Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.679
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2400084121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968114

RESUMEN

MXenes have demonstrated potential for various applications owing to their tunable surface chemistry and metallic conductivity. However, high temperatures can accelerate MXene film oxidation in air. Understanding the mechanisms of MXene oxidation at elevated temperatures, which is still limited, is critical in improving their thermal stability for high-temperature applications. Here, we demonstrate that Ti[Formula: see text]C[Formula: see text]T[Formula: see text] MXene monoflakes have exceptional thermal stability at temperatures up to 600[Formula: see text]C in air, while multiflakes readily oxidize in air at 300[Formula: see text]C. Density functional theory calculations indicate that confined water between Ti[Formula: see text]C[Formula: see text]T[Formula: see text] flakes has higher removal energy than surface water and can thus persist to higher temperatures, leading to oxidation. We demonstrate that the amount of confined water correlates with the degree of oxidation in stacked flakes. Confined water can be fully removed by vacuum annealing Ti[Formula: see text]C[Formula: see text]T[Formula: see text] films at 600[Formula: see text]C, resulting in substantial stability improvement in multiflake films (can withstand 600[Formula: see text]C in air). These findings provide fundamental insights into the kinetics of confined water and its role in Ti[Formula: see text]C[Formula: see text]T[Formula: see text] oxidation. This work enables the use of stable monoflake MXenes in high-temperature applications and provides guidelines for proper vacuum annealing of multiflake films to enhance their stability.

2.
Proc Natl Acad Sci U S A ; 120(1): e2210211120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574649

RESUMEN

Controllable in situ formation of nanoclusters with discrete active sites is highly desirable in heterogeneous catalysis. Herein, a titanium oxide-based Fenton-like catalyst is constructed using exfoliated Ti3C2 MXene as a template. Theoretical calculations reveal that a redox reaction between the surface Ti-deficit vacancies of the exfoliated Ti3C2 MXene and H2O2 molecules facilitates the in situ conversion of surface defects into titanium oxide nanoclusters anchoring on amorphous carbon (TiOx@C). The presence of mixed-valence Tiδ+ (δ = 0, 2, 3, and 4) within TiOx@C is confirmed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) characterizations. The abundant surface defects within TiOx@C effectively promote the generation of reactive oxygen species (ROS) leading to superior and stable Fenton-like catalytic degradation of atrazine, a typical agricultural herbicide. Such an in situ construction of Fenton-like catalysts through defect engineering also applies to other MXene family materials, such as V2C and Nb2C.


Asunto(s)
Peróxido de Hidrógeno , Titanio , Peróxido de Hidrógeno/química , Titanio/química , Dominio Catalítico , Catálisis
3.
Proc Natl Acad Sci U S A ; 120(45): e2308035120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37883417

RESUMEN

Metallic nickel (Ni) is a promising candidate to substitute Pt-based catalysts for hydrogen oxidation reaction (HOR), but huge challenges still exist in precise modulation of the electronic structure to boost the electrocatalytic performances. Herein, we present the use of single-layer Ti3C2Tx MXene to deliberately tailor the electronic structure of Ni nanoparticles via interfacial oxygen bridges, which affords Ni/Ti3C2Tx electrocatalyst with exceptional performances for HOR in an alkaline medium. Remarkably, it shows a high kinetic current of 16.39 mA cmdisk-2 at the overpotential of 50 mV for HOR [78 and 2.7 times higher than that of metallic Ni and Pt/C (20%), respectively], also with good durability and CO antipoisoning ability (1,000 ppm) that are not available for conventional Pt/C (20%) catalyst. The ultrahigh conductivity of single-layer Ti3C2Tx provides fast transmission of electrons for Ni nanoparticles, of which the uniform and small sizes endow them with high-density active sites. Further, the terminated -O/-OH functional groups on Ti3C2Tx directionally capture electrons from Ni nanoparticles via interfacial Ni-O bridges, leading to obvious electronic polarization. This could enhance the Nids-O2p interaction and weaken Nids-H1s interaction of Ni sites in Ni/Ti3C2Txenabling a suitable H-/OH-binding energy and thus enhancing the HOR activity.

4.
Proc Natl Acad Sci U S A ; 120(23): e2222096120, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252989

RESUMEN

Rational design and synthesis of high-performance electrocatalysts for ethanol oxidation reaction (EOR) is crucial to large-scale commercialization of direct ethanol fuel cells, but it is still an incredible challenge. Herein, a unique Pd metallene/Ti3C2Tx MXene (Pdene/Ti3C2Tx)-supported electrocatalyst is constructed via an in-situ growth approach for high-efficiency EOR. The resulting Pdene/Ti3C2Tx catalyst achieves an ultrahigh mass activity of 7.47 A mgPd-1 under alkaline condition, as well as high tolerance to CO poisoning. In situ attenuated total reflection-infrared spectroscopy studies combined with density functional theory calculations reveal that the excellent EOR activity of Pdene/Ti3C2Tx catalyst is attributed to the unique and stable interfaces which reduce the reaction energy barrier of *CH3CO intermediate oxidation and facilitate oxidative removal of CO poisonous species by increasing the Pd-OH binding strength.

5.
Proc Natl Acad Sci U S A ; 119(42): e2207326119, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215478

RESUMEN

Electrochemical conversion of CO2 into formate is a promising strategy for mitigating the energy and environmental crisis, but simultaneously achieving high selectivity and activity of electrocatalysts remains challenging. Here, we report low-dimensional SnO2 quantum dots chemically coupled with ultrathin Ti3C2Tx MXene nanosheets (SnO2/MXene) that boost the CO2 conversion. The coupling structure is well visualized and verified by high-resolution electron tomography together with nanoscale scanning transmission X-ray microscopy and ptychography imaging. The catalyst achieves a large partial current density of -57.8 mA cm-2 and high Faradaic efficiency of 94% for formate formation. Additionally, the SnO2/MXene cathode shows excellent Zn-CO2 battery performance, with a maximum power density of 4.28 mW cm-2, an open-circuit voltage of 0.83 V, and superior rechargeability of 60 h. In situ X-ray absorption spectroscopy analysis and first-principles calculations reveal that this remarkable performance is attributed to the unique and stable structure of the SnO2/MXene, which can significantly reduce the reaction energy of CO2 hydrogenation to formate by increasing the surface coverage of adsorbed hydrogen.

6.
Nano Lett ; 24(34): 10547-10553, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39140754

RESUMEN

Two-dimensional transition metal carbides/nitrides (MXenes) have shown great promise in various applications. However, mass production of MXenes suffers from the excessive use of toxic fluorine-containing reagents. Herein, a new method was validated for synthesizing MXenes from five MAX ceramics. The method features a minimized (stoichiometric) dosage of F-containing reagent (NaBF4) and polyols (glycerol, erythritol, and xylitol) as the reaction solvent. Due to the sweetness of polyols and the low environmental impact, we refer to this method as a "sweet" synthesis of MXenes. An in-depth molecular dynamics simulation study, combined with experimental kinetic parameters, further revealed that the diffusion of F- in the confined interplanar space is rate-determining for the etching reaction. The expansion of interlayer spacing by polyols effectively reduces the diffusion activation energy of F- and accelerates the etching reaction.

7.
Nano Lett ; 24(31): 9477-9486, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39072447

RESUMEN

Capacitive deionization (CDI), renowned for its eco-friendly and low-energy approach to water treatment, encounters challenges in achieving optimal deionization efficiency and cycle stability despite recent advancements. In this study, the CDI electrodes were crafted with multilevel pore structures using modified cellulose (MCNF) and porous activated MXene (PAMX), aiming to the impact of surface modification on adsorption efficiency, stability, and overall performance. The experimental results demonstrated the superiority of the electrode, specifically the formulation integrating sulfonic acid-treated cellulose and PAMX (SCNF@PAMX). This configuration exhibited remarkably a higher desalination rate (3.91 mg·g-1·min-1) and enhanced desalination capacity (31.24 mg·g-1), with cycling performance exceeding 90%. Density functional theory calculations underscored the formidable adsorption energy of SCNF for Na+ (2.15 eV), surpassing that of other modified electrodes. The enhancement of deionization performance and efficiency through surface charge modification, altering Na+ electrostatic adsorption, lays a solid foundation for advancing more efficient and durable seawater desalination technologies.

8.
Nano Lett ; 24(27): 8343-8350, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38923939

RESUMEN

The shrinkage and collapse of wood cell walls during carbonization make it challenging to control the size and shape of carbonized wood (CW) through pre- or postprocessing (e.g., sawing, cutting, and milling). Herein, a shape-adaptive MXene shell (MS) is created on the surface of the wood cell walls. The MS limits the deformation of wood cell walls by spatial confinement and traction effects, which is supported by the inherent dimensional stability of the MS and the formation of new C-O-Ti covalent bonds between the wood cell wall and MS. Consequently, the volumetric shrinkage ratio of CW encapsulated by the MS (CW-MS) is significantly reduced from 54.8% for CW to 2.6% for CW-MS even at 800 °C. The harnessing of this collapse enables the production of CW-MS with prolonged stability and high electric conductivity (384 S m-1). These properties make CW-MS suitable for energy storage devices with various designed shapes, matching the increasingly compact and complex structures of electronic devices.

9.
Nano Lett ; 24(35): 10883-10891, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39172995

RESUMEN

The development of electronic skin (e-skin) emulating the human skin's three essential functions (perception, protection, and thermoregulation) has great potential for human-machine interfaces and intelligent robotics. However, existing studies mainly focus on perception. This study presents a novel, eco-friendly, mechanically robust e-skin replicating human skin's three essential functions. The e-skin is composed of Ti3C2Tx MXene, polypyrrole, and bacterial cellulose nanofibers, where the MXene nanoflakes form the matrix, the bacterial cellulose nanofibers act as the filler, and the polypyrrole serves as a conductive "cross-linker". This design allows customization of the electrical conductivity, microarchitecture, and mechanical properties, integrating sensing (perception), EMI shielding (protection), and thermal management (thermoregulation). The optimal e-skin can effectively sense various motions (including minuscule artery pulses), achieve an EMI shielding efficiency of 63.32 dB at 78 µm thickness, and regulate temperature up to 129 °C in 30 s at 2.4 V, demonstrating its potential for smart robotics in complex scenarios.


Asunto(s)
Conductividad Eléctrica , Polímeros , Dispositivos Electrónicos Vestibles , Humanos , Polímeros/química , Pirroles/química , Nanofibras/química , Celulosa/química , Piel/química , Regulación de la Temperatura Corporal , Titanio/química , Robótica
10.
Nano Lett ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382225

RESUMEN

Compliant strain gauges are well-suited to monitor tiny movements and processes in the body. However, they are easily damaged by unexpected impacts in practical applications, limiting their utility in controlled laboratory environments. This study introduces elastic microcracked MXene films for mechanically driven self-healing strain gauges. MXene films are deposited on soft silicone substrates and intentionally stretched to create saturated microcracks. The resulting device not only has high sensitivity but also can recover its original sensing capability even after experiencing failure-level overstrains. This electrical self-healing ability is achieved through the elastic rebound of the substrate, which autonomously restores the microcracked morphology of the MXene film. The MXene strain gauge can withstand overextension, twisting, impact forces, and even car rolling. The device is also resilient to touch-induced damage during monitoring of physiological motions. The mechanically driven self-healing strategy may effectively improve the durability of highly sensitive strain sensors.

11.
Nano Lett ; 24(28): 8542-8549, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38973706

RESUMEN

Aqueous aluminum-ion batteries (AAIBs) are considered a strong candidate for the new generation of energy storage devices. The lack of suitable cathode materials has been a bottleneck factor hindering the future development of AAIBs. In this work, we design and construct a highly effective cathode with dual morphologies. Two-dimensional (2D) layered MXene materials possessed good conductivity and hydrophilicity, which are used as the substrates to deposit rod-shaped vanadium oxides (V2O5) to form a three-dimensional (3D) cathode. The cathode design provides a strong boost for the rapid electrochemical activities of rod-shaped V2O5 by embedding/extracting both protons (H+) and aluminum-ion (Al3+). As a result, the V2O5@MXene cathode based AAIB delivers an ultrahigh initial specific capacity of 626 mAh/g at 0.1 A/g with a stable cycle performance up to 100 cycles. This work is a breakthrough for the development of cathode materials for AAIBs.

12.
Nano Lett ; 24(33): 10210-10218, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39105760

RESUMEN

Assembling active materials into dense electrodes is a promising way to obtain high-volumetric-capacitance supercapacitors, but insufficient ion channels in the dense structure lead to a low rate capability. Herein, a dense and robust wood electrode with a large MXene volumetric mass loading (1.25 g cm-3) and abundant ion diffusion channels is designed via a facile capillary-force-driven self-densification strategy. Specifically, MXene is assembled onto a wood cell wall, endowing the wood electrode with good electrical conductivity (86 S cm-1) and high electrochemical activity (5.9 F cm-2 at 1 mA cm-2). Notably, the oriented channels along with spaces between adjacent microfibrils recast after densification ensure efficient ion transport for the wood electrode, achieving an excellent rate capability with a high capacitance retention of 77% from 1 to 20 mA cm-2. Meanwhile, the capillary force induces self-densification on the softened wood cell wall, resulting in a highly compact and robust structure for the wood electrode.

13.
Nano Lett ; 24(32): 9967-9973, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39101557

RESUMEN

Liquid hydrogen carriers have garnered considerable interest in long-distance and large-scale hydrogen storage owing to their exceptional hydrogen storage density, safety, and compatibility. Nonetheless, their practical application is hampered by the low hydrogen production rate and high cost, stemming from poor thermal utilization and heavy reliance on noble metals in solar bulk dehydrogenation platforms. To conquer these challenges, we devise an economical all-in-one architecture comprising the photothermal catalytic termination-vacant MXene and a highly insulated melamine substrate. This design floats on the air-reactant interface to efficiently drive solar interfacial dehydrogenation. The melamine enables interfacial heat localization to improve the thermal utilization, providing a high reaction temperature. Meanwhile, the MXene with termination vacancies exposes rich active sites for formic acid dehydrogenation, and simultaneously high performance and cost-effectiveness can be realized. This work offers fresh perspectives on the design and application of photothermal catalytic MXene, broadening the prospects for hydrogen storage using liquid hydrogen carriers.

14.
Nano Lett ; 24(29): 8818-8825, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38985501

RESUMEN

Stationary energy storage infrastructure based on zinc-ion transport and storage chemistry is attracting more attention due to favorable metrics, including cost, safety, and recycling feasibility. However, splitting water and liquid electrolyte fluidity lead to cathode dissolution and Zn corrosion, resulting in rapid attenuation of the capacity and service life. Herein, a new architecture of solid-state electrolytes with high zinc ionic conductivity at room temperature was prepared via solidification of deep eutectic solvents utilizing MXene as nucleation additives. The ionic conductivity of MXene/ZCEs reached 6.69 × 10-4 S cm-1 at room temperature. Dendrite-free Zn plating/stripping with high reversibility can remain for over 2500 h. Subsequently, the fabricated solid-state zinc-ion battery with eliminated HER and suppressed Zn dendrites exhibited excellent cycling performance and could work normally in a range from -10 to 60 °C. This design inspired by eutectic solidification affords new insights into the multivalent solid electrochemistry suffering from slow ion migration.

15.
Nano Lett ; 24(39): 12333-12342, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39302876

RESUMEN

Artificial ionic sensory systems, bridging the divide between biological systems and electronics, mimic human skin functions but face critical challenges with biocompatibility, comfort, signal stability, and simplifying packaging. Here, we present a simple and permeable skin-interfaced iontronic mechanosensing (SIIM) architecture that integrates human skin as natural ionic material and hierarchically porous MXene-fiber composite membranes as sensing electrodes. The SIIM system eliminates complex ionic material design and multilayer matrix, exhibiting ultrahigh pressure sensitivities (5.4 kPa-1, <75 Pa), a low detection limit (6 Pa), excellent output stability along with high permeability to minimize the impact of sweating on sensing. The noncytotoxic nature of SIIM electrodes ensures excellent biocompatibility (>97% cell coincubational viability), facilitating long-term wearability and high biosafety. Furthermore, the scalable SIIM configuration integrated with matrix smart gloves, effectively monitors human physical movements. This SIIM-based sensor with marked sensing capabilities, structural simplicity, and scalability, holds promising potential in diverse wearable applications.


Asunto(s)
Materiales Biocompatibles , Piel , Dispositivos Electrónicos Vestibles , Humanos , Materiales Biocompatibles/química , Membranas Artificiales , Electrodos , Permeabilidad , Técnicas Biosensibles/instrumentación , Porosidad
16.
Nano Lett ; 24(38): 11904-11912, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39265073

RESUMEN

Traditional deicing methods are increasingly insufficient for modern technologies like 5G infrastructure, photovoltaic systems, nearspace aerocraft, and terrestrial observatories. To address the challenge of combining anti-icing efficiency with operational performance, an innovative, spectrally selective, photo/electrothermic, ice-phobic film was prepared through a cost-effective mist deposition method. By manipulating the diameter ratio and density of nanowires, the local density of free electrons within this film is controlled to precisely dictate the position and intensity of surface plasmon resonance to achieve spectrally selective photo/electrothermal conversion. Additionally, the synthesized hydrophobic N-Boroxine-PDMS/SiO2 layer improves thermal stability and accelerates the deicing process. It achieves rapid deicing within 86 s under photothermal conditions and 65 s with Joule heating while maintaining high optical transmittance. The film improves the operational efficiency and thermal safety of equipment while preserving aesthetics and stability, thereby underscoring its broad suitability for advanced outdoor installations in cold environments.

17.
Nano Lett ; 24(35): 11090-11096, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39162307

RESUMEN

In this study, bismuthene was intercalated between bilayer Ti2CTx to induce significant modifications in its electronic and phonon structures, thereby enhancing its thermoelectric properties. First-principles calculations reveal that the insertion of bismuthene transforms the Ti2CO2 system from a semiconductor into a metal and optimizes the thermoelectric properties of bilayer Ti2CO2 by enhancing its power factor and reducing its lattice thermal conductivity. Under the first-principles calculation parameters used in this study, the ZT of the Ti2CO2 system increased from 0.12 to 0.55. Conversely, for metallic bilayer MXenes, the introduction of bismuthene led to a substantial decrease in ZT (from 0.53 to 0.11 in the Ti2C system and from 0.07 to 0.05 in the Ti2CCl2 system). This study investigates the physical mechanisms underlying the enhancement of thermoelectric properties from both electronic and phononic perspectives and provides theoretical insights into the development and application of MXene-based thermoelectric materials.

18.
Nano Lett ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39361835

RESUMEN

Drawing inspiration from dynamic biological ion channels, researchers have developed various artificial membranes featuring responsive nanochannels. Typically, these membranes modify mass transport behaviors by manipulating the responsive layer on the inner surfaces of the intrinsic layer. In this study, we build two-dimensional lamellar membranes composed of titanium carbide MXene and poly(N-isopropylacrylamide), endowed with dual-level regulatable nanochannels, achieved through adjustments of nanochannel microenvironments. The size of these two-dimensional nanochannels can be altered by both the thermoresponsive polymer layer and the intrinsic MXene layer that could undergo spontaneous oxidation. The multilevel regulation strategy substantially enhances the molecular selectivity of MXene separation membranes, which is further applied for precise gradient separation toward multiple molecules. This advancement showcases the versatility and transformative capabilities of responsive nanochannel technology, setting the stage for innovative developments in diverse fields.

19.
Nano Lett ; 24(26): 8098-8106, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38913786

RESUMEN

The development of multifunctional MXene-based fabrics for smart textiles and portable devices has garnered significant attention. However, very limited studies have focused on their structure design and associated mechanical properties. Here, the supertough MXene fiber felts composed of MXene/sodium alginate (SA) fibers were fabricated. The fracture strength and bending stiffness of felts can be up to 97.8 MPa and 1.04 N mm2, respectively. Besides, the fracture toughness of felts was evaluated using the classic Griffith theory, yielding to a critical stress intensity factor of 1.79 MPam. In addition, this kind of felt presents outstanding electrothermal conversion performance (up to 119 °C at a voltage of 2.5 V), high cryogenic and high-temperature tolerance of photothermal conversion performance (-196 to 160 °C), and excellent electromagnetic interference (EMI) shielding effectiveness (54.4 dB in the X-band). This work provides new structural design concepts for high-performance MXene-based textiles, broadening their future applications.

20.
Nano Lett ; 24(33): 10297-10304, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39133240

RESUMEN

In this paper, Ti3C2Tx MXene/Cu-Bi bimetallic sulfide (Ti3C2Tx/BiCuS2.5) composites were prepared by a simple in situ deposition method for electrocatalytic nitrogen reduction reaction (eNRR). Compared to Ti3C2Tx/Bi2S3 and Ti3C2Tx/CuS, the eNRR performance of Ti3C2Tx/BiCuS2.5 is significantly improved. The results show that Ti3C2Tx/BiCuS2.5 exhibits a NH3 yield of 62.57 µg h-1 mg-1cat. in 0.1 M Na2SO4 at -0.6 V vs reversible hydrogen electrode, and the Faradaic efficiency (FE) reaches 67.69%, which is better than that of Ti3C2Tx/CuS (NH3 yield: 52.26 µg h-1 mg-1cat., FE: 34.15%) and Ti3C2Tx/Bi2S3 (NH3 yield: 54.04 µg h-1 mg-1cat., FE: 37.38%). According to density functional theory calculations, the eNRR at the Ti3C2Tx/BiCuS2.5 surface is the alternating pathway. The 1H NMR experiment of 15N proves that the N of NH3 generated in the experiment originates from N2 passed during the experiment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA