Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Physiol ; 58(9): 1507-1518, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28922750

RESUMEN

Monoterpenoid indole alkaloids (MIAs) are plant defense compounds and high-value pharmaceuticals. Biosynthesis of the universal MIA precursor, secologanin, is organized between internal phloem-associated parenchyma (IPAP) and epidermis cells. Transporters for intercellular transport of proposed mobile pathway intermediates have remained elusive. Screening of an Arabidopsis thaliana transporter library expressed in Xenopus oocytes identified AtNPF2.9 as a putative iridoid glucoside importer. Eight orthologs were identified in Catharanthus roseus, of which three, CrNPF2.4, CrNPF2.5 and CrNPF2.6, were capable of transporting the iridoid glucosides 7-deoxyloganic acid, loganic acid, loganin and secologanin into oocytes. Based on enzyme expression data and transporter specificity, we propose that several enzymes of the biosynthetic pathway are present in both IPAP and epidermis cells, and that the three transporters are responsible for transporting not only loganic acid, as previously proposed, but multiple intermediates. Identification of the iridoid glucoside-transporting CrNPFs is an important step toward understanding the complex orchestration of the seco-iridioid pathway.


Asunto(s)
Catharanthus/metabolismo , Glucósidos Iridoides/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Animales , Bioensayo , Transporte Biológico , Vías Biosintéticas/genética , Catharanthus/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Iridoides/metabolismo , Cinética , Modelos Biológicos , Oocitos/metabolismo , Transporte de Proteínas , Terpenos/metabolismo , Xenopus/metabolismo
2.
Front Plant Sci ; 12: 685334, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276736

RESUMEN

Symbiotic nitrogen fixation is a complex and regulated process that takes place in root nodules of legumes and allows legumes to grow in soils that lack nitrogen. Nitrogen is mostly acquired from the soil as nitrate and its level in the soil affects nodulation and nitrogen fixation. The mechanism(s) by which legumes modulate nitrate uptake to regulate nodule symbiosis remain unclear. In Medicago truncatula, the MtNPF1.7 transporter has been shown to control nodulation, symbiosis, and root architecture. MtNPF1.7 belongs to the nitrate/peptide transporter family and is a symporter with nitrate transport driven by proton(s). In this study we combined in silico structural predictions with in planta complementation of the severely defective mtnip-1 mutant plants to understand the role of a series of distinct amino acids in the transporter's function. Our results support hypotheses about the functional importance of the ExxE(R/K) motif including an essential role for the first glutamic acid of the motif in proton(s) and possibly substrate transport. Results reveal that Motif A, a motif conserved among major facilitator transport (MFS) proteins, is essential for function. We hypothesize that it participates in intradomain packing of transmembrane helices and stabilizing one conformation during transport. Our results also question the existence of a putative TMH4-TMH10 salt bridge. These results are discussed in the context of potential nutrient transport functions for MtNPF1.7. Our findings add to the knowledge of the mechanism of alternative conformational changes as well as symport transport in NPFs and enhance our knowledge of the mechanisms for nitrate signaling.

3.
Curr Opin Plant Biol ; 63: 102055, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34102450

RESUMEN

Plant growth, development, and response to the environment are mediated by a group of small signaling molecules named hormones. Plants regulate hormone response pathways at multiple levels, including biosynthesis, metabolism, perception, and signaling. In addition, plants exhibit the unique ability to spatially control hormone distribution. In recent years, multiple transporters have been identified for most of the plant hormones. Here we present an updated snapshot of the known transporters for the hormones abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonic acid, salicylic acid, and strigolactone. We also describe new findings regarding hormone movement and elaborate on hormone substrate specificity and possible genetic redundancy in hormone transport and distribution. Finally, we discuss subcellular, cell-to-cell, and long-distance hormone movement and local hormone sinks that trigger or prevent hormone-mediated responses.


Asunto(s)
Citocininas , Reguladores del Crecimiento de las Plantas , Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Giberelinas , Ácidos Indolacéticos
4.
Plant Sci ; 283: 23-31, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31128693

RESUMEN

The rice nitrate and di/tripeptide transporter (NPF) gene family plays an indispensable role in nitrogen transport and plant growth. In this study, 18 alternatively spliced OsNPF genes with 36 different forms of mRNAs were identified, and two of these, namely OsNPF7.1 and OsNPF7.4, showed opposite expression patterns in axillary buds under different nitrogen concentrations. Our results indicate that the expression levels of OsNPF7.1 and OsNPF7.4 determine the axillary bud outgrowth, especially for the second bud, and subsequently influence the tiller number in rice. The overexpression of either of the variants of OsNPF7.1 or the knockout of OsNPF7.4 increased the seedling biomass as well as the tiller number, filled grain number, and grain yield in rice. However, the RNAi-mediated silencing of OsNPF7.1 or the overexpression of either of the variants of OsNPF7.4 had an opposite effect. The overexpression of OsNPF7.1 or OsNPF7.4 could improve the uptake of nitrate, but the OsNPF7.4-overexpressing plants had lower biomass. It is possible that excessive nitrate in the OsNPF7.4-overexpressing plants led to the accumulation of amino acids in the leaf sheath, which inhibited seedling biomass. In addition, the reduced reutilization of nitrate in the seedlings also limited the plant biomass. However, the moderate increase in nitrate and amino acid concentrations in the OsNPF7.1-overexpressing plants could promote seedling biomass and enhance grain yield. In conclusion, our data suggest that different members in the NPF family have different roles in rice, and this study suggests an alternative way to modify rice architecture and enhance grain yield by regulating the expression of OsNPF7.1 and OsNPF7.4.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Oryza/genética , Proteínas de Plantas/genética , Aminoácidos/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Genes de Plantas/genética , Nitratos/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/fisiología
5.
Front Plant Sci ; 9: 1668, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564251

RESUMEN

Nitrogen is essential for all living species and may be taken up from the environment in different forms like nitrate or peptides. In plants, members of a transporter family named NPFs transport nitrate and peptides across biological membranes. NPFs are phylogenetically related to a family of peptide transporters (PTRs) or proton-coupled oligopeptide transporters (POTs) that are evolutionarily conserved in all organisms except in Archaea. POTs are present in low numbers in bacteria, algae and animals. NPFs have expanded in plants and evolved to transport a wide range of substrates including phytohormones and glucosinolates. Functional studies have shown that most NPFs, like POTs, operate as symporters with simultaneous inwardly directed movement of protons. Here we focus on four structural features of NPFs/POTs/PTRs that have been shown by structural and functional studies to be essential to proton-coupled symport transport. The first two features are implicated in proton binding and transport: a conserved motif named ExxER/K, located in the first transmembrane helix (TMH1) and a D/E residue in TMH7 that has been observed in some bacterial and algal transporters. The third and fourth features are two inter-helical salt bridges between residues on TMH1 and TMH7 or TMH4 and TMH10. To understand if the mechanism of transport is conserved in NPFs with the expansion to novel substrates, we collected NPFs sequences from 42 plant genomes. Sequence alignment revealed that the ExxER/K motif is not strictly conserved and its conservation level is different in the NPF subfamilies. The proton binding site on TMH7 is missing in all NPFs with the exception of two NPFs from moss. The two moss NPFs also have a positively charged amino acid on TMH1 that can form the salt bridge with the TMH7 negative residue. None of the other NPFs we examined harbor residues that can form the TMH1-TMH7 salt bridge. In contrast, the amino acids required to form the TMH4-TMH10 salt bridge are highly conserved in NPFs, with some exceptions. These results support the need for further biochemical and structural studies of individual NPFs for a better understanding of the transport mechanism in this family of transporters.

6.
Trends Plant Sci ; 20(8): 508-14, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25979806

RESUMEN

Plants synthesize a plethora of defense compounds crucial for their survival in a challenging and changing environment. Transport processes are important for shaping the distribution pattern of defense compounds, albeit focus hitherto has been mostly on their biosynthetic pathways. A recent identification of two glucosinolate transporters represents a breakthrough in our understanding of glucosinolate transport in Arabidopsis and has advanced knowledge in transport of defense compounds. In this review, we discuss the role of the glucosinolate transporters in establishing dynamic glucosinolate distribution patterns and source-sink relations. We focus on lessons learned from glucosinolate transport that may apply to transport of other defense compounds and discuss future avenues in the emerging field of defense compound transport.


Asunto(s)
Glucosinolatos/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Transporte Biológico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA