Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 104(24): 10669-10683, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33079228

RESUMEN

Previously, we demonstrated that Lactobacillus casei CRL431, a well-known immunomodulatory bacterium, beneficially regulates coagulation activation, fibrin formation in lung, and the pro-inflammatory state induced by protein malnourishment and pneumococcal infection. In this study, we deepen in the understanding of the mechanisms involved in the immunoregulatory activity of L. casei CRL431 during a nutritional repletion process by evaluating (a) platelet and endothelial activation, (b) tissue factor (TF) expression, and (c) protease-activated receptor (PAR) activation in an experimental bacterial respiratory infection model in malnourished mice. Our findings demonstrate for the first time that the repletion diet supplemented with L. casei CRL431 was effective to normalize platelet counts in blood, modulate platelet activation and their recruitment into the lung, and regulate local and systemic TF expression and endothelial activation, which were affected by malnourishment. Streptococcus pneumoniae challenge induced local and systemic increase of platelet counts, PARs activation, P-selectin and TF expression, as well as endothelial activation in both well-nourished and malnourished mice. Malnourished animals evidenced the highest alterations of the parameters evaluated while the mice fed with the probiotic bacterium had similar behavior to normal controls but with lower PAR activation in lung. These results demonstrate that supplementation of repletion diet with L. casei CRL431 is effective to modulate alterations induced by malnourishment and pneumococcal infection, restraining coagulation activation, the inflammatory process, and lung damage. These observations contribute to set the basis for the application of probiotic functional foods to modulate the inflammation-hemostasis interactions altered by malnourishment or bacterial respiratory infections. KEY POINTS: • Pneumococcal infection increases pro-coagulant state induced by protein malnourishment. • Repletion with L. casei CRL431 modulates platelet, TF, and endothelial activation. • L. casei CRL431 improves immune-coagulative response in protein malnourishment.


Asunto(s)
Hemostáticos , Lacticaseibacillus casei , Desnutrición , Infecciones Neumocócicas , Probióticos , Infecciones del Sistema Respiratorio , Animales , Hemostasis , Ratones , Streptococcus pneumoniae
2.
Asian Pac J Trop Biomed ; 1(4): 261-5, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23569771

RESUMEN

OBJECTIVE: To assess the neuroprotective effects of aqueous extract of Garcinia kola on neurotoxin administered malnourished mice adopting histological procedure. METHODS: The study was carried out using thirty-two adult malnourished mice which were randomly assigned into four groups (n=8): A, B, C and D. Group A served as control, while the other groups served as the experimental groups. Animals in group A were fed malnourished diet ad libitum and given water liberally. Animals in group B were administered with 3-Nitropropionic acid (3-NP) (neurotoxin) only at 20 mg/kg body weight, group C were given only Garcinia kola extracts, and group D were pre-treated with Garcinia kola extracts at 200 mg/kg for seven days prior to administration of neurotoxin at 20 mg/kg body weight. After three days of neurotoxins administration in the relevant groups, the brains were excised and fixed in formal calcium for histological processing. RESULTS: The study showed that hippocampal and cerebellar neurons of animals in group B exhibited some cellular degeneration and blood vessel blockage, which were not seen in groups A, C and D. Cresyl violet staining was least intense in group B than in groups A, C and D. Despite the fact that animals in group D has equal administration of 3-Nitropropionic acid concentration, there were no traces of neural degeneration as it was evidenced in group B. CONCLUSIONS: It is concluded that Garcinia kola has protective effects on the neurons of the hippocampus and cerebellum of malnourished mice.


Asunto(s)
Cerebelo/efectos de los fármacos , Garcinia kola/química , Hipocampo/efectos de los fármacos , Desnutrición/tratamiento farmacológico , Fármacos Neuroprotectores/administración & dosificación , Extractos Vegetales/administración & dosificación , Animales , Cerebelo/patología , Hipocampo/patología , Histocitoquímica , Ratones , Fármacos Neuroprotectores/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA