Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.255
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 40: 143-167, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-34990209

RESUMEN

The gut microbiome influences many host physiologies, spanning gastrointestinal function, metabolism, immune homeostasis, neuroactivity, and behavior. Many microbial effects on the host are orchestrated by bidirectional interactions between the microbiome and immune system. Imbalances in this dialogue can lead to immune dysfunction and immune-mediated conditions in distal organs including the brain. Dysbiosis of the gut microbiome and dysregulated neuroimmune responses are common comorbidities of neurodevelopmental, neuropsychiatric, and neurological disorders, highlighting the importance of the gut microbiome-neuroimmune axis as a regulator of central nervous system homeostasis. In this review, we discuss recent evidence supporting a role for the gut microbiome in regulating the neuroimmune landscape in health and disease.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Encéfalo , Disbiosis , Humanos , Neuroinmunomodulación
2.
Annu Rev Immunol ; 38: 649-671, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-32040356

RESUMEN

A plethora of experimental and epidemiological evidence supports a critical role for inflammation and adaptive immunity in the onset of cancer and in shaping its response to therapy. These data are particularly robust for gastrointestinal (GI) cancers, such as those affecting the GI tract, liver, and pancreas, on which this review is focused. We propose a unifying hypothesis according to which intestinal barrier disruption is the origin of tumor-promoting inflammation that acts in conjunction with tissue-specific cancer-initiating mutations. The gut microbiota and its products impact tissue-resident and recruited myeloid cells that promote tumorigenesis through secretion of growth- and survival-promoting cytokines that act on epithelial cells, as well as fibrogenic and immunosuppressive cytokines that interfere with the proper function of adaptive antitumor immunity. Understanding these relationships should improve our ability to prevent cancer development and stimulate the immune system to eliminate existing malignancies.


Asunto(s)
Mucosa Gástrica/inmunología , Mucosa Gástrica/metabolismo , Microbioma Gastrointestinal , Neoplasias Gastrointestinales/etiología , Neoplasias Gastrointestinales/metabolismo , Interacciones Huésped-Patógeno/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Inmunidad Adaptativa , Animales , Mucosa Gástrica/patología , Microbioma Gastrointestinal/inmunología , Neoplasias Gastrointestinales/patología , Humanos , Inmunidad Innata , Mucosa Intestinal/patología , Hígado/inmunología , Hígado/metabolismo , Hígado/patología
3.
Annu Rev Immunol ; 37: 377-403, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31026410

RESUMEN

The gut-associated lymphoid tissue (GALT) faces a considerable challenge. It encounters antigens derived from an estimated 1014 commensal microbes and greater than 30 kg of food proteins yearly. It must distinguish these harmless antigens from potential pathogens and mount the appropriate host immune response. Local and systemic hyporesponsiveness to dietary antigens, classically referred to as oral tolerance, comprises a distinct complement of adaptive cellular and humoral immune responses. It is increasingly evident that a functional epithelial barrier engaged in intimate interplay with innate immune cells and the resident microbiota is critical to establishing and maintaining oral tolerance. Moreover, innate immune cells serve as a bridge between the microbiota, epithelium, and the adaptive immune system, parlaying tonic microbial stimulation into signals critical for mucosal homeostasis. Dysregulation of gut homeostasis and the subsequent disruption of tolerance therefore have clinically significant consequences for the development of food allergy.


Asunto(s)
Disbiosis/inmunología , Hipersensibilidad a los Alimentos/inmunología , Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Administración Oral , Alérgenos/inmunología , Animales , Alimentos , Hipersensibilidad a los Alimentos/microbiología , Homeostasis , Humanos , Tolerancia Inmunológica , Inmunidad Innata , Mucosa Intestinal/microbiología
4.
Annu Rev Biochem ; 93(1): 565-601, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38640018

RESUMEN

Human lectins are integral to maintaining microbial homeostasis on the skin, in the blood, and at mucosal barriers. These proteins can recognize microbial glycans and inform the host about its microbial status. In accordance with their roles, their production can vary with tissue type. They also can have unique structural and biochemical properties, and they can influence microbial colonization at sites proximal and distal to their tissue of origin. In line with their classification as innate immune proteins, soluble lectins have long been studied in the context of acute infectious disease, but only recently have we begun to appreciate their roles in maintaining commensal microbial communities (i.e., the human microbiota). This review provides an overview of soluble lectins that operate at host-microbe interfaces, their glycan recognition properties, and their roles in physiological and pathological mechanisms.


Asunto(s)
Inmunidad Innata , Lectinas , Polisacáridos , Humanos , Lectinas/metabolismo , Lectinas/química , Lectinas/genética , Polisacáridos/metabolismo , Polisacáridos/química , Microbiota , Animales , Interacciones Huésped-Patógeno , Interacciones Microbiota-Huesped/inmunología
5.
Cell ; 187(17): 4554-4570.e18, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38981480

RESUMEN

Diet impacts human health, influencing body adiposity and the risk of developing cardiometabolic diseases. The gut microbiome is a key player in the diet-health axis, but while its bacterial fraction is widely studied, the role of micro-eukaryotes, including Blastocystis, is underexplored. We performed a global-scale analysis on 56,989 metagenomes and showed that human Blastocystis exhibits distinct prevalence patterns linked to geography, lifestyle, and dietary habits. Blastocystis presence defined a specific bacterial signature and was positively associated with more favorable cardiometabolic profiles and negatively with obesity (p < 1e-16) and disorders linked to altered gut ecology (p < 1e-8). In a diet intervention study involving 1,124 individuals, improvements in dietary quality were linked to weight loss and increases in Blastocystis prevalence (p = 0.003) and abundance (p < 1e-7). Our findings suggest a potentially beneficial role for Blastocystis, which may help explain personalized host responses to diet and downstream disease etiopathogenesis.


Asunto(s)
Blastocystis , Dieta , Microbioma Gastrointestinal , Obesidad , Humanos , Blastocystis/metabolismo , Masculino , Femenino , Infecciones por Blastocystis , Adulto , Persona de Mediana Edad , Intestinos/parasitología , Intestinos/microbiología , Enfermedades Cardiovasculares/prevención & control , Metagenoma
6.
Cell ; 187(19): 5393-5412.e30, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39121857

RESUMEN

Negative psychological states impact immunity by altering the gut microbiome. However, the relationship between brain states and microbiome composition remains unclear. We show that Brunner's glands in the duodenum couple stress-sensitive brain circuits to bacterial homeostasis. Brunner's glands mediated the enrichment of gut Lactobacillus species in response to vagus nerve stimulation. Cell-specific ablation of the glands markedly suppressed Lactobacilli counts and heightened vulnerability to infection. In the forebrain, we mapped a vagally mediated, polysynaptic circuit connecting the central nucleus of the amygdala to Brunner's glands. Chronic stress suppressed central amygdala activity and phenocopied the effects of gland lesions. Conversely, excitation of either the central amygdala or parasympathetic vagal neurons activated Brunner's glands and reversed the effects of stress on the gut microbiome and immunity. The findings revealed a tractable brain-body mechanism linking psychological states to host defense.


Asunto(s)
Duodeno , Microbioma Gastrointestinal , Estrés Psicológico , Nervio Vago , Animales , Ratones , Duodeno/microbiología , Nervio Vago/fisiología , Masculino , Ratones Endogámicos C57BL , Amígdala del Cerebelo/fisiología , Lactobacillus/fisiología , Neuronas/metabolismo
7.
Cell ; 187(8): 1834-1852.e19, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38569543

RESUMEN

Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the Oscillibacter genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and in vitro characterization of multiple representative human gut Oscillibacter isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse Oscillibacter spp., with potential benefits for lipid homeostasis and cardiovascular health.


Asunto(s)
Bacterias , Enfermedades Cardiovasculares , Colesterol , Microbioma Gastrointestinal , Humanos , Bacterias/metabolismo , Enfermedades Cardiovasculares/metabolismo , Colesterol/análisis , Colesterol/sangre , Colesterol/metabolismo , Heces/química , Estudios Longitudinales , Metaboloma , Metabolómica , ARN Ribosómico 16S/metabolismo
8.
Cell ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39378879

RESUMEN

The gut microbiota is crucial for human health, functioning as a complex adaptive system akin to a vital organ. To identify core health-relevant gut microbes, we followed the systems biology tenet that stable relationships signify core components. By analyzing metagenomic datasets from a high-fiber dietary intervention in type 2 diabetes and 26 case-control studies across 15 diseases, we identified a set of stably correlated genome pairs within co-abundance networks perturbed by dietary interventions and diseases. These genomes formed a "two competing guilds" (TCGs) model, with one guild specialized in fiber fermentation and butyrate production and the other characterized by virulence and antibiotic resistance. Our random forest models successfully distinguished cases from controls across multiple diseases and predicted immunotherapy outcomes through the use of these genomes. Our guild-based approach, which is genome specific, database independent, and interaction focused, identifies a core microbiome signature that serves as a holistic health indicator and a potential common target for health enhancement.

9.
Cell ; 187(20): 5775-5795.e15, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39214080

RESUMEN

Complex microbiomes are part of the food we eat and influence our own microbiome, but their diversity remains largely unexplored. Here, we generated the open access curatedFoodMetagenomicData (cFMD) resource by integrating 1,950 newly sequenced and 583 public food metagenomes. We produced 10,899 metagenome-assembled genomes spanning 1,036 prokaryotic and 108 eukaryotic species-level genome bins (SGBs), including 320 previously undescribed taxa. Food SGBs displayed significant microbial diversity within and between food categories. Extension to >20,000 human metagenomes revealed that food SGBs accounted on average for 3% of the adult gut microbiome. Strain-level analysis highlighted potential instances of food-to-gut transmission and intestinal colonization (e.g., Lacticaseibacillus paracasei) as well as SGBs with divergent genomic structures in food and humans (e.g., Streptococcus gallolyticus and Limosilactobabillus mucosae). The cFMD expands our knowledge on food microbiomes, their role in shaping the human microbiome, and supports future uses of metagenomics for food quality, safety, and authentication.


Asunto(s)
Microbioma Gastrointestinal , Metagenoma , Humanos , Metagenoma/genética , Microbioma Gastrointestinal/genética , Microbiota/genética , Microbiología de Alimentos , Metagenómica/métodos , Bacterias/genética , Bacterias/clasificación
10.
Cell ; 187(19): 5431-5452.e20, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39303691

RESUMEN

Breastfeeding and microbial colonization during infancy occur within a critical time window for development, and both are thought to influence the risk of respiratory illness. However, the mechanisms underlying the protective effects of breastfeeding and the regulation of microbial colonization are poorly understood. Here, we profiled the nasal and gut microbiomes, breastfeeding characteristics, and maternal milk composition of 2,227 children from the CHILD Cohort Study. We identified robust colonization patterns that, together with milk components, predict preschool asthma and mediate the protective effects of breastfeeding. We found that early cessation of breastfeeding (before 3 months) leads to the premature acquisition of microbial species and functions, including Ruminococcus gnavus and tryptophan biosynthesis, which were previously linked to immune modulation and asthma. Conversely, longer exclusive breastfeeding supports a paced microbial development, protecting against asthma. These findings underscore the importance of extended breastfeeding for respiratory health and highlight potential microbial targets for intervention.


Asunto(s)
Lactancia Materna , Leche Humana , Humanos , Femenino , Leche Humana/microbiología , Lactante , Preescolar , Asma/microbiología , Asma/prevención & control , Asma/inmunología , Microbiota , Microbioma Gastrointestinal , Masculino , Estudios de Cohortes , Recién Nacido
11.
Cell ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39321800

RESUMEN

Diet is a major determinant of gut microbiome composition, and variation in diet-microbiome interactions may contribute to variation in their health consequences. To mechanistically understand these relationships, here we map interactions between ∼150 small-molecule dietary xenobiotics and the gut microbiome, including the impacts of these compounds on community composition, the metabolic activities of human gut microbes on dietary xenobiotics, and interindividual variation in these traits. Microbial metabolism can toxify and detoxify these compounds, producing emergent interactions that explain community-specific remodeling by dietary xenobiotics. We identify the gene and enzyme responsible for detoxification of one such dietary xenobiotic, resveratrol, and demonstrate that this enzyme contributes to interindividual variation in community remodeling by resveratrol. Together, these results systematically map interactions between dietary xenobiotics and the gut microbiome and connect toxification and detoxification to interpersonal differences in microbiome response to diet.

12.
Cell ; 187(19): 5413-5430.e29, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39163861

RESUMEN

Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related lactobacilli, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the vaginal microbiota and enhances bacterial fitness by biochemically sequestering OA in a derivative form only ohyA-harboring organisms can exploit. OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro BV model, suggesting a metabolite-based treatment approach.


Asunto(s)
Ácidos Grasos , Lactobacillus , Vagina , Vaginosis Bacteriana , Vaginosis Bacteriana/tratamiento farmacológico , Vaginosis Bacteriana/microbiología , Femenino , Humanos , Vagina/microbiología , Lactobacillus/metabolismo , Ácidos Grasos/metabolismo , Ácido Oléico/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Lactobacillus crispatus/metabolismo , Microbiota/efectos de los fármacos , Proteínas Bacterianas/metabolismo
13.
Cell ; 187(14): 3761-3778.e16, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38843834

RESUMEN

Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo. A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.


Asunto(s)
Péptidos Antimicrobianos , Aprendizaje Automático , Microbiota , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/genética , Humanos , Animales , Antibacterianos/farmacología , Ratones , Metagenoma , Bacterias/efectos de los fármacos , Bacterias/genética , Microbioma Gastrointestinal/efectos de los fármacos
14.
Cell ; 187(19): 5453-5467.e15, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39163860

RESUMEN

Drug-resistant bacteria are outpacing traditional antibiotic discovery efforts. Here, we computationally screened 444,054 previously reported putative small protein families from 1,773 human metagenomes for antimicrobial properties, identifying 323 candidates encoded in small open reading frames (smORFs). To test our computational predictions, 78 peptides were synthesized and screened for antimicrobial activity in vitro, with 70.5% displaying antimicrobial activity. As these compounds were different compared with previously reported antimicrobial peptides, we termed them smORF-encoded peptides (SEPs). SEPs killed bacteria by targeting their membrane, synergizing with each other, and modulating gut commensals, indicating a potential role in reconfiguring microbiome communities in addition to counteracting pathogens. The lead candidates were anti-infective in both murine skin abscess and deep thigh infection models. Notably, prevotellin-2 from Prevotella copri presented activity comparable to the commonly used antibiotic polymyxin B. Our report supports the existence of hundreds of antimicrobials in the human microbiome amenable to clinical translation.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Microbiota , Humanos , Animales , Ratones , Antibacterianos/farmacología , Microbiota/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Metagenoma , Femenino , Sistemas de Lectura Abierta , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/clasificación , Prevotella/efectos de los fármacos
15.
Cell ; 187(13): 3373-3389.e16, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906102

RESUMEN

The gut microbiota influences the clinical responses of cancer patients to immunecheckpoint inhibitors (ICIs). However, there is no consensus definition of detrimental dysbiosis. Based on metagenomics (MG) sequencing of 245 non-small cell lung cancer (NSCLC) patient feces, we constructed species-level co-abundance networks that were clustered into species-interacting groups (SIGs) correlating with overall survival. Thirty-seven and forty-five MG species (MGSs) were associated with resistance (SIG1) and response (SIG2) to ICIs, respectively. When combined with the quantification of Akkermansia species, this procedure allowed a person-based calculation of a topological score (TOPOSCORE) that was validated in an additional 254 NSCLC patients and in 216 genitourinary cancer patients. Finally, this TOPOSCORE was translated into a 21-bacterial probe set-based qPCR scoring that was validated in a prospective cohort of NSCLC patients as well as in colorectal and melanoma patients. This approach could represent a dynamic diagnosis tool for intestinal dysbiosis to guide personalized microbiota-centered interventions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Microbioma Gastrointestinal , Inmunoterapia , Neoplasias Pulmonares , Neoplasias , Femenino , Humanos , Masculino , Akkermansia , Carcinoma de Pulmón de Células no Pequeñas/microbiología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Disbiosis/microbiología , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Neoplasias Pulmonares/microbiología , Neoplasias Pulmonares/tratamiento farmacológico , Metagenómica/métodos , Neoplasias/microbiología , Resultado del Tratamiento
16.
Cell ; 187(9): 2324-2335.e19, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38599211

RESUMEN

Microbial communities are resident to multiple niches of the human body and are important modulators of the host immune system and responses to anticancer therapies. Recent studies have shown that complex microbial communities are present within primary tumors. To investigate the presence and relevance of the microbiome in metastases, we integrated mapping and assembly-based metagenomics, genomics, transcriptomics, and clinical data of 4,160 metastatic tumor biopsies. We identified organ-specific tropisms of microbes, enrichments of anaerobic bacteria in hypoxic tumors, associations between microbial diversity and tumor-infiltrating neutrophils, and the association of Fusobacterium with resistance to immune checkpoint blockade (ICB) in lung cancer. Furthermore, longitudinal tumor sampling revealed temporal evolution of the microbial communities and identified bacteria depleted upon ICB. Together, we generated a pan-cancer resource of the metastatic tumor microbiome that may contribute to advancing treatment strategies.


Asunto(s)
Microbiota , Metástasis de la Neoplasia , Neoplasias , Humanos , Neoplasias/microbiología , Neoplasias/patología , Metagenómica/métodos , Neoplasias Pulmonares/microbiología , Neoplasias Pulmonares/patología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Neutrófilos/inmunología , Microambiente Tumoral , Bacterias/genética , Bacterias/clasificación
17.
Cell ; 187(5): 1206-1222.e16, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428395

RESUMEN

Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.


Asunto(s)
Bacterias , Tracto Gastrointestinal , Metagenoma , Plásmidos , Humanos , Bacterias/genética , Bacteroidetes/genética , Heces/microbiología , Plásmidos/genética
18.
Cell ; 187(1): 62-78.e20, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38096822

RESUMEN

The microbiota influences intestinal health and physiology, yet the contributions of commensal protists to the gut environment have been largely overlooked. Here, we discover human- and rodent-associated parabasalid protists, revealing substantial diversity and prevalence in nonindustrialized human populations. Genomic and metabolomic analyses of murine parabasalids from the genus Tritrichomonas revealed species-level differences in excretion of the metabolite succinate, which results in distinct small intestinal immune responses. Metabolic differences between Tritrichomonas species also determine their ecological niche within the microbiota. By manipulating dietary fibers and developing in vitro protist culture, we show that different Tritrichomonas species prefer dietary polysaccharides or mucus glycans. These polysaccharide preferences drive trans-kingdom competition with specific commensal bacteria, which affects intestinal immunity in a diet-dependent manner. Our findings reveal unappreciated diversity in commensal parabasalids, elucidate differences in commensal protist metabolism, and suggest how dietary interventions could regulate their impact on gut health.


Asunto(s)
Microbioma Gastrointestinal , Parabasalidea , Polisacáridos , Animales , Humanos , Ratones , Fibras de la Dieta , Intestino Delgado/metabolismo , Polisacáridos/metabolismo , Parabasalidea/metabolismo , Carbohidratos de la Dieta/metabolismo , Biodiversidad
19.
Cell ; 187(17): 4571-4585.e15, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39094567

RESUMEN

Our understanding of the normal variation in the upper respiratory tract (URT) microbiota across the human lifespan and how these relate to host, environment, and health is limited. We studied the microbiota of 3,104 saliva (<10 year-olds)/oropharynx (≥10 year-olds) and 2,485 nasopharynx samples of 3,160 Dutch individuals 0-87 years of age, participating in a cross-sectional population-wide study (PIENTER-3) using 16S-rRNA sequencing. The microbiota composition was strongly related to age, especially in the nasopharynx, with maturation occurring throughout childhood and adolescence. Clear niche- and age-specific associations were found between the microbiota composition and host/environmental factors and health outcomes. Among others, social interaction, sex, and season were associated with the nasopharyngeal microbial community. By contrast, the oral microbiota was more related to antibiotics, tobacco, and alcohol use. We present an atlas of the URT microbiota across the lifespan in association with environment and health, establishing a baseline for future research.


Asunto(s)
Microbiota , Humanos , Anciano , Preescolar , Adulto , Niño , Persona de Mediana Edad , Adolescente , Anciano de 80 o más Años , Masculino , Femenino , Lactante , Adulto Joven , ARN Ribosómico 16S/genética , Estudios Transversales , Recién Nacido , Sistema Respiratorio/microbiología , Longevidad , Nasofaringe/microbiología , Saliva/microbiología , Ambiente
20.
Cell ; 187(4): 897-913.e18, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280374

RESUMEN

Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.


Asunto(s)
Complemento C3 , Mucosa Intestinal , Microbiota , Animales , Humanos , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Neutrófilos , Complemento C3/metabolismo , Células del Estroma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA