Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
BMC Bioinformatics ; 24(1): 438, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990145

RESUMEN

BACKGROUND: Use of alternative non-Saccharomyces yeasts in wine and beer brewing has gained more attention the recent years. This is both due to the desire to obtain a wider variety of flavours in the product and to reduce the final alcohol content. Given the metabolic differences between the yeast species, we wanted to account for some of the differences by using in silico models. RESULTS: We created and studied genome-scale metabolic models of five different non-Saccharomyces species using an automated processes. These were: Metschnikowia pulcherrima, Lachancea thermotolerans, Hanseniaspora osmophila, Torulaspora delbrueckii and Kluyveromyces lactis. Using the models, we predicted that M. pulcherrima, when compared to the other species, conducts more respiration and thus produces less fermentation products, a finding which agrees with experimental data. Complex I of the electron transport chain was to be present in M. pulcherrima, but absent in the others. The predicted importance of Complex I was diminished when we incorporated constraints on the amount of enzymatic protein, as this shifts the metabolism towards fermentation. CONCLUSIONS: Our results suggest that Complex I in the electron transport chain is a key differentiator between Metschnikowia pulcherrima and the other yeasts considered. Yet, more annotations and experimental data have the potential to improve model quality in order to increase fidelity and confidence in these results. Further experiments should be conducted to confirm the in vivo effect of Complex I in M. pulcherrima and its respiratory metabolism.


Asunto(s)
Metschnikowia , Torulaspora , Vino , Levaduras/genética , Levaduras/metabolismo , Metschnikowia/genética , Metschnikowia/metabolismo , Torulaspora/metabolismo , Vino/análisis , Fermentación
2.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37019825

RESUMEN

Metschnikowia pulcherrima is an important yeast species that is attracting increased interest thanks to its biotechnological potential, especially in agri-food applications. Phylogenetically related species of the so-called 'pulcherrima clade' were first described and then reclassified in one single species, which makes the identification an intriguing issue. Starting from the whole-genome sequencing of the protechnological strain Metschnikowia sp. DBT012, this study applied comparative genomics to calculate similarity with the M. pulcherrima clade publicly available genomes with the aim to verify if novel single-copy putative phylogenetic markers could be selected, in comparison with the commonly used primary and secondary barcodes. The genome-based bioinformatic analysis allowed the identification of 85 consensus single-copy orthologs, which were reduced to three after split decomposition analysis. However, wet-lab amplification of these three genes in nonsequenced type strains revealed the presence of multiple copies, which made them unsuitable as phylogenetic markers. Finally, average nucleotide identity (ANI) was calculated between strain DBT012 and available genome sequences of the M. pulcherrima clade, although the genome dataset is still rather limited. Presence of multiple copies of phylogenetic markers as well as ANI values were compatible with the recent reclassification of the clade, allowing the identification of strain DBT012 as M. pulcherrima.


Asunto(s)
Metschnikowia , Metschnikowia/genética , Filogenia , Levaduras/genética , Genómica , Secuenciación Completa del Genoma
3.
Molecules ; 28(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37446724

RESUMEN

Candidiasis is one of the most frequent infections worldwide. In this study, the antimicrobial properties of six strains belonging to the Metschnikowia pulcherrima clade were evaluated against twenty Candida and Candida-related Filobasidiella neoformans var. bacillispora (syn. Cryptococcus neoformans) of different origins, employing the agar cross method. The toxic effect of pulcherrimin, a red metabolite that is responsible for the antimicrobial activities of Metschnikowia spp., was evaluated in various experimental models. The results of agar tests showed that the selected M. pulcherrima strains inhibited the growth of the Candida and non-Candida strains. However, inhibition was dependent on the strain and the environment. The presence of peptone, sodium silicate, and a higher incubation temperature decreased the antifungal action of the M. pulcherrima strains. Pulcherrimin showed cytotoxic and antiproliferative activity, with oxidative stress in cells leading to apoptosis. More research is needed on the mechanism of action of pulcherrimin on somatic cells.


Asunto(s)
Antiinfecciosos , Metschnikowia , Candida , Metschnikowia/fisiología , Agar , Antifúngicos/farmacología , Antifúngicos/metabolismo , Antiinfecciosos/farmacología
4.
Arch Microbiol ; 204(6): 337, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35587835

RESUMEN

Yeasts can produce toxins in protein or glycoprotein structures that can act as an inhibitor on some bacteria and yeast species. The effects of those toxins on the growth of pathogenic and food spoilage microorganisms are subject to various studies. Metschnikowia pulcherrima was determined to be a killer toxin-producing yeast that was tested against three selected microorganisms, namely Escherichia coli Type-I, Micrococcus luteus and Candida albicans. The killer toxin only showed inhibitory activity against M. luteus. Different pH (5-6-7-8), temperature (20-25-30-35 °C) and carbon source (glucose-glycerol-ethanol-acetate) combinations were applied to stimulate the growth and toxin production of the killer yeast. The greatest increase among the different combinations was obtained at 20 °C and pH 7 when glycerol was used as the main carbon source. It was then also tested against other pathogen indicators or pathogens under these conditions. The killer toxin was partially purified by ethanol precipitation and showed inhibitory activity against M. luteus (36 mm). According to the protein profile obtained by SDS-PAGE, the molecular weight of the inhibitor toxin was measured about 7.4 kDa. The molecular weight with amino acid sequence of the killer toxin was 10.3 kDa and determined by MALDI-TOF mass spectrometry.


Asunto(s)
Glicerol , Metschnikowia , Carbono/metabolismo , Escherichia coli , Etanol/metabolismo , Glicerol/metabolismo , Levaduras
5.
Food Microbiol ; 108: 104100, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36088115

RESUMEN

Due to its nutritional characteristics, dried fruit and in particular pistachio is considered an important component in the daily diet. Unfortunately, pistachio nuts can be contaminated during storage with a wide range of pathogenic fungi, including Aspergillus flavus. The present work has evaluated how the use of two yeast strains belonging to the species Wickerhamomyces anomalus and Metschnikowia pulcherrima can inhibit the in vitro and in vivo growth of A. flavus. Both yeast strains demonstrated a good in vitro antifungal activity attributable to a specific mechanism of action, although higher efficacy was evidenced by W. anomalus strain. The production of volatile organic compounds (VOCs) and lytic enzymes was hypothesized as the main mechanisms of action exerted by W. anomalus, while the nutritional competition for iron was assumed as the main biocontrol mechanism for M. pulcherrima. Moreover, from the results of the in vivo test carried out on artificially infected pistachio seeds, it was clear as M. pulcherrima strain showed the same efficacy of W. anomalus in inhibiting the growth and sporulation of A. flavus mold, despite W. anomalus was the most effective strain during in vitro assay. Altogether, these results indicate that both strains could be considered as potential biocontrol agents against A. flavus fungal growth, notwithstanding it is always important considering the tritrophic interaction (yeast-mold- host), which could play a crucial role in determining the final results.


Asunto(s)
Aspergillus flavus , Pistacia , Agentes de Control Biológico , Hongos , Nueces , Saccharomycetales , Levaduras
6.
Food Microbiol ; 85: 103287, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31500707

RESUMEN

Wine-related non-Saccharomyces yeasts are becoming more widely used in oenological practice for their ability to confer wine a more complex satisfying aroma, but their metabolism remains unknown. Our study explored the nitrogen utilisation profile of three popular non-Saccharomyces species, Torulaspora delbrueckii, Metschnikowia pulcherrima and Metschnikowia fructicola. The nitrogen source preferences to support growth and fermentation as well as the uptake order of different nitrogen sources during wine fermentation were investigated. While T. delbrueckii and S. cerevisiae strains shared the same nitrogen source preferences, Metschnikowia sp. Displayed a lower capacity to efficiently use the preferred nitrogen compounds, but were able to assimilate a wider range of amino acids. During alcoholic fermentation, the non-Saccharomyces strains consumed different nitrogen sources in a similar order as S. cerevisiae, but not as quickly. Furthermore, when all the nitrogen sources were supplied in the same amount, their assimilation order was similarly affected for both S. cerevisiae and non-Saccharomyces strains. Under this condition, the rate of nitrogen source consumption of non-Saccharomyces strains and S. cerevisiae was comparable. Overall, this study expands our understanding about the preferences and consumption rates of individual nitrogen sources by the investigated non-Saccharomyces yeasts in a wine environment. This knowledge provides useful information for a more efficient exploitation of non-Saccharomyces strains that improves the management of the wine fermentation.


Asunto(s)
Fermentación , Nitrógeno/metabolismo , Vino/microbiología , Levaduras/crecimiento & desarrollo , Levaduras/metabolismo , Aminoácidos/metabolismo , Metschnikowia/crecimiento & desarrollo , Odorantes , Saccharomyces cerevisiae , Torulaspora/crecimiento & desarrollo
7.
J Ind Microbiol Biotechnol ; 46(12): 1733-1743, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31420798

RESUMEN

Protease-secreting yeasts have broad biotechnological potential for application to various industrial processes, including winemaking. However, this activity is influenced by the yeast response to environmental factors such as nitrogen and protein sources, as are found in grape juice. In this study, the wine-relevant yeast Metschnikowia pulcherrima IWBT Y1123, with known protease-secreting ability, was subjected to different nitrogen-containing compounds to monitor their impact on protease secretion and activity. Protease activity increased above basal levels for haemoglobin-containing treatments, indicating an inductive influence of proteins. On the other hand, treatments containing both haemoglobin and assimilable nitrogen sources led to a delayed increase in protease activity and protein degradation, suggesting a nitrogen catabolite repression mechanism at work. Protease activity and expression were furthermore evaluated in grape juice, which revealed increased expression and activity levels over time as promising results for further investigations into the impact of this yeast on wine properties.


Asunto(s)
Proteasas de Ácido Aspártico/metabolismo , Metschnikowia/enzimología , Proteasas de Ácido Aspártico/genética , Fermentación , Jugos de Frutas y Vegetales , Metschnikowia/genética , Vitis/metabolismo , Vino/análisis
8.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443334

RESUMEN

This study reports the first application of a next generation sequencing (NGS) analysis. The analysis was designed to monitor the effect of the management of microbial resources associated with alcoholic fermentation on spontaneous malolactic consortium. Together with the analysis of 16S rRNA genes from the metagenome, we monitored the principal parameters linked to MLF (e.g., malic and lactic acid concentration, pH). We encompass seven dissimilar concrete practices to manage microorganisms associated with alcoholic fermentation: Un-inoculated must (UM), pied-de-cuve (PdC), Saccharomyces cerevisiae (SC), S. cerevisiae and Torulaspora delbrueckii co-inoculated and sequentially inoculated, as well as S. cerevisiae and Metschnikowia pulcherrima co-inoculated and sequentially inoculated. Surprisingly, each experimental modes led to different taxonomic composition of the bacterial communities of the malolactic consortia, in terms of prokaryotic phyla and genera. Our findings indicated that, uncontrolled AF (UM, PdC) led to heterogeneous consortia associated with MLF (with a relevant presence of the genera Acetobacter and Gluconobacter), when compared with controlled AF (SC) (showing a clear dominance of the genus Oenococcus). Effectively, the SC trial malic acid was completely degraded in about two weeks after the end of AF, while, on the contrary, malic acid decarboxylation remained uncomplete after 7 weeks in the case of UM and PdC. In addition, for the first time, we demonstrated that both (i) the inoculation of different non-Saccharomyces (T. delbrueckii and M. pulcherrima) and, (ii) the inoculation time of the non-Saccharomyces with respect to S. cerevisiae resources (co-inoculated and sequentially inoculated) influence the composition of the connected MLF consortia, modulating MLF performance. Finally, we demonstrated the first findings of delayed and inhibited MLF when M. pulcherrima, and T. delbrueckii were inoculated, respectively. In addition, as a further control test, we also assessed the effect of the inoculation with Oenococcus oeni and Lactobacillus plantarum at the end of alcoholic fermentation, as MLF starter cultures. Our study suggests the potential interest in the application of NGS analysis, to monitor the effect of alcoholic fermentation on the spontaneous malolactic consortium, in relation to wine.


Asunto(s)
Metagenoma/genética , Vino/microbiología , Fermentación/genética , Fermentación/fisiología , Lactobacillales/genética , Lactobacillales/metabolismo , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , ARN Ribosómico 16S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Torulaspora/genética , Torulaspora/metabolismo
9.
J Appl Microbiol ; 124(6): 1521-1531, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29457321

RESUMEN

AIMS: Twenty-five enological yeasts belonging to nine different species (Candida zeylanoides, Cryptococcus uzbekistanensis, Debaryomyces hansenii, Lachancea thermotolerans, Metschnikowia pulcherrima, Torulaspora delbrueckii, Williopsis pratensis, Zygosaccharomyces bailii and Saccharomyces cerevisiae) were screened for aroma formation and fermentative behaviour as part of a non-Saccharomyces yeast selection programme. METHODS AND RESULTS: Pure cultures were inoculated in pasteurized grape juice in order to perform alcoholic fermentations. Some non-Saccharomyces species did not ferment, others did not get established and none of them completed alcoholic fermentations. The physico-chemical parameters of the wines and the abundance of aromatic compounds at the end of alcoholic fermentation highlighted the notable differences in the aroma-forming ability and fermentative behaviour of the different non-Saccharomyces species, but not within clones. CONCLUSIONS: Lower diversity was detected within non-Saccharomyces species than that reported in S. cerevisiae with regard to enological behaviour and aromatic profiles. Metschnikowia pulcherrima and L. thermotolerans are the two species with higher possibilities to become an inoculum. SIGNIFICANCE AND IMPACT OF THE STUDY: Few significant differences were found within clones of the same species, but very important parameters in wine quality, such as volatile acidity, ethyl acetate and acetoin, which would justify selection programmes within those species. The results also demonstrated that T. delbrueckii and L. thermotolerans are two close species in their aromatic profiles.


Asunto(s)
Fermentación/fisiología , Odorantes/análisis , Vino , Levaduras/metabolismo , Vino/análisis , Vino/microbiología
10.
Appl Microbiol Biotechnol ; 102(19): 8501-8509, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30054701

RESUMEN

Most wine aroma compounds, including the varietal fraction, are produced or released during wine production and derived from microbial activity. Varietal aromas, typically defined as terpenes and thiols, have been described as derived from their non-volatile precursors, released during wine fermentation by different yeast hydrolytic enzymes. The perception of these minority aroma compounds depends on the chemical matrix of the wine, especially on the presence of majority aroma compounds, such as esters or higher alcohols. Strategies aiming to reduce the production of these masking flavors are on the spotlight of enology research as a way to better define varietal standard profiles for the global market. Using a natural white must from Verdejo variety (defined as a thiol grape variety), here we describe the analytical and sensorial impact of using, in sequential inoculations, a selected strain of Metschnikowia pulcherrima, in combination with two different Saccharomyces cerevisiae strains. An increase in the levels of the thiol 4-MSP (4-methyl-4-sulfanylpentan-2-one) over its sensory threshold, together with a decrease in higher alcohol production, was observed when M. pulcherrima was used. This has an important impact on these wines, making them fruitier and fresher, always preferred by the sensory panel.


Asunto(s)
Metschnikowia/química , Odorantes/análisis , Vino/microbiología , Etanol/química , Fermentación/fisiología , Aromatizantes/química , Frutas/química , Pentanonas/química , Saccharomyces cerevisiae/química , Compuestos de Sulfhidrilo/química , Gusto/fisiología , Terpenos/química , Vitis/química
11.
Appl Microbiol Biotechnol ; 102(12): 5173-5183, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29687142

RESUMEN

The perception of haze in wine is brought about when pathogenesis-related proteins become unstable and aggregate, subsequently resulting in crosslinking until it develops into light-dispersing particles. Elimination of these proteins is usually achieved via bentonite fining, which, although effective, suffers from several drawbacks. The utilization of proteases has been proposed as an ideal alternative. In a previous study, an aspartic protease (MpAPr1) from the yeast Metschnikowia pulcherrima was purified and shown to be partially active against grape proteins in synthetic medium. In this study, the effects of pure MpAPr1 supplemented to Sauvignon Blanc juice on subsequent fermentation were investigated. The juice was incubated for 48 h and thereafter inoculated with Saccharomyces cerevisiae. Results revealed that the enzyme had no observable effects on fermentation performance and retained activity throughout. Protein degradation could be detected and resulted in a significant modification of the wine composition and an increase in the presence of certain volatile compounds, especially those linked to amino acid metabolism.


Asunto(s)
Proteasas de Ácido Aspártico/metabolismo , Metschnikowia/enzimología , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Vino/normas , Fermentación , Microbiología de Alimentos , Saccharomyces cerevisiae/metabolismo , Vitis/química , Vino/análisis
12.
J Sci Food Agric ; 97(11): 3584-3593, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28098337

RESUMEN

BACKGROUND: MpAPr1, encoding an acid protease from the wine yeast Metschnikowia pulcherrima IWBT Y1123, was previously isolated and shown to display potential activity against casein and grape proteins. However, its characterisation remained partial. RESULTS: MpAPr1 was cloned into the pGAPZαA vector and transformed into Komagataella pastoris X33 for heterologous expression. After verification of activity, the enzyme properties were characterised. Protease activity within the concentrated supernatant was retained over a pH range of 3.0 to 5.0 and between 10 °C and 50 °C. Optimal conditions for protease activity were found at 40 °C and pH 4.5. Activity was mostly unaffected by the presence of metal ions with the exception of Cu2+ and Ni2+ . Furthermore, proteolytic activity was retained in the presence of sugar and ethanol. pH and temperature conditions for MpAPr1 expression in K. pastoris were optimised. Purification was achieved by means of cation exchange chromatography and kinetic parameters (Km and Vmax ) were determined. MpAPr1 activity against grape proteins was confirmed, but the extent of the degradation was dependent on the nature of these proteins and the environmental conditions. CONCLUSION: Overall, the results suggest that MpAPr1 could be applied in food biotechnology processes such as winemaking. © 2017 Society of Chemical Industry.


Asunto(s)
Proteasas de Ácido Aspártico/química , Proteínas Fúngicas/química , Metschnikowia/enzimología , Proteasas de Ácido Aspártico/genética , Proteasas de Ácido Aspártico/aislamiento & purificación , Proteasas de Ácido Aspártico/metabolismo , Estabilidad de Enzimas , Etanol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Metschnikowia/química , Metschnikowia/genética , Metschnikowia/metabolismo , Transporte de Proteínas , Vitis/metabolismo , Vitis/microbiología , Vino/análisis , Vino/microbiología
13.
Yeast ; 33(7): 329-38, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27017923

RESUMEN

During the last decade, the use of innovative yeast cultures of both Saccharomyces cerevisiae and non-Saccharomyces yeasts as alternative tools to manage the winemaking process have turned the oenology industry. Although the contribution of different yeast species to wine quality during fermentation is increasingly understood, information about their role in wine ageing over lees is really scarce. This work aims to analyse the incidence of three non-Saccharomyces yeast species of oenological interest (Torulaspora delbrueckii, Lachancea thermotolerans and Metschnikowia pulcherrima) and of a commercial mannoprotein-overproducer S. cerevisiae strain compared with a conventional industrial yeast strain during wine ageing over lees. To evaluate their incidence in mouthfeel properties of wine after 4 months of ageing, the mannoprotein content of wines was evaluated, together with other wine analytic parameters, such as colour and aroma, biogenic amines and amino acids profile. Some differences among the studied parameters were observed during the study, especially regarding the mannoprotein concentration of wines. Our results suggest that the use of T. delbrueckii lees in wine ageing is a useful tool for the improvement of overall wine quality by notably increasing mannoproteins, reaching values higher than obtained using a S. cerevisiae overproducer strain. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Fermentación , Vino , Levaduras/metabolismo , Aminoácidos/metabolismo , Aminas Biogénicas/metabolismo , Color , Glicoproteínas de Membrana/metabolismo , Metschnikowia/metabolismo , Odorantes , Saccharomycetales/metabolismo , Gusto , Torulaspora/metabolismo
14.
Food Microbiol ; 57: 45-53, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27052701

RESUMEN

Fresh fruit is highly perishable during postharvest life, mainly due to fungal growth. Thus, fungal control is an important goal for the fruit industry. In this work, a selection of antagonistic yeasts isolated from fig and breba crops were screened in vitro. The isolated yeasts were challenged with three moulds isolated from decayed figs and breba crops, identified as Penicillium expansum M639 and Cladosporium cladosporioides M310 and M624, and pathogenic moulds Botrytis cinerea CECT20518 and Monilia laxa CA1 from culture collections. Two yeast isolates, Hanseniaspora opuntiae L479 and Metschnikowia pulcherrima L672, were selected for their ability to inhibit the growth of aforementioned moulds. These yeasts reduced the radial growth of moulds on PDA by between 45.23% and 66.09%. Antagonistic activity was associated with the interaction of live yeast cells with moulds. M. pulcherrima L672 apparently parasitised C. cladosporioides isolates. In addition, challenges were assayed using wounded apples and nectarines, with significant reductions in percent infection and lesion size for all moulds tested. To our knowledge, this is the first report identifying H. opuntiae as an antagonist against different pathogenic moulds.


Asunto(s)
Antibiosis , Ficus/microbiología , Frutas/microbiología , Malus/microbiología , Enfermedades de las Plantas/prevención & control , Levaduras/fisiología , Botrytis/crecimiento & desarrollo , Candida/crecimiento & desarrollo , Penicillium/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Néctar de las Plantas , Levaduras/genética , Levaduras/aislamiento & purificación
15.
J Appl Microbiol ; 116(5): 1209-17, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24443784

RESUMEN

AIMS: In the present study, it was investigated the antagonistic behaviour of Metschnikowia pulcherrima, as biocontrol agent, against the main wine yeast species involved in the winemaking process. METHODS AND RESULTS: Seven strains of M. pulcherrima were evaluated for the antimicrobial activity against 114 yeast strains belonging to Pichia, Candida, Hanseniaspora, Kluyveromyces, Saccharomycodes, Torulaspora, Brettanomyces and Saccharomyces genera. Results showed both different inter-generic and intra-generic responses to the antimicrobial action of M. pulcherrima strains. Interestingly, the antimicrobial activity of M. pulcherrima did not have any influence on the growth of Saccharomyces cerevisiae. Instead, M. pulcherrima displayed a broad and effective antimicrobial action on undesired wild spoilage yeasts, such as Brettanomyces/Dekkera, Hanseniaspora and Pichia genera. Fermentation trials carried out in synthetic grape must confirmed the antimicrobial activity of M. pulcherrima, determining the early death of the non-Saccharomyces co-inoculated cultures. CONCLUSIONS: The antimicrobial activity of M. pulcherrima does not seem due to proteinaceous compounds such as killer phenomenon, but to the pulcherriminic acid (the precursor of pulcherrimin pigment) that depletes iron present in the medium, making it not available to the other yeasts. SIGNIFICANCE AND IMPACT OF THE STUDY: These data agree with and further support the potential use of selected M. pulcherrima strains in controlled multistarter fermentations with S. cerevisiae starter cultures.


Asunto(s)
Agentes de Control Biológico , Metschnikowia/fisiología , Vino/microbiología , Antibiosis , Antifúngicos/farmacología , Levaduras/efectos de los fármacos
16.
Food Microbiol ; 44: 15-23, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25084640

RESUMEN

This study examined the effect of mixed fermentation of non-Saccharomyces (Torulaspora delbrueckii ZYMAFLORE Alpha(TD n. Sacch) and Metschnikowia pulcherrima JS22) and Saccharomyces cerevisiae yeasts (D254 and EC1118) on the production of cherry wines, in comparison with commonly used mono-culture. Results obtained during AF demonstrated that negligible inhibitory effect was observed in S. cerevisiae/Alpha pair, whereas a strong antagonistic effect was detected between MJS22 and S. cerevisiae strain, resulting in an early death of MJS22. For volatile components determined, S. cerevisiae/MJS22 couple was found to significantly boost the production of most detected compounds, more particularly in higher alcohols, esters, acids and terpenes; while the characteristic of S. cerevisiae/Alpha pair is an increase in fruity esters, higher alcohols and decrease in acid production. Sensory evaluation revealed that S. cerevisiae/MJS22 pair reinforced sweet, green and fatty notes to the cherry wines, and S. cerevisiae/Alpha trial enhanced the fruity odour and reduced green note.


Asunto(s)
Etanol/metabolismo , Prunus/microbiología , Saccharomyces/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Vino/microbiología , Levaduras/metabolismo , Adulto , Femenino , Fermentación , Aromatizantes/química , Aromatizantes/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Prunus/química , Gusto , Compuestos Orgánicos Volátiles/química , Vino/análisis , Adulto Joven
17.
Foods ; 13(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38472837

RESUMEN

As a biological alternative to the antimicrobial action of SO2, bioprotection has been proposed to winemakers as a means to limit or prevent grape musts microbial alteration. Competition for nitrogenous nutrients and for oxygen are often cited as potential explanations for the effectiveness of bioprotection. This study analyses the effect of a bioprotective M. pulcherrima strain on the growth of one H. valbyensis strain and one H. uvarum strain. Bioprotection efficiency was observed only against H. valbyensis inoculated at the two lowest concentrations. These results indicate a potential species-dependent efficiency of the bioprotective strain and a strong impact of the initial ratio between bioprotective and apiculate yeasts. The analysis of the consumption of nitrogen compounds revealed that leucine, isoleucine, lysine and tryptophan were consumed preferentially by all three strains. The weaker assimilation percentages of these amino acids observed in H. valbyensis at 24 h growth suggest competition with M. pulcherrima that could negatively affects the growth of the apiculate yeast in co-cultures. The slowest rate of O2 consumption of H. valbyensis strain, in comparison with M. pulcherrima, was probably not involved in the bioprotective effect. Non-targeted metabolomic analyses of M. pulcherrima and H. valbyensis co-culture indicate that the interaction between both strains particularly impact lysin and tryptophan metabolisms.

18.
Food Chem ; 449: 139213, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631134

RESUMEN

This study took a novel approach to address the dual challenges of enhancing the ethanol content and aroma complexity in Laiyang pear wine. It focused on sorbitol as a pivotal element in the strategic selection of yeasts with specific sorbitol-utilization capabilities and their application in co-fermentation strategies. We selected two Saccharomyces cerevisiae strains (coded as Sc1, Sc2), two Metschnikowia pulcherrima (coded as Mp1, Mp2), and one Pichia terricola (coded as Tp) due to their efficacy as starter cultures. Notably, the Sc2 strain, alone or with Mp2, significantly increased the ethanol content (30% and 16%). Mixed Saccharomyces cerevisiae and Pichia terricola fermentation improved the ester profiles and beta-damascenone levels (maximum of 150%), while Metschnikowia pulcherrima addition enriched the phenethyl alcohol content (maximum of 330%), diversifying the aroma. This study investigated the efficacy of strategic yeast selection based on sorbitol utilization and co-fermentation methods in enhancing Laiyang pear wine quality and aroma.


Asunto(s)
Fermentación , Aromatizantes , Odorantes , Pyrus , Saccharomyces cerevisiae , Sorbitol , Gusto , Vino , Vino/análisis , Vino/microbiología , Pyrus/química , Pyrus/microbiología , Pyrus/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Aromatizantes/metabolismo , Aromatizantes/química , Sorbitol/metabolismo , Sorbitol/análisis , Odorantes/análisis , Etanol/metabolismo , Etanol/análisis , Pichia/metabolismo , Metschnikowia/metabolismo , Frutas/química , Frutas/microbiología , Frutas/metabolismo
19.
Microorganisms ; 11(4)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37110387

RESUMEN

A broad variety of microorganisms with useful characteristics in the field of biotechnology live on the surface of grapes; one of these microorganisms is Metschnikowia pulcherrima. This yeast secretes a ß-glucosidase that can be used in fermentative processes to liberate aromatic compounds. In this work, the synthesis of an exocellular ß-glucosidase has been demonstrated and the optimal conditions to maximize the enzyme's effectiveness were determined. There was a maximum enzymatic activity at 28 °C and pH 4.5. Furthermore, the enzyme presents a great glucose and fructose tolerance, and to a lesser extent, ethanol tolerance. In addition, its activity was stimulated by calcium ions and low concentrations of ethanol and methanol. The impact of terpene content in wine was also determined. Because of these characteristics, ß-glucosidase is a good candidate for use in enology.

20.
Front Microbiol ; 14: 1252973, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664122

RESUMEN

Finding alternatives to the use of chemical inputs to preserve the sanitary and organoleptic quality of food and beverages is essential to meet public health requirements and consumer preferences. In oenology, numerous manufacturers already offer a diverse range of bio-protection yeasts to protect must against microbiological alterations and therefore limit or eliminate sulphites during winemaking. Bio-protection involves selecting non-Saccharomyces yeasts belonging to different genera and species to induce negative interactions with indigenous microorganisms, thereby limiting their development and their impact on the matrix. Although the effectiveness of bio-protection in the winemaking industry has been reported in numerous journals, the underlying mechanisms are not yet well understood. The aim of this review is to examine the current state of the art of field trials and laboratory studies that demonstrate the effects of using yeasts for bio-protection, as well as the interaction mechanisms that may be responsible for these effects. It focuses on the yeast Metschnikowia pulcherrima, particularly recommended for the bio-protection of grape musts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA