research. The misidentification of medicinal species can sometimes be harmful to health. Therefore, the phylogenetic and genomic features of these species need to be confirmed. In this study, we sequenced five complete chloroplast genomes and seven nuclear ITS regions of four snow lotus species and other Saussurea species. We further explored their genetic variety, selective pressure at the sequence level, and phylogenetic relationships using the chloroplast genome, nuclear partial DNA sequences, and morphological features. Plastome of the snow lotus species has a conserved structure and gene content similar to most Saussurea species. Two intergenic regions (ndhJ-ndhK and ndhD-psaC) show significantly high diversity among chloroplast regions. Thus, ITS and these markers are suitable for identifying snow lotus species. In addition, we characterized 43 simple sequence repeats that may be useful in future population genetic studies. Analysis of the selection signatures identified three genes (rpoA, ndhB, and ycf2) that underwent positive selection. These genes may play important roles in the adaptation of the snow lotus species to alpine environments. S. dorogostaiskii is close to S. baicalensis and exhibits slightly different adaptation from others. The taxonomic position of the snow lotus species, confirmed by morphological and molecular evidence, is as follows: (i) S. involucrata has been excluded from the Mongolian flora due to misidentification as S. orgaadayi or S. bogedaensis for a long time; (ii) S. dorogostaiskii belongs to section Pycnocephala subgenus Saussurea, whereas other the snow lotus species belong to section Amphilaena subgenus Amphilaena; and (iii) S. krasnoborovii is synonymous of S. dorogostaiskii. This study clarified the speciation and lineage diversification of the snow lotus species in Central Asia and Southern Siberia.


Asunto(s)
Asteraceae , Lotus , Saussurea , Saussurea/genética , Saussurea/química , Filogenia , Siberia
5.
BMC Plant Biol ; 24(1): 163, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431568

RESUMEN

Auxin response factors (ARFs) play a crucial role in regulating gene expression within the auxin signal transduction pathway, particularly during adventitious root (AR) formation. In this investigation, we identified full-length sequences for ARF17 and ARF18, encompassing 1,800 and 2,055 bp, encoding 599 and 684 amino acid residues, respectively. Despite exhibiting low sequence homology, the ARF17- and ARF18-encoded proteins displayed significant structural similarity and shared identical motifs. Phylogenetic analysis revealed close relationships between NnARF17 and VvARF17, as well as NnARF18 and BvARF18. Both ARF17 and ARF18 demonstrated responsiveness to exogenous indole-3-acetic acid (IAA), ethephon, and sucrose, exhibiting organ-specific expression patterns. Beyond their role in promoting root development, these ARFs enhanced stem growth and conferred drought tolerance while mitigating waterlogging stress in transgenic Arabidopsis plants. RNA sequencing data indicated upregulation of 51 and 75 genes in ARF17 and ARF18 transgenic plants, respectively, including five and three genes associated with hormone metabolism and responses. Further analysis of transgenic plants revealed a significant decrease in IAA content, accompanied by a marked increase in abscisic acid content under normal growth conditions. Additionally, lotus seedlings treated with IAA exhibited elevated levels of polyphenol oxidase, IAA oxidase, and peroxidase. The consistent modulation of IAA content in both lotus and transgenic plants highlights the pivotal role of IAA in AR formation in lotus seedlings.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Lotus , Arabidopsis/metabolismo , Lotus/metabolismo , Filogenia , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Plantones/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética
6.
BMC Plant Biol ; 24(1): 497, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-39075356

RESUMEN

BACKGROUND: Drought stress affects plant growth and development. DREB proteins play important roles in modulating plant growth, development, and stress responses, particularly under drought stress. To study the function of DREB transcription factors (TFs), we screened key DREB-regulating TFs for drought in Lotus japonicus. RESULTS: Forty-two DREB TFs were identified, and phylogenetic analysis of proteins from L. japonicus classified them into five subfamilies (A1, A2, A4, A5, A6). The gene motif composition of the proteins is conserved within the same subfamily. Based on the cis-acting regulatory element analysis, we identified many growth-, hormone-, and stress-responsive elements within the promoter regions of DREB. We further analyzed the expression pattern of four genes in the A2 subfamily in response to drought stress. We found that the expression of most of the LjDREB A2 subfamily genes, especially LjDREB2B, was induced by drought stress. We further generated LjDREB2B overexpression transgenic Arabidopsis plants. Under drought stress, the growth of wild-type (WT) and overexpressing LjDREB2B (OE) Arabidopsis lines was inhibited; however, OE plants showed better growth. The malondialdehyde content of LjDREB2B overexpressing lines was lower than that of the WT plants, whereas the proline content and antioxidant enzyme activities in the OE lines were significantly higher than those in the WT plants. Furthermore, after drought stress, the expression levels of AtP5CS1, AtP5CS2, AtRD29A, and AtRD29B in the OE lines were significantly higher than those in the WT plants. CONCLUSIONS: Our results facilitate further functional analysis of L. japonicus DREB. LjDREB2B overexpression improves drought tolerance in transgenic Arabidopsis. These results indicate that DREB holds great potential for the genetic improvement of drought tolerance in L. japonicus.


Asunto(s)
Resistencia a la Sequía , Lotus , Proteínas de Plantas , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/fisiología , Resistencia a la Sequía/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Lotus/genética , Lotus/fisiología , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
BMC Plant Biol ; 24(1): 755, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39107750

RESUMEN

BACKGROUND: Postharvest quality deterioration poses a significant challenge to the commercial value of fresh lotus seeds. Low temperature storage is widely employed as the primary method for preserving postharvest lotus seeds during storage and transportation. RESULTS: This approach effectively extends the storage life of lotus seeds, resulting in distinct physiological changes compared to room temperature storage, including a notable reduction in starch, protein, H2O2, and MDA content. Here, we conducted RNA-sequencing to generate global transcriptome profiles of postharvest lotus seeds stored under room or low temperature conditions. Principal component analysis (PCA) revealed that gene expression in postharvest lotus seeds demonstrated less variability during low temperature storage in comparison to room temperature storage. A total of 14,547 differentially expressed genes (DEGs) associated with various biological processes such as starch and sucrose metabolism, energy metabolism, and plant hormone signaling response were identified. Notably, the expression levels of DEGs involved in ABA signaling were significantly suppressed in contrast to room temperature storage. Additionally, nine weighted gene co-expression network analysis (WGCNA)-based gene molecular modules were identified, providing insights into the co-expression relationship of genes during postharvest storage. CONCLUSION: Our findings illuminate transcriptional differences in postharvest lotus seeds between room and low temperature storage, offering crucial insights into the molecular mechanisms of low temperature preservation in lotus seeds.


Asunto(s)
Frío , Semillas , Transcriptoma , Semillas/genética , Lotus/genética , Lotus/fisiología , Lotus/metabolismo , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica
8.
BMC Plant Biol ; 24(1): 225, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539110

RESUMEN

BACKGROUND: Plants are considered the primary source of many principal bioactive compounds that have been utilized in a wide range of applications including the pharmaceutical and biotechnological industries. Therefore, there is an imperative need to modulate the production of natural bioactive components. The present study aimed to determine the importance of dried and pulverized date palm seeds (DPS) as a natural elicitor for the synthesis of secondary metabolites in Lotus arabicus L. RESULTS: The presence of various antioxidant compounds, simple sugars, amino acids, fatty acids and reasonable mineral contents was distinct in the phytochemical characterization of DPS. The major components detected in DPS analysis were the 5-(hydroxymethyl) furfural and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyranone. The induced callus of L. arabicus (seven weeks old) was supplemented with DPS at different concentrations (0, 2, 4, 8 and 10 g/l) in culture media. Treatment with 8 g/l DPS induced the highest antioxidant capacity, ascorbic acid content and secondary metabolites (total phenolics and flavonoids) in the produced callus. Stress biomarkers (hydrogen peroxide and malondialdehyde) were found in the control ranges except at 10 g/l DPS. The expression patterns of key genes involoved in secondary metabolism modulation, such as phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), flavonol synthase (FLS) and deoxyxylulose phosphate reductoisomerase (DXR), were triggered after DPS treatments. Moreover, the quantitative profiling of phenolic and flavonoid compounds showed that supplementation with DPS, especially at 8 g/l, led to pronounced increases in most of the measured compounds. CONCLUSION: The marked upregulation of eliciting-responsive genes and overproduction of secondary metabolites provide molecular-based evidence for intensifying the principal pathways of phenylpropanoid, flavonoid and terpenoid biosynthesis. Overall, the present in vitro study highlights the stimulating capacity of DPS utilization to improve the bioactive components of L. arabicus at the physiological and molecular levels, enhancing its potential as a medicinal herb.


Asunto(s)
Lotus , Phoeniceae , Antioxidantes/metabolismo , Lotus/metabolismo , Phoeniceae/metabolismo , Polvos , Flavonoides/metabolismo , Fenoles/metabolismo , Semillas/metabolismo
9.
J Exp Bot ; 75(5): 1547-1564, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37976184

RESUMEN

Legume nodules express multiple leghemoglobins (Lbs) and non-symbiotic hemoglobins (Glbs), but how they are regulated is unclear. Here, we study the regulation of all Lbs and Glbs of Lotus japonicus in different physiologically relevant conditions and mutant backgrounds. We quantified hemoglobin expression, localized reactive oxygen species (ROS) and nitric oxide (NO) in nodules, and deployed mutants deficient in Lbs and in the transcription factors NLP4 (associated with nitrate sensitivity) and NAC094 (associated with senescence). Expression of Lbs and class 2 Glbs was suppressed by nitrate, whereas expression of class 1 and 3 Glbs was positively correlated with external nitrate concentrations. Nitrate-responsive elements were found in the promoters of several hemoglobin genes. Mutant nodules without Lbs showed accumulation of ROS and NO and alterations of antioxidants and senescence markers. NO accumulation occurred by a nitrate-independent pathway, probably due to the virtual disappearance of Glb1-1 and the deficiency of Lbs. We conclude that hemoglobins are regulated in a gene-specific manner during nodule development and in response to nitrate and dark stress. Mutant analyses reveal that nodules lacking Lbs experience nitro-oxidative stress and that there is compensation of expression between Lb1 and Lb2. They also show modulation of hemoglobin expression by NLP4 and NAC094.


Asunto(s)
Lotus , Nitratos , Nitratos/metabolismo , Lotus/fisiología , Especies Reactivas de Oxígeno/metabolismo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Leghemoglobina/metabolismo , Óxido Nítrico/metabolismo , Simbiosis , Nódulos de las Raíces de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
J Exp Bot ; 75(2): 605-619, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37712520

RESUMEN

Plants activate an immune or symbiotic response depending on the detection of distinct signals from root-interacting microbes. Both signalling cascades involve Ca2+ as a central mediator of early signal transduction. In this study, we combined aequorin- and cameleon-based methods to dissect the changes in cytosolic and nuclear Ca2+ concentration caused by different chitin-derived fungal elicitors in Lotus japonicus roots. Our quantitative analyses highlighted the dual character of the evoked Ca2+ responses taking advantage of the comparison between different genetic backgrounds: an initial Ca2+ influx, dependent on the LysM receptor CERK6 and independent of the common symbiotic signalling pathway (CSSP), is followed by a second CSSP-dependent and CERK6-independent phase, that corresponds to the well-known perinuclear/nuclear Ca2+ spiking. We show that the expression of immunity marker genes correlates with the amplitude of the first Ca2+ change, depends on elicitor concentration, and is controlled by Ca2+ storage in the vacuole. Our findings provide an insight into the Ca2+-mediated signalling mechanisms discriminating plant immunity- and symbiosis-related pathways in the context of their simultaneous activation by single fungal elicitors.


Asunto(s)
Lotus , Micorrizas , Simbiosis/genética , Micorrizas/fisiología , Lotus/metabolismo , Calcio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
11.
J Exp Bot ; 75(11): 3542-3556, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38457346

RESUMEN

The legume-rhizobium symbiosis represents a unique model within the realm of plant-microbe interactions. Unlike typical cases of pathogenic invasion, the infection of rhizobia and their residence within symbiotic cells do not elicit a noticeable immune response in plants. Nevertheless, there is still much to uncover regarding the mechanisms through which plant immunity influences rhizobial symbiosis. In this study, we identify an important player in this intricate interplay: Lotus japonicus PRP1, which serves as a positive regulator of plant immunity but also exhibits the capacity to decrease rhizobial colonization and nitrogen fixation within nodules. The PRP1 gene encodes an uncharacterized protein and is named Pathogenesis-Related Protein1, owing to its orthologue in Arabidopsis thaliana, a pathogenesis-related family protein (At1g78780). The PRP1 gene displays high expression levels in nodules compared to other tissues. We observed an increase in rhizobium infection in the L. japonicus prp1 mutants, whereas PRP1-overexpressing plants exhibited a reduction in rhizobium infection compared to control plants. Intriguingly, L. japonicus prp1 mutants produced nodules with a pinker colour compared to wild-type controls, accompanied by elevated levels of leghaemoglobin and an increased proportion of infected cells within the prp1 nodules. The transcription factor Nodule Inception (NIN) can directly bind to the PRP1 promoter, activating PRP1 gene expression. Furthermore, we found that PRP1 is a positive mediator of innate immunity in plants. In summary, our study provides clear evidence of the intricate relationship between plant immunity and symbiosis. PRP1, acting as a positive regulator of plant immunity, simultaneously exerts suppressive effects on rhizobial infection and colonization within nodules.


Asunto(s)
Lotus , Proteínas de Plantas , Nódulos de las Raíces de las Plantas , Simbiosis , Lotus/genética , Lotus/microbiología , Lotus/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Rhizobium/fisiología , Regulación de la Expresión Génica de las Plantas
12.
Microb Ecol ; 87(1): 119, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340548

RESUMEN

Microbiota associated with host-parasite relationships offer an opportunity to explore interactions among plants, parasites, and microbes, thereby contributing to the overall complexity of community structures. The dynamics of ecological interactions between parasitic plants and their hosts in arid environments remain largely understudied, especially in Africa. This study aimed to examine the bacterial communities of Cuscuta epithymum L. (clover dodder), an epiphytic parasitic plant, and its host, Ziziphus lotus L. (jujuba), in an arid environment. Our goal was to uncover the ecological complexities of microbial communities within the framework of plant-plant interactions. We conducted a comprehensive analysis of the bacterial composition and diversity within populations of the C. epithymum parasite, the infected- and non-infected jujuba host, and their interface at the shoots of the host. This involved amplicon sequencing, targeting the V5-V6 regions of the 16S rRNA gene. A total of 5680 amplicon sequence variants (ASVs) were identified, with Pseudomonadota, Bacillota, and Actinobacteriota being prevalent phyla. Among the bacterial communities, three genera were dominant: Cutibacterium, Staphylococcus, and Acinetobacter. Interestingly, analyses of alpha-diversity (p = 0.3 for Shannon index and p = 0.5 for Simplon index) and beta-diversity (PERMANOVA, with p-values of 0.6 and 0.3) revealed no significant differences between Cuscuta-infected and non-infected jujube shrubs, suggesting a shared shoot endophytic bacteriome. This finding advances our comprehension of microbial communities linked to plant-parasite interactions in the arid environments of Africa. Further research on various hosts is required to confirm plant-to-plant bacterial transmission through Cuscuta infection. Additionally, studies on functional diversity, cytology, ecophysiology and the mechanisms by which bacterial communities transferred between host and parasite are necessary.


Asunto(s)
Bacterias , Cuscuta , Endófitos , Microbiota , ARN Ribosómico 16S , Ziziphus , Cuscuta/fisiología , Cuscuta/microbiología , Cuscuta/genética , Ziziphus/microbiología , ARN Ribosómico 16S/genética , Endófitos/genética , Endófitos/fisiología , Endófitos/clasificación , Endófitos/aislamiento & purificación , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Interacciones Huésped-Parásitos , ADN Bacteriano/genética
13.
Network ; : 1-26, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647158

RESUMEN

Wireless sensor networks (WSNs) rely on mobile anchor nodes (MANs) for network connectivity, data aggregation, and location information. However, MANs' mobility can disrupt energy consumption and network performance. Effective path improvisation algorithms are needed for MANs to optimize energy use, reduce data loss, and maintain network connectivity in dynamic WSN environments. To overcome these issues, Topological Information Embedded Convolutional Neural Network based Lotus Effect Optimization for Path Improvisation of the Mobile Anchors in Wireless Sensor Networks (TIECNN-PIMA-OAC-WSN) was proposed. The approach establishes a robust network setup and energy model, employing TIECNN for initial cluster formation and cluster head selection. The chosen cluster head, termed the Mobile Anchor, undergoes optimization using the Lotus effect optimization algorithm to determine the most efficient and shortest path. This work enhances both the topological information processing and energy efficiency of mobile anchor paths. The simulation outcomes prove the proposed technique attains 33.12%, 39.56%, and 42% higher network lifespan for sensor nodes density 40; 38.22%, 29.66%, and 41.33% higher network lifespan for sensor nodes density 60; 37.45%, 35.55%, and 43.67% higher network lifespan for sensor nodes density 80; 32.45%, 29.45%, and 46.66% higher network lifespan for sensor nodes density 100 analysed to the existing methods.

14.
J Sep Sci ; 47(1): e2300597, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38095454

RESUMEN

Using high-performance liquid chromatography coupled with electrospray ionization-ion mobility spectrometry and mass spectrometry, we proposed a dual-detection method for the identification and profiling of alkaloids in various lotus parts including leaf, plumule, stem, seed epicarp, and receptacle. The eluent from high-performance liquid chromatography was split and conducted to electrospray ionization-ion mobility spectrometry and time-of-flight mass spectrometry separately to facilitate the compound identification. In total, 23 kinds of alkaloids were identified based on m/z, drift time, and retention time, including alkaloid isomers such as lirinidine, N-nornuciferine, and O-nornuciferine with identical m/z that are difficult to differentiate using mass spectrometry alone. Using this method, we investigated the changing dynamics of alkaloid accumulation in lotus leaves and lotus stems at different harvesting periods. The total alkaloid content showed an increasing trend with the growth and development of leave and stem. Overall, the developed dual detection method has the advantages of high peak capacity and high sensitivity compared with the conventional detection method and facilitates the identification of detected compounds.


Asunto(s)
Alcaloides , Extractos Vegetales , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/química , Espectrometría de Movilidad Iónica , Alcaloides/análisis , Espectrometría de Masas/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos
15.
Artículo en Inglés | MEDLINE | ID: mdl-38761010

RESUMEN

Lotus seed skin extract is rich in flavonoids, making it a promising candidate for developing health products. In a previous study, we found that proanthocyanidins from lotus seed skin, particularly proanthocyanidin B1 (PB1), can indirectly activate the Nrf2 signaling pathway, exerting an antioxidant effect. In this study, we isolate proanthocyanidins from lotus seed skin (PLS) using ethanol extraction and RP-HPLC identification, and investigate its effects on glycolipid metabolism both in vivo and in vitro. Our results demonstrate that PLS reduces body weight in high-fat diet (HFD) mice by decreasing feed efficiency. PLS also normalizes serum glucose, insulin secretion, glycosylated hemoglobin (HbA1c), and intraperitoneal glucose tolerance (IPGTT). Furthermore, PLS significantly improves blood lipid parameters and inhibits the expressions of six proinflammatory factors, including IL-1α, IL-1ß, IL-3, IL-6, IFN-γ and TNF-α in HFD mice. Additionally, analysis of fresh liver tissues reveals that PLS and PB1 induce the expressions of antioxidant proteins such as HO-1 and NQO1 by activating the p38-Nrf2 signaling pathway and inhibiting the NF-κB signaling pathway. In conclusion, proanthocyanidins from lotus seed skin regulate glycolipid metabolism disorders by targeting the p38/Nrf2/NF-κB signaling pathway. Our study offers a new approach for the high-value comprehensive utilization of lotus seed skin by-products and precise dietary intervention for metabolic syndrome.

16.
BMC Biol ; 21(1): 176, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592232

RESUMEN

BACKGROUND: Lotus corniculatus is a widely distributed perennial legume whose great adaptability to different environments and resistance to barrenness make it an excellent forage and ecological restoration plant. However, its molecular genetics and genomic relationships among populations are yet to be uncovered. RESULT: Here we report on a genomic variation map from worldwide 272 L. corniculatus accessions by genome resequencing. Our analysis suggests that L. corniculatus accessions have high genetic diversity and could be further divided into three subgroups, with the genetic diversity centers were located in Transcaucasia. Several candidate genes and SNP site associated with CNglcs content and growth traits were identified by genome-wide associated study (GWAS). A non-synonymous in LjMTR was responsible for the decreased expression of CNglcs synthesis genes and LjZCD was verified to positively regulate CNglcs synthesis gene CYP79D3. The LjZCB and an SNP in LjZCA promoter were confirmed to be involved in plant growth. CONCLUSION: This study provided a large number of genomic resources and described genetic relationship and population structure among different accessions. Moreover, we attempt to provide insights into the molecular studies and breeding of CNglcs and growth traits in L. corniculatus.


Asunto(s)
Lotus , Lotus/genética , Fitomejoramiento , Sitios Genéticos , Demografía
17.
Plant Dis ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506908

RESUMEN

Lotus (Nelumbo nucifera Gaertn.) is a widely cultivated plant in China, and the fruit lotus variety has a high economic value attributed to the exquisite flavor of its fresh seeds. During the summer of 2023, an unidentified blight was observed affecting lotus seedpods in Jiande City, Zhejiang province, with approximately 65% of seedpods impacted in a 130-hectare area. The initial symptoms included dark purple spots on the lotus seedpod surface, which gradually expanded over time. After 5 to 7 days, the entire seedpod turned black, withering, and rendering the lotus seeds inedible. To identify the causal agent, tissues from symptomatic seedpods were excised and disinfected in 75% ethanol for 60 s, and washed twice in sterile distilled water. The disinfected symptomatic tissues (5 × 5 mm) were plated on potato dextrose agar (PDA), incubated at 25 ℃, transferred hyphal tips to obtain pure isolates after 3 days. Fungal colonies exhibiting Botryosphaeriaceae morphology were isolated from 33% of the samples (n = 15). Pure cultures were grown on PDA for both morphological and molecular identification. The colonies displayed a white aerial mycelium, turning olivaceous grey after 7 days. Pycnidia were produced within 3 weeks on PDA with added sterilized healthy lotus seedpod pieces on the surface. Conidia were hyaline, unicellular, ellipsoidal, 12.65 to 20.72 × 3.92 to 9.38 µm in size (mean 16.67 × 6.24 µm, n = 100). To determine the fungal species, genomic DNA was extracted from one representative isolate (ZJUP1112-1), to amplify four gene loci through polymerase chain reactions (PCR): rDNA internal transcribed spacer (ITS) with primers ITS1/ITS4, rDNA large subunit (LSU) with LR0R/LR5, the translation elongation factor 1-alpha gene (tef1) with EF1-728F/EF1-986R, and ß-tubulin gene (tub2) with Bt2a/Bt2b. The PCR products were Sanger sequenced in Zhejiang Shangya biotechnology co., LTD, and the resulting sequences were assembled and deposited in GenBank (ITS: OR740546; LSU: OR740547; tef1: OR776996; tub2: OR776997). BLAST searches indicated the highest nucleotide sequence identity with the reference strains of Neofusicoccum parvum CMW 9081 (ITS: 98.8%, AY236943; LSU: 100%, AY928045; tef1: 99.6%, AY236888; tub2: 99.3%, AY236917). Multi-locus phylogenetic analyses revealed that isolate ZJUP1112-1 formed a highly supported clade with N. parvum. Pathogenicity tests were performed on healthy lotus seedpods using mycelial plugs (5 mm diameter) from actively growing colonies of ZJUP1112-1 that were placed onto the front and side of the seedpods (6 each). Controls received PDA plugs. Treated seedpods were wrapped with parafilm and incubated at 25 ℃ and the experiment was repeated three times. After 5 days, dark purple lesions were observed on the inoculated seedpods, whereas controls remained symptomless. The same isolate was recovered from the margin of resulting lesions and confirmed by morphology, thus fulfilling Koch's postulates. N. parvum is a polyphagous pathogen causing blights and fruit rot on multiple economically important fruit crops, such as cacao (Puig et al. 2019), walnut (Chen et al. 2019), pistachio (Lopez-Moral et al. 2020), chestnut (Seddaiu et al. 2021), blueberry (Spetik et al. 2023) and mango (Polizzi et al. 2022), among others. To the best of our knowledge, this is the first report of N. parvum causing seedpod blight on lotus seedpods in China, which contributes to a better understanding of the pathogens affecting this plant species in China.

18.
J Environ Manage ; 356: 120502, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479281

RESUMEN

Effective removal of phosphorus from water is crucial for controlling eutrophication. Meanwhile, the post-disposal of wetland plants is also an urgent problem that needs to be solved. In this study, seedpods of the common wetland plant lotus were used as a new raw material to prepare biochar, which were further modified by loading nano La(OH)3 particles (LBC-La). The adsorption performance of the modified biochar for phosphate was evaluated through batch adsorption and column adsorption experiments. Adsorption performance of lotus seedpod biochar was significantly improved by La(OH)3 modification, with adsorption equilibrium time shortened from 24 to 4 h and a theoretical maximum adsorption capacity increased from 19.43 to 52.23 mg/g. Moreover, LBC-La maintained a removal rate above 99% for phosphate solutions with concentrations below 20 mg/L. The LBC-La exhibited strong anti-interference ability in pH (3-9) and coexisting ion experiments, with the removal ratio remaining above 99%. The characterization analysis indicated that the main mechanism is the formation of monodentate or bidentate lanthanum phosphate complexes through inner sphere complexation. Electrostatic adsorption and ligand exchange are also the mechanisms of LBC-La adsorption of phosphate. In the dynamic adsorption experiment of simulated wastewater treatment plant effluent, the breakthrough point of the adsorption column was 1620 min, reaching exhaustion point at 6480 min, with a theoretical phosphorus saturation adsorption capacity of 6050 mg/kg. The process was well described by the Thomas and Yoon-Nelson models, which indicated that this is a surface adsorption process, without the internal participation of the adsorbent.


Asunto(s)
Lotus , Contaminantes Químicos del Agua , Fósforo , Aguas Residuales , Fosfatos/química , Carbón Orgánico , Adsorción , Lantano/química , Contaminantes Químicos del Agua/química , Semillas , Cinética
19.
Molecules ; 29(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611890

RESUMEN

Folk medicine is widely used in Angola, even for human African trypanosomiasis (sleeping sickness) in spite of the fact that the reference treatment is available for free. Aiming to validate herbal remedies in use, we selected nine medicinal plants and assessed their antitrypanosomal activity. A total of 122 extracts were prepared using different plant parts and solvents. A total of 15 extracts from seven different plants exhibited in vitro activity (>70% at 20 µg/mL) against Trypanosoma brucei rhodesiense bloodstream forms. The dichloromethane extract of Nymphaea lotus (leaves and leaflets) and the ethanolic extract of Brasenia schreberi (leaves) had IC50 values ≤ 10 µg/mL. These two aquatic plants are of particular interest. They are being co-applied in the form of a decoction of leaves because they are considered by local healers as male and female of the same species, the ethnotaxon "longa dia simbi". Bioassay-guided fractionation led to the identification of eight active molecules: gallic acid (IC50 0.5 µg/mL), methyl gallate (IC50 1.1 µg/mL), 2,3,4,6-tetragalloyl-glucopyranoside, ethyl gallate (IC50 0.5 µg/mL), 1,2,3,4,6-pentagalloyl-ß-glucopyranoside (IC50 20 µg/mL), gossypetin-7-O-ß-glucopyranoside (IC50 5.5 µg/mL), and hypolaetin-7-O-glucoside (IC50 5.7 µg/mL) in B. schreberi, and 5-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienyl] resorcinol (IC50 5.3 µg/mL) not described to date in N. lotus. Five of these active constituents were detected in the traditional preparation. This work provides the first evidence for the ethnomedicinal use of these plants in the management of sleeping sickness in Angola.


Asunto(s)
Antiprotozoarios , Nymphaea , Tripanosomiasis Africana , Humanos , Animales , Angola , Semillas , Antiprotozoarios/farmacología , Extractos Vegetales/farmacología
20.
J Sci Food Agric ; 104(5): 2597-2609, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37991930

RESUMEN

BACKGROUND: Lotus (Nelumbo nucifera) leaf has been described to have anti-obesity activity, but the role of white fat 'browning' or 'beiging' in its beneficial metabolic actions remains unclear. Here, 3T3-L1 cells and high-fat-diet (HFD)-fed mice were used to evaluate the effects of miquelianin-rich lotus leaf extract (LLE) on white-to-beige fat conversion and its regulatory mechanisms. RESULTS: Treatment with LLE increased mitochondrial abundance, mitochondrial membrane potential and NAD+ /NADH ratio in 3T3-L1 cells, suggesting its potential in promoting mitochondrial activity. qPCR and/or western blotting analysis confirmed that LLE induced the expression of beige fat-enriched gene signatures (e.g. Sirt1, Cidea, Dio2, Prdm16, Ucp1, Cd40, Cd137, Cited1) and mitochondrial biogenesis-related markers (e.g. Nrf1, Cox2, Cox7a, Tfam) in 3T3-L1 cells and inguinal white adipose tissue of HFD-fed mice. Furthermore, we found that LLE treatment inhibited mitochondrial fission protein DRP1 and blocked mitophagy markers such as PINK1, PARKIN, BECLIN1 and LC-3B. Chemical inhibition experiments revealed that AMPK/DRP1 signaling was required for LLE-induced beige fat formation via suppressing PINK1/PARKIN/mitophagy. CONCLUSION: Our data reveal a novel mechanism underlying the anti-obesity effect of LLE, namely the induction of white fat beiging via AMPK/DRP1/mitophagy signaling. © 2023 Society of Chemical Industry.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Glucósidos , Mitofagia , Quercetina/análogos & derivados , Animales , Ratones , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo Blanco/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/genética , Obesidad/metabolismo , Ubiquitina-Proteína Ligasas/genética , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA