Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
J Infect Dis ; 230(2): 346-356, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38470272

RESUMEN

BACKGROUND: Despite vaccination, influenza and otitis media (OM) remain leading causes of illness. We previously found that the human respiratory commensal Haemophilus haemolyticus prevents bacterial infection in vitro and that the related murine commensal Muribacter muris delays OM development in mice. The observation that M muris pretreatment reduced lung influenza titer and inflammation suggests that these bacteria could be exploited for protection against influenza/OM. METHODS: Safety and efficacy of intranasal H haemolyticus at 5 × 107 colony-forming units (CFU) was tested in female BALB/cARC mice using an influenza model and influenza-driven nontypeable Haemophilus influenzae (NTHi) OM model. Weight, symptoms, viral/bacterial levels, and immune responses were measured. RESULTS: Intranasal delivery of H haemolyticus was safe and reduced severity of influenza, with quicker recovery, reduced inflammation, and lower lung influenza virus titers (up to 8-fold decrease vs placebo; P ≤ .01). Haemophilus haemolyticus reduced NTHi colonization density (day 5 median NTHi CFU/mL = 1.79 × 103 in treatment group vs 4.04 × 104 in placebo, P = .041; day 7 median NTHi CFU/mL = 28.18 vs 1.03 × 104; P = .028) and prevented OM (17% OM in treatment group, 83% in placebo group; P = .015). CONCLUSIONS: Haemophilus haemolyticus has potential as a live biotherapeutic for prevention or early treatment of influenza and influenza-driven NTHi OM. Additional studies will deem whether these findings translate to humans and other respiratory infections.


Asunto(s)
Administración Intranasal , Modelos Animales de Enfermedad , Infecciones por Haemophilus , Haemophilus , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae , Otitis Media , Animales , Otitis Media/prevención & control , Otitis Media/microbiología , Femenino , Infecciones por Haemophilus/prevención & control , Infecciones por Haemophilus/microbiología , Ratones , Infecciones por Orthomyxoviridae/prevención & control , Haemophilus influenzae , Pulmón/microbiología , Pulmón/virología , Pulmón/patología
2.
Infect Immun ; 92(5): e0045323, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38602405

RESUMEN

Nontypeable Haemophilus influenzae (NTHi) is a major otitis media (OM) pathogen, with colonization a prerequisite for disease development. Most acute OM is in children <5 years old, with recurrent and chronic OM impacting hearing and learning. Therapies to prevent NTHi colonization and/or disease are needed, especially for young children. Respiratory viruses are implicated in driving the development of bacterial OM in children. We have developed an infant mouse model of influenza-driven NTHi OM, as a preclinical tool for the evaluation of safety and efficacy of clinical therapies to prevent NTHi colonization and the development of OM. In this model, 100% of infant BALB/cARC mice were colonized with NTHi, and all developed NTHi OM. Influenza A virus (IAV) facilitated the establishment of dense (1 × 105 CFU/mL) and long-lasting (6 days) NTHi colonization. IAV was essential for the development of NTHi OM, with 100% of mice in the IAV/NTHi group developing NTHi OM compared with 8% of mice in the NTHi only group. Histological analysis and cytokine measurements revealed that the inflammation observed in the middle ear of the infant mice with OM reflected inflammation observed in children with OM. We have developed the first infant mouse model of NTHi colonization and OM. This ascension model uses influenza-driven establishment of OM and reflects the clinical pathology of bacterial OM developing after a respiratory virus infection. This model provides a valuable tool for testing therapies to prevent or treat NTHi colonization and disease in young children.


Asunto(s)
Modelos Animales de Enfermedad , Infecciones por Haemophilus , Haemophilus influenzae , Virus de la Influenza A , Otitis Media , Animales , Otitis Media/microbiología , Haemophilus influenzae/crecimiento & desarrollo , Haemophilus influenzae/patogenicidad , Haemophilus influenzae/fisiología , Infecciones por Haemophilus/microbiología , Ratones , Virus de la Influenza A/patogenicidad , Virus de la Influenza A/crecimiento & desarrollo , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/complicaciones , Humanos , Animales Recién Nacidos
3.
Microb Pathog ; 190: 106632, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537762

RESUMEN

With the widespread introduction of the Hib conjugate vaccine, Nontypeable Haemophilus influenzae (NTHi) has emerged as the predominant strain globally. NTHi presents a significant challenge as a causative agent of chronic clinical infections due to its high rates of drug resistance and biofilm formation. While current research on NTHi biofilms in children has primarily focused on upper respiratory diseases, investigations into lower respiratory sources remain limited. In this study, we collected 54 clinical strains of lower respiratory tract origin from children. Molecular information and drug resistance features were obtained through whole gene sequencing and the disk diffusion method, respectively. Additionally, an in vitro biofilm model was established. All clinical strains were identified as NTHi and demonstrated the ability to form biofilms in vitro. Based on scanning electron microscopy and crystal violet staining, the strains were categorized into weak and strong biofilm-forming groups. We explored the correlation between biofilm formation ability and drug resistance patterns, as well as clinical characteristics. Stronger biofilm formation was associated with a longer cough duration and a higher proportion of abnormal lung imaging findings. Frequent intake of ß-lactam antibiotics might be associated with strong biofilm formation. While a complementary relationship between biofilm-forming capacity and drug resistance may exist, further comprehensive studies are warranted. This study confirms the in vitro biofilm formation of clinical NTHi strains and establishes correlations with clinical characteristics, offering valuable insights for combating NTHi infections.


Asunto(s)
Antibacterianos , Biopelículas , Infecciones por Haemophilus , Haemophilus influenzae , Biopelículas/crecimiento & desarrollo , Humanos , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/fisiología , Haemophilus influenzae/aislamiento & purificación , Haemophilus influenzae/genética , Haemophilus influenzae/efectos de los fármacos , Haemophilus influenzae/clasificación , Antibacterianos/farmacología , Preescolar , Femenino , Masculino , Niño , Lactante , Pruebas de Sensibilidad Microbiana , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/virología , Microscopía Electrónica de Rastreo , Farmacorresistencia Bacteriana , Sistema Respiratorio/microbiología , Sistema Respiratorio/virología
4.
BMC Infect Dis ; 24(1): 188, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347439

RESUMEN

OBJECTIVE: Nontypeable Haemophilus influenzae (NTHi) plays an important role in respiratory tract infections, and adherence to lung epithelial cells is the first step in lung infections. To explore the role of NTHi in childhood lung infections, a comparative study was conducted on the adherence of strains isolated from sputum culture and bronchoalveolar lavage fluid to A549 lung epithelial cells. METHODS: Haemophilus influenzae strains were obtained from the sample bank of Shenzhen Children's Hospital, and identified as NTHi via PCR detection of the capsule gene bexA. NTHi obtained from healthy children's nasopharyngeal swabs culture were selected as the control group, and a comparative study was conducted on the adherence of strains isolated from sputum culture or bronchoalveolar lavage fluid of patients to A549 cells. RESULTS: The adherence bacterial counts of NTHi isolated from the nasopharyngeal cultures of healthy children to A549 cells was 58.2 CFU. In patients with lung diseases, NTHi isolated from bronchoalveolar lavage fluid was 104.3 CFU, and from sputum cultures was 115.1 CFU, both of which were significantly higher in their adherence to A549 cells compared to the strains isolated from the healthy control group. There was no significant difference in adherence between the strains isolated from sputum cultures and bronchoalveolar lavage fluid (t = 0.5217, p = 0.6033). CONCLUSION: NTHi played an important role in childhood pulmonary infections by enhancing its adherence to lung epithelial cells.


Asunto(s)
Infecciones por Haemophilus , Haemophilus influenzae , Niño , Humanos , Infecciones por Haemophilus/microbiología , Pulmón/microbiología , Líquido del Lavado Bronquioalveolar/microbiología , Células Epiteliales
5.
Infect Immun ; 91(5): e0009123, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37014212

RESUMEN

Copper is an essential micronutrient but is toxic at high concentrations. In Haemophilus influenzae mechanisms of copper resistance and its role in pathogenesis are unknown; however, our previous genetic screen by transposon insertion-site sequencing implicated a putative cation transporting ATPase (copA) in survival in a mouse lung infection model. Here, we demonstrate that H. influenzae copA (HI0290) is responsible for copper homeostasis involving the merR-type regulator, cueR, as well as six tandem copies of the metallochaperone gene, copZ. Deletion of the ATPase and metallochaperone genes resulted in increased sensitivity to copper but not to cobalt, zinc, or manganese. Nontypeable H. influenzae (NTHi) clinical isolate NT127 has the same locus organization but with three copies of copZ. We showed that expression of the NTHi copZA operon is activated by copper under the regulatory control of CueR. NTHi single copA and copZ mutants and, especially, the double deletion copZA mutant exhibited decreased copper tolerance, and the ΔcopZA mutant accumulated 97% more copper than the wild type when grown in the presence of 0.5 mM copper sulfate. Mutants of NT127 deleted of the ATPase (copA) alone and deleted of both the ATPase and chaperones (copZ1-3) were 4-fold and 20-fold underrepresented compared to the parent strain during mixed-infection lung challenge, respectively. Complementation of cop locus deletion mutations restored copper resistance and virulence properties. NTHi likely encounters copper as a host defense mechanism during lung infection, and our results indicate that the cop system encodes an important countermeasure to alleviate copper toxicity.


Asunto(s)
Cobre , Metalochaperonas , Animales , Ratones , Cobre/metabolismo , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Pulmón/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo
6.
Infection ; 51(2): 355-364, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35902511

RESUMEN

PURPOSE: We describe the epidemiology of invasive Haemophilus influenzae disease (IHD) among adults in Japan. METHODS: Data for 200 adult IHD patients in 2014-2018 were analyzed. The capsular type of H. influenzae was determined by bacterial agglutination and polymerase chain reaction (PCR), and non-typeable Haemophilus influenzae (NTHi) was identified by PCR. RESULTS: The annual incidence of IHD (cases per 100,000 population) was 0.12 for age 15-64 years and 0.88 for age ≥ 65 years in 2018. The median age was 77 years, and 73.5% were aged ≥ 65 years. About one-fourth of patients were associated with immunocompromising condition. The major presentations were pneumonia, followed by bacteremia, meningitis and other than pneumonia or meningitis (other diseases). The case fatality rate (CFR) was 21.2% for all cases, and was significantly higher in the ≥ 65-year group (26.1%) than in the 15-64-year group (7.5%) (p = 0.013). The percentage of cases with pneumonia was significantly higher in the ≥ 65-year group than in the 15-64-year group (p < 0.001). The percentage of cases with bacteremia was significantly higher in the 15-64-year group than in the ≥ 65-year group (p = 0.027). Of 200 isolates, 190 (95.0%) were NTHi strains, and the other strains were encapsulated strains. 71 (35.5%) were resistant to ampicillin, but all were susceptible to ceftriaxone. CONCLUSION: The clinical presentations of adult IHD patients varied widely; about three-fourths of patients were age ≥ 65 years and their CFR was high. Our findings support preventing strategies for IHD among older adults, including the development of NTHi vaccine.


Asunto(s)
Bacteriemia , Infecciones por Haemophilus , Meningitis , Humanos , Lactante , Anciano , Japón/epidemiología , Infecciones por Haemophilus/epidemiología , Infecciones por Haemophilus/microbiología , Haemophilus influenzae , Meningitis/complicaciones , Bacteriemia/epidemiología , Bacteriemia/complicaciones
7.
Environ Res ; 236(Pt 2): 116868, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567381

RESUMEN

Exposure to geogenic (earth-derived) particulate matter (PM) is linked to an increased prevalence of bronchiectasis and other respiratory infections in Australian Indigenous communities. Experimental studies have shown that the concentration of iron in geogenic PM is associated with the magnitude of respiratory health effects, however, the mechanism is unclear. We investigated the effect of geogenic PM and iron oxide on the invasiveness of non-typeable Haemophilus influenzae (NTHi). Peripheral blood mononuclear cell-derived macrophages or epithelial cell lines (A549 & BEAS-2B) were exposed to whole geogenic PM, their primary constituents (haematite, magnetite or silica) or diesel exhaust particles (DEP). The uptake of bacteria was quantified by flow cytometry and whole genome sequencing (WGS) was performed on NTHi strains. Geogenic PM increased the invasiveness of NTHi in bronchial epithelial cells. Of the primary constituents, haematite also increased NTHi invasion with magnetite and silica having significantly less impact. Furthermore, we observed varying levels of invasiveness amongst NTHi isolates. WGS analysis suggested isolates with more genes associated with heme acquisition were more virulent in BEAS-2B cells. The present study suggests that geogenic particles can increase the susceptibility of bronchial epithelial cells to select bacterial pathogens in vitro, a response primarily driven by haematite content in the dust. This demonstrates a potential mechanism linking exposure to iron-laden geogenic PM and high rates of chronic respiratory infections in remote communities in arid environments.

8.
Respir Res ; 23(1): 40, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236342

RESUMEN

BACKGROUND: In chronic obstructive pulmonary disease (COPD), exacerbations cause acute inflammatory flare-ups and increase the risk for hospitalization and mortality. Exacerbations are common in all disease stages and are often caused by bacterial infections e.g., non-typeable Heamophilus influenzae (NTHi). Accumulating evidence also associates vitamin D deficiency with the severity of COPD and exacerbation frequency. However, it is still unclear whether vitamin D deficiency when combined with cigarette smoking would worsen and prolong exacerbations caused by repeated infections with the same bacterial strain. METHODS: Vitamin D sufficient (VDS) and deficient (VDD) mice were exposed to nose-only cigarette smoke (CS) for 14 weeks and oropharyngeally instilled with NTHi at week 6, 10 and 14. Three days after the last instillation, mice were assessed for lung function, tissue remodeling, inflammation and immunity. The impact of VDD and CS on inflammatory cells and immunoglobulin (Ig) production was also assessed in non-infected animals while serum Ig production against NTHi and dsDNA was measured in COPD patients before and 1 year after supplementation with Vitamin D3. RESULTS: VDD enhanced NTHi eradication, independently of CS and complete eradication was reflected by decreased anti-NTHi Ig's within the lung. In addition, VDD led to an increase in total lung capacity (TLC), lung compliance (Cchord), MMP12/TIMP1 ratio with a rise in serum Ig titers and anti-dsDNA Ig's. Interestingly, in non-infected animals, VDD exacerbated the CS-induced anti-NTHi Ig's, anti-dsDNA Ig's and inflammatory cells within the lung. In COPD patients, serum Ig production was not affected by vitamin D status but anti-NTHi IgG increased after vitamin D3 supplementation in patients who were Vitamin D insufficient before treatment. CONCLUSION: During repeated infections, VDD facilitated NTHi eradication and resolution of local lung inflammation through production of anti-NTHi Ig, independently of CS whilst it also promoted autoantibodies. In COPD patients, vitamin D supplementation could be protective against NTHi infections in vitamin D insufficient patients. Future research is needed to decipher the determinants of dual effects of VDD on adaptive immunity. TRAIL REGISTRATION: ClinicalTrials, NCT00666367. Registered 23 April 2008, https://www.clinicaltrials.gov/ct2/show/study/NCT00666367 .


Asunto(s)
Fumar Cigarrillos/efectos adversos , Infecciones por Haemophilus/complicaciones , Haemophilus influenzae/inmunología , Pulmón/microbiología , Neumonía/complicaciones , Deficiencia de Vitamina D/metabolismo , Animales , Modelos Animales de Enfermedad , Infecciones por Haemophilus/metabolismo , Infecciones por Haemophilus/microbiología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neumonía/metabolismo
9.
Allergy ; 77(10): 2961-2973, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35570583

RESUMEN

BACKGROUND: Nontypeable Haemophilus influenzae (NTHi) is a respiratory tract pathobiont that chronically colonizes the airways of asthma patients and is associated with severe, neutrophilic disease phenotypes. The mechanism of NTHi airway persistence is not well understood, but accumulating evidence suggests NTHi can persist within host airway immune cells such as macrophages. We hypothesized that NTHi infection of pulmonary macrophages drives neutrophilic inflammation in severe asthma. METHODS: Bronchoalveolar lavage (BAL) samples from 25 severe asthma patients were assessed by fluorescence in situ hybridisation to quantify NTHi presence. Weighted gene correlation network analysis (WGCNA) was performed on RNASeq data from NTHi-infected monocyte-derived macrophages to identify transcriptomic networks associated with NTHi infection. RESULTS: NTHi was detected in 56% of BAL samples (NTHi+) and was associated with longer asthma duration (34 vs 22.5 years, p = .0436) and higher sputum neutrophil proportion (67% vs 25%, p = .0462). WGCNA identified a transcriptomic network of immune-related macrophage genes significantly associated with NTHi infection, including upregulation of T17 inflammatory mediators and neutrophil chemoattractants IL1B, IL8, IL23 and CCL20 (all p < .05). Macrophage network genes SGPP2 (p = .0221), IL1B (p = .0014) and GBP1 (p = .0477) were more highly expressed in NTHi+ BAL and moderately correlated with asthma duration (IL1B; rho = 0.41, p = .041) and lower prebronchodilator FEV1/FVC% (GBP1; rho = -0.43, p = .046 and IL1B; rho = -0.42, p = .055). CONCLUSIONS: NTHi persistence with pulmonary macrophages may contribute to chronic airway inflammation and T17 responses in severe asthma, which can lead to decreased lung function and reduced steroid responsiveness. Identifying therapeutic strategies to reduce the burden of NTHi in asthma could improve patient outcomes.


Asunto(s)
Asma , Infecciones por Haemophilus , Infecciones por Haemophilus/complicaciones , Haemophilus influenzae , Humanos , Inflamación/complicaciones , Interleucina-8 , Macrófagos Alveolares
10.
Infect Immun ; 89(6)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33782153

RESUMEN

Nontypeable Haemophilus influenzae (NTHi), a common inhabitant of the human nasopharynx and upper airways, causes opportunistic respiratory tract infections that are frequently recurring and chronic. NTHi utilizes sialic acid from the host to evade antibacterial defenses and persist in mucosal tissues; however, the role of sialic acid scavenged by NTHi during infection is not fully understood. We previously showed that sialylation protects specific epitopes on NTHi lipooligosaccharide (LOS) targeted by bactericidal IgM in normal human serum. Here, we evaluated the importance of immune evasion mediated by LOS sialylation in the mouse respiratory tract using wild-type H. influenzae and an isogenic siaB mutant incapable of sialylating the LOS. Sialylation protected common NTHi glycan structures recognized by human and murine IgM and protected NTHi from complement-mediated killing directed by IgM against these structures. Protection from IgM binding by sialylated LOS correlated with decreased survival of the siaB mutant versus the wild type in the murine lung. Complement depletion with cobra venom factor increased survival of the siaB mutant in the nasopharynx but not in the lungs, suggesting differing roles of sialylation at these sites. Prior infection increased IgM against H. influenzae but not against sialic acid-protected epitopes, consistent with sialic acid-mediated immune evasion during infection. These results provide mechanistic insight into an NTHi evasive strategy against an immune defense conserved across host species, highlighting the potential of the mouse model for development of anti-infective strategies targeting LOS antigens of NTHi.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Infecciones por Haemophilus/inmunología , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/efectos de los fármacos , Haemophilus influenzae/inmunología , Inmunoglobulina M/inmunología , Ácido N-Acetilneuramínico/farmacología , Animales , Modelos Animales de Enfermedad , Lipopolisacáridos/inmunología , Ratones , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/inmunología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/microbiología
11.
Mol Microbiol ; 113(2): 381-398, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31742788

RESUMEN

Commensal bacteria serve as an important line of defense against colonisation by opportunisitic pathogens, but the underlying molecular mechanisms remain poorly explored. Here, we show that strains of a commensal bacterium, Haemophilus haemolyticus, make hemophilin, a heme-binding protein that inhibits growth of the opportunistic pathogen, non-typeable Haemophilus influenzae (NTHi) in culture. We purified the NTHi-inhibitory protein from H. haemolyticus and identified the hemophilin gene using proteomics and a gene knockout. An x-ray crystal structure of recombinant hemophilin shows that the protein does not belong to any of the known heme-binding protein folds, suggesting that it evolved independently. Biochemical characterisation shows that heme can be captured in the ferrous or ferric state, and with a variety of small heme-ligands bound, suggesting that hemophilin could function under a range of physiological conditions. Hemophilin knockout bacteria show a limited capacity to utilise free heme for growth. Our data suggest that hemophilin is a hemophore and that inhibition of NTHi occurs by heme starvation, raising the possibility that competition from hemophilin-producing H. haemolyticus could antagonise NTHi colonisation in the respiratory tract.


Asunto(s)
Haemophilus influenzae/efectos de los fármacos , Haemophilus/metabolismo , Proteínas de Unión al Hemo , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/farmacología , Infecciones por Haemophilus/microbiología , Infecciones por Haemophilus/prevención & control , Haemophilus influenzae/crecimiento & desarrollo , Hemo/metabolismo , Proteínas de Unión al Hemo/química , Proteínas de Unión al Hemo/aislamiento & purificación , Proteínas de Unión al Hemo/farmacología , Humanos
12.
Crit Rev Microbiol ; 47(2): 192-205, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33455514

RESUMEN

Haemophilus influenzae is the most common cause of bacterial infection in the lungs of chronic obstructive pulmonary disease (COPD) patients and contributes to episodes of acute exacerbation which are associated with increased hospitalization and mortality. Due to the ability of H. influenzae to adhere to host epithelial cells, initial colonization of the lower airways can progress to a persistent infection and biofilm formation. This is characterized by changes in bacterial behaviour such as reduced cellular metabolism and the production of an obstructive extracellular matrix (ECM). Herein we discuss the multiple mechanisms by which H. influenzae contributes to the pathogenesis of COPD. In particular, mechanisms that facilitate bacterial adherence to host airway epithelial cells, biofilm formation, and microbial persistence through immune system evasion and antibiotic tolerance will be discussed.


Asunto(s)
Infecciones por Haemophilus/microbiología , Haemophilus influenzae/crecimiento & desarrollo , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Animales , Adhesión Bacteriana , Haemophilus influenzae/genética , Haemophilus influenzae/aislamiento & purificación , Haemophilus influenzae/fisiología , Humanos , Pulmón/microbiología
13.
Microb Pathog ; 141: 103985, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31968224

RESUMEN

Nontypeable Haemophilus influenzae (NTHi) is a common airway commensal and opportunistic pathogen that persists within biofilm communities in vivo. Biofilm studies so far are mainly based on assays on plastic surfaces. The aim of this work was to investigate the capacity of clinical NTHi strains to form biofilm structures on polarized Calu-3 human airway epithelial cells and primary normal human bronchial epithelial cells and to characterize the biofilm architecture. Formation of adherent NTHi biofilms post colonization of host cells at multiple time-points was evaluated using confocal laser scanning microscopy and electron microscopy. NTHi biofilms were analyzed in terms of biofilm height and presence of extracellular matrix components, and their apoptotic effects on epithelial cells were measured by TUNEL assay. Strain Fi176 was observed to form robust biofilms on airway epithelia over time, while disrupting the integrity of Calu-3 monolayer by 72 h of co-culture. NTHi biofilms were observed to induce apoptotic DNA fragmentation in host cells at 24 h post infection. Biofilm formation on cell monolayers by Fi176ΔpilA strain was markedly reduced compared to WT strain. Biofilm inhibition and disruption assays by crystal violet staining indicated that DNA and proteins are part of NTHi biofilms in vitro. Our findings highlight critical stages of NTHi pathogenesis following host colonization and provide useful biofilm models for future antimicrobial drug discovery investigations.


Asunto(s)
Biopelículas , Fragmentación del ADN , ADN Bacteriano , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/crecimiento & desarrollo , Haemophilus influenzae/genética , Mucosa Respiratoria/microbiología , Apoptosis , Línea Celular , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Infecciones por Haemophilus/patología , Haemophilus influenzae/clasificación , Haemophilus influenzae/ultraestructura , Humanos , Mucosa Respiratoria/patología
14.
Respir Res ; 21(1): 170, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620122

RESUMEN

Asthma is a complex heterogeneous disease. The neutrophilic subtypes of asthma are described as persistent, more severe and corticosteroid-resistant, with higher hospitalization and mortality rates, which seriously affect the lives of asthmatic patients. With the development of high-throughput sequencing technology, an increasing amount of evidence has shown that lower airway microbiome dysbiosis contributes to the exacerbation of asthma, especially neutrophilic asthma. Nontypeable Haemophilus influenzae is normally found in the upper respiratory tract of healthy adults and is one of the most common strains in the lower respiratory tract of neutrophilic asthma patients, in whom its presence is related to the occurrence of corticosteroid resistance. To understand the pathogenic mechanism by which nontypeable Haemophilus influenzae colonization leads to the progression of neutrophilic asthma, we reviewed the previous literature on nontypeable Haemophilus influenzae colonization and subsequent aggravation of neutrophilic asthma and corticosteroid resistance. We discussed nontypeable Haemophilus influenzae as a potential therapeutic target to prevent the progression of neutrophilic asthma.


Asunto(s)
Asma/microbiología , Asma/patología , Infecciones por Haemophilus/microbiología , Infecciones por Haemophilus/patología , Haemophilus influenzae , Neutrófilos/patología , Humanos
15.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785145

RESUMEN

Non-typeable Haemophilus influenzae (NTHI) is a pathogen of the human respiratory tract causing the majority of invasive H. influenzae infections. Severe invasive infections such as septicemia and meningitis occur rarely, but the lack of a protecting vaccine and the increasing antibiotic resistance of NTHI impede treatment and emphasize its relevance as a potential meningitis causing pathogen. Meningitis results from pathogens crossing blood-brain barriers and invading the immune privileged central nervous system (CNS). In this study, we addressed the potential of NTHI to enter the brain by invading cells of the choroid plexus (CP) prior to meningeal inflammation to enlighten NTHI pathophysiological mechanisms. A cell culture model of human CP epithelial cells, which form the blood-cerebrospinal fluid barrier (BCSFB) in vivo, was used to analyze adhesion and invasion by immunofluorescence and electron microscopy. NTHI invade CP cells in vitro in a polar fashion from the blood-facing side. Furthermore, NTHI invasion rates are increased compared to encapsulated HiB and HiF strains. Fimbriae occurrence attenuated adhesion and invasion. Thus, our findings underline the role of the BCSFB as a potential entry port for NTHI into the brain and provide strong evidence for a function of the CP during NTHI invasion into the CNS during the course of meningitis.


Asunto(s)
Plexo Coroideo/citología , Plexo Coroideo/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Infecciones por Haemophilus/metabolismo , Haemophilus influenzae/patogenicidad , Interacciones Huésped-Patógeno , Adhesión Bacteriana , Barrera Hematoencefálica , Línea Celular Tumoral , Polaridad Celular , Supervivencia Celular , ADN Bacteriano/genética , Fimbrias Bacterianas , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/genética , Haemophilus influenzae/aislamiento & purificación , Humanos , Meningitis/líquido cefalorraquídeo , Meningitis/microbiología , Virulencia , Factores de Virulencia
16.
Biochim Biophys Acta Mol Cell Res ; 1865(4): 665-673, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29421524

RESUMEN

Nontypeable Haemophilus influenzae (NTHI) is one of the leading causes of acute exacerbations of COPD (AECOPD). Although the immunoregulation function of NTHI outer member protein and endotoxin were confirmed, the role of NTHI DNA in activating immune responses remains to be elucidated. In this study, we found expression of IFN-ß and IFN stimulated gene CXCL10 in host cells was forcefully elevated after treating with NTHI and NTHI DNA. Interestingly, we tested increased level of STING in NTHI infected mice lung. Meanwhile, STING expression in lung of mimic COPD murine model was higher than healthy mice after NTHI infection. Importantly, knockout of STING or overexpression of STING, TBK1 and IRF3 respectively impaired or enhanced IFN-ß and CXCL10 expression during treating with NTHI and NTHI DNA. NTHI and NTHI DNA-induced I-IFN response appeared to be mediated by cGAS. Collectively, we suggested that NTHI DNA as a PAMP triggered I-IFN response, which was STING/TBK1/IRF3 dependent. SUMMARY: NTHI is the leading cause of acute exacerbations of COPD (AECOPD). Since AECOPD is an immune event, it is meaningful to elucidate the mechanism under NTHI induced immune response. It has been revealed that lipooligosaccharides and protein of NTHI could induce host immune response, but the function of NTHI nuclide acid during infection is unclear. In this research, we demonstrate NTHI DNA is a trigger for I-IFN expression, and the STING/TBK1/IRF3 pathway plays an integral role in sensing NTHI DNA to induce I-IFN expression. Moreover, by long-term intrabronchial infection of LPS, we constructed a mimic COPD murine model, in which the STING expression in lung tissues were higher than healthy mice after NTHI infection, which led us to surmise that NTHI cause AECOPD by inducing I-IFN production via STING signal pathway.


Asunto(s)
ADN Bacteriano/metabolismo , Haemophilus influenzae/metabolismo , Interferón beta/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Animales , Citocinas/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Masculino , Ratones Endogámicos C57BL , Nucleotidiltransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Regulación hacia Arriba
17.
Infect Immun ; 87(5)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30833337

RESUMEN

Nontypeable Haemophilus influenzae (NTHi) is a major human pathogen, responsible for several acute and chronic infections of the respiratory tract. The incidence of invasive infections caused by NTHi is increasing worldwide. NTHi is able to colonize the nasopharynx asymptomatically, and the exact change(s) responsible for transition from benign carriage to overt disease is not understood. We have previously reported that phase variation (the rapid and reversible ON-OFF switching of gene expression) of particular lipooligosaccharide (LOS) glycosyltransferases occurs during transition from colonizing the nasopharynx to invading the middle ear. Variation in the structure of the LOS is dependent on the ON/OFF expression status of each of the glycosyltransferases responsible for LOS biosynthesis. In this study, we surveyed a collection of invasive NTHi isolates for ON/OFF expression status of seven phase-variable LOS glycosyltransferases. We report that the expression state of the LOS biosynthetic genes oafA ON and lic2A OFF shows a correlation with invasive NTHi isolates. We hypothesize that these gene expression changes contribute to the invasive potential of NTHi. OafA expression, which is responsible for the addition of an O-acetyl group onto the LOS, has been shown to impart a phenotype of increased serum resistance and may serve as a marker for invasive NTHi.


Asunto(s)
Infecciones por Haemophilus/genética , Infecciones por Haemophilus/inmunología , Haemophilus influenzae/inmunología , Haemophilus influenzae/patogenicidad , Interacciones Huésped-Patógeno/inmunología , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/genética , Lipopolisacáridos/inmunología , Infecciones por Haemophilus/patología , Haemophilus influenzae/genética , Interacciones Huésped-Patógeno/genética , Humanos , Queensland
18.
Infect Immun ; 87(11)2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31427451

RESUMEN

Nontypeable Haemophilus influenzae (NTHi) is the primary cause of bacterially induced acute exacerbations of chronic obstructive pulmonary disease (COPD). NTHi adheres to and invades host respiratory epithelial cells as a means to persist in the lower airways of adults with COPD. Therefore, we mined the genomes of NTHi strains isolated from the airways of adults with COPD to identify novel proteins to investigate their role in adherence and invasion of human respiratory epithelial cells. An isogenic knockout mutant of the open reading frame NTHI1441 showed a 76.6% ± 5.5% reduction in invasion of human bronchial and alveolar epithelial cells at 1, 3, and 6 h postinfection. Decreased invasion of the NTHI1441 mutant was independent of either intracellular survival or adherence to cells. NTHI1441 is conserved among NTHi genomes. Results of whole-bacterial-cell enzyme-linked immunosorbent assay (ELISA) and flow cytometry experiments identified that NTHI1441 has epitopes expressed on the bacterial cell surface. Adults with COPD develop increased serum IgG against NTHI1441 after experiencing an exacerbation with NTHi. This study reveals NTHI1441 as a novel NTHi virulence factor expressed during infection of the COPD lower airways that contributes to invasion of host respiratory epithelial cells. The role in host cell invasion, conservation among strains, and expression of surface-exposed epitopes suggest that NTHI1441 is a potential target for preventative and therapeutic interventions for disease caused by NTHi.


Asunto(s)
Células Epiteliales/microbiología , Haemophilus influenzae/fisiología , Mucosa Respiratoria/citología , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , ADN Bacteriano , ADN Recombinante/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Infecciones por Haemophilus/microbiología , Humanos , Enfermedad Pulmonar Obstructiva Crónica/microbiología
19.
Infect Immun ; 87(11)2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31405955

RESUMEN

Nontypeable Haemophilus influenzae (NTHi) efficiently colonizes the human nasopharynx asymptomatically but also causes respiratory mucosal infections, including otitis media, sinusitis, and bronchitis. The lipooligosaccharide (LOS) on the cell surface of NTHi displays complex glycans that mimic host structures, allowing it to evade immune recognition. However, LOS glycans are also targets of host adaptive and innate responses. To aid in evasion of these responses, LOS structures exhibit interstrain heterogeneity and are also subject to phase variation, the random on/off switching of gene expression, generating intrastrain population diversity. Specific LOS modifications, including terminal sialylation of the LOS, which exploits host-derived sialic acid (Neu5Ac), can also block recognition of NTHi by bactericidal IgM and complement by mechanisms that are not fully understood. We investigated the LOS sialic acid-mediated resistance of NTHi to antibody-directed killing by serum complement. We identified specific LOS structures extending from heptose III that are targets for binding by naturally occurring bactericidal IgM in serum and are protected by sialylation of the LOS. Phase-variable galactosyltransferases encoded by lic2A and lgtC each add a galactose epitope bound by IgM that results in antibody-dependent killing via the classical pathway of complement. NTHi's survival can be influenced by the expression of phase-variable structures on the LOS that may also depend on environmental conditions, such as the availability of free sialic acid. Identification of surface structures on NTHi representing potential targets for antibody-based therapies as alternatives to antibiotic treatment would thus be valuable for this medically important pathogen.


Asunto(s)
Proteínas del Sistema Complemento , Haemophilus influenzae/fisiología , Inmunoglobulina M , Anticuerpos , Anticuerpos Antibacterianos , Proteínas Bacterianas , Epítopos , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Humanos , Lipopolisacáridos , Cloruro de Magnesio/farmacología , Ácido N-Acetilneuramínico/farmacología , Polisacáridos/metabolismo , Suero
20.
J Bacteriol ; 200(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29109187

RESUMEN

Type II toxin-antitoxin (TA) systems play a critical role in the establishment and maintenance of bacterial dormancy. They are composed of a protein toxin and its cognate protein antitoxin. They function to regulate growth under conditions of stress, such as starvation or antibiotic treatment. As cellular proteases degrade the antitoxin, which normally binds and neutralizes the toxin, this frees the toxin to act on its cellular targets and arrest bacterial growth. TA systems are of particular concern in regard to pathogenic organisms, such as nontypeable Haemophilus influenzae (NTHi), as dormancy may lead to chronic infections and failure of antibiotic treatment. Many targets of VapC toxins have not been identified, to date, and this knowledge is crucial to understanding how toxins control the establishment and maintenance of bacterial dormancy. Accordingly, we characterized the target specificity of the VapC toxins from the two paralogous NTHi vapBC TA systems. RNA sequencing and Northern blot analysis revealed that VapC1 and VapC2 cleave tRNAfMet in the anticodon loop. Overexpression of tRNAfMet suppresses VapC toxicity, suggesting that translation inhibition results from the depletion of tRNAfMet These experiments also identified base pairs in the tRNAfMet anticodon stem that play a key role in VapC-specific cleavage of the tRNA. Together these findings suggest the potential for NTHi VapC1 and VapC2 to induce dormancy by sequence-specific cleavage of tRNAfMetIMPORTANCE Bacterial persistence is a significant concern in regard to pathogenic organisms, such as nontypeable Haemophilus influenzae, as it can result in recurrent and chronic infections. Toxin-antitoxin systems can lead to persistence by causing bacteria to enter a slow-growing state that renders them antibiotic tolerant. Type II toxin components affect a wide variety of bacterial targets in order to elicit dormancy, and for many toxin-antitoxin systems, these mechanisms are not well understood. Thus, in order to understand how vapBC toxin-antitoxin systems cause dormancy, it is crucial to investigate the substrate specificity of VapC toxins. This study identifies the target of the VapC1 and VapC2 toxins from NTHi and takes important steps toward understanding the specificity of these toxins for their tRNA target.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Biosíntesis de Proteínas/efectos de los fármacos , ARN de Transferencia de Metionina/metabolismo , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , ARN de Transferencia de Metionina/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA