Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Cancer Cell Int ; 24(1): 64, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336680

RESUMEN

BACKGROUND: Esophageal cancer (EC) is a global canker notorious for causing high mortality due to its relentless incidence rate, convoluted with unyielding recurrence and metastasis. However, these intricacies of EC are associated with an immoderate expression of NY-ESO-1 antigen, presenting a lifeline for adoptive T cell therapy. We hypothesized that naturally isolated higher-affinity T cell receptors (TCRs) that bind to NY-ESO-1 would allow T lymphocytes to target EC with a pronounced antitumor response efficacy. Also, targeting TRPV2, which is associated with tumorigenesis in EC, creates an avenue for dual-targeted therapy. We exploited the dual-targeting antitumor efficacy against EC. METHODS: We isolated antigen-specific TCRs (asTCRs) from a naive library constructed with TCRs obtained from enriched cytotoxic T lymphocytes. The robustness of our asTCRs and their TCR-T cell derivatives, Tranilast (TRPV2 inhibitor), and their bivalent treatment were evaluated with prospective cross-reactive human-peptide variants and tumor cells. RESULTS: Our study demonstrated that our naive unenhanced asTCRs and their TCR-Ts perpetuated their cognate HLA-A*02:01/NY-ESO-1(157-165) specificity, killing varying EC cells with higher cytotoxicity compared to the known affinity-enhanced TCR (TCRe) and its wild-type (TCR0) which targets the same NY-ESO-1 antigen. Furthermore, the TCR-Ts and Tranilast bivalent treatment showed superior EC killing compared to any of their monovalent treatments of either TCR-T or Tranilast. CONCLUSION: Our findings suggest that dual-targeted immunotherapy may have a superior antitumor effect. Our study presents a technique to evolve novel, robust, timely therapeutic strategies and interventions for EC and other malignancies.

2.
Microb Cell Fact ; 23(1): 119, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659027

RESUMEN

BACKGROUND: Clostridium spp. has demonstrated therapeutic potential in cancer treatment through intravenous or intratumoral administration. This approach has expanded to include non-pathogenic clostridia for the treatment of various diseases, underscoring the innovative concept of oral-spore vaccination using clostridia. Recent advancements in the field of synthetic biology have significantly enhanced the development of Clostridium-based bio-therapeutics. These advancements are particularly notable in the areas of efficient protein overexpression and secretion, which are crucial for the feasibility of oral vaccination strategies. Here, we present two examples of genetically engineered Clostridium candidates: one as an oral cancer vaccine and the other as an antiviral oral vaccine against SARS-CoV-2. RESULTS: Using five validated promoters and a signal peptide derived from Clostridium sporogenes, a series of full-length NY-ESO-1/CTAG1, a promising cancer vaccine candidate, expression vectors were constructed and transformed into C. sporogenes and Clostridium butyricum. Western blotting analysis confirmed efficient expression and secretion of NY-ESO-1 in clostridia, with specific promoters leading to enhanced detection signals. Additionally, the fusion of a reported bacterial adjuvant to NY-ESO-1 for improved immune recognition led to the cloning difficulties in E. coli. The use of an AUU start codon successfully mitigated potential toxicity issues in E. coli, enabling the secretion of recombinant proteins in C. sporogenes and C. butyricum. We further demonstrate the successful replacement of PyrE loci with high-expression cassettes carrying NY-ESO-1 and adjuvant-fused NY-ESO-1, achieving plasmid-free clostridia capable of secreting the antigens. Lastly, the study successfully extends its multiplex genetic manipulations to engineer clostridia for the secretion of SARS-CoV-2-related Spike_S1 antigens. CONCLUSIONS: This study successfully demonstrated that C. butyricum and C. sporogenes can produce the two recombinant antigen proteins (NY-ESO-1 and SARS-CoV-2-related Spike_S1 antigens) through genetic manipulations, utilizing the AUU start codon. This approach overcomes challenges in cloning difficult proteins in E. coli. These findings underscore the feasibility of harnessing commensal clostridia for antigen protein secretion, emphasizing the applicability of non-canonical translation initiation across diverse species with broad implications for medical or industrial biotechnology.


Asunto(s)
Clostridium butyricum , Clostridium , Proteínas Recombinantes , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , Clostridium/genética , Clostridium/metabolismo , Humanos , Proteínas Recombinantes/genética , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/genética , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/genética , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Administración Oral , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/inmunología , Vacunación , COVID-19/prevención & control , Ingeniería Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regiones Promotoras Genéticas
3.
Int J Cancer ; 152(12): 2554-2566, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36727538

RESUMEN

The efficacy of immune checkpoint inhibitors is limited in refractory solid tumors. T-cell receptor gene-modified T (TCR-T)-cell therapy has attracted attention as a new immunotherapy for refractory cold tumors. We first investigated the preclinical efficacy and mode of action of TCR-T cells combined with the pullulan nanogel:long peptide antigen (LPA) vaccine in a mouse sarcoma model that is resistant to immune checkpoint inhibition. Without lymphodepletion, the pullulan nanogel:LPA vaccine markedly increased the number of TCR-T cells in the draining lymph node and tumor tissue. This change was associated with enhanced CXCR3 expression in TCR-T cells in the draining lymph node. In the phase 1 trial, autologous New York esophageal squamous cell carcinoma 1 (NY-ESO-1)-specific TCR-T cells were infused twice into HLA-matched patients with NY-ESO-1+ soft tissue sarcoma (STS). The pullulan nanogel:LPA vaccine contains an epitope recognized by TCR-T cells, and it was subcutaneously injected 1 day before and 7 days after the infusion of TCR-T cells. Lymphodepletion was not performed. Three patients with refractory synovial sarcoma (SS) were treated. Two out of the three patients developed cytokine release syndrome (CRS) with low-to-moderate cytokine level elevation. We found obvious tumor shrinkage lasting for more than 2 years by tumor imaging and long-term persistence of TCR-T cells in one patient. In conclusion, NY-ESO-1-specific TCR-T-cell therapy plus vaccination with the pullulan nanogel carrying an LPA containing the NY-ESO-1 epitope without lymphodepletion is feasible and can induce promising long-lasting therapeutic effects in refractory SS (Registration ID: JMA-IIA00346).


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Sarcoma Sinovial , Neoplasias de los Tejidos Blandos , Vacunas , Animales , Ratones , Nanogeles , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos de Neoplasias , Sarcoma Sinovial/terapia , Epítopos , Tratamiento Basado en Trasplante de Células y Tejidos
4.
Cancer Immunol Immunother ; 72(7): 2267-2282, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36881133

RESUMEN

AIM: We have previously reported that polyfunctional T cell responses can be induced to the cancer testis antigen NY-ESO-1 in melanoma patients injected with mature autologous monocyte-derived dendritic cells (DCs) loaded with long NY-ESO-1-derived peptides together with α-galactosylceramide (α-GalCer), an agonist for type 1 Natural Killer T (NKT) cells. OBJECTIVE: To assess whether inclusion of α-GalCer in autologous NY-ESO-1 long peptide-pulsed DC vaccines (DCV + α-GalCer) improves T cell responses when compared to peptide-pulsed DC vaccines without α-GalCer (DCV). DESIGN, SETTING AND PARTICIPANTS: Single-centre blinded randomised controlled trial in patients ≥ 18 years old with histologically confirmed, fully resected stage II-IV malignant cutaneous melanoma, conducted between July 2015 and June 2018 at the Wellington Blood and Cancer Centre of the Capital and Coast District Health Board. INTERVENTIONS: Stage I. Patients were randomised to two cycles of DCV or DCV + α-GalCer (intravenous dose of 10 × 106 cells, interval of 28 days). Stage II. Patients assigned to DCV + α-GalCer were randomised to two further cycles of DCV + α-GalCer or observation, while patients initially assigned to DCV crossed over to two cycles of DCV + α-GalCer. OUTCOME MEASURES: Primary: Area under the curve (AUC) of mean NY-ESO-1-specific T cell count detected by ex vivo IFN-γ ELISpot in pre- and post-treatment blood samples, compared between treatment arms at Stage I. Secondary: Proportion of responders in each arm at Stage I; NKT cell count in each arm at Stage I; serum cytokine levels at Stage I; adverse events Stage I; T cell count for DCV + α-GalCer versus observation at Stage II, T cell count before versus after cross-over. RESULTS: Thirty-eight patients gave written informed consent; 5 were excluded before randomisation due to progressive disease or incomplete leukapheresis, 17 were assigned to DCV, and 16 to DCV + α-GalCer. The vaccines were well tolerated and associated with increases in mean total T cell count, predominantly CD4+ T cells, but the difference between the treatment arms was not statistically significant (difference - 6.85, 95% confidence interval, - 21.65 to 7.92; P = 0.36). No significant improvements in T cell response were associated with DCV + α-GalCer with increased dosing, or in the cross-over. However, the NKT cell response to α-GalCer-loaded vaccines was limited compared to previous studies, with mean circulating NKT cell levels not significantly increased in the DCV + α-GalCer arm and no significant differences in cytokine response between the treatment arms. CONCLUSIONS: A high population coverage of NY-ESO-1-specific T cell responses was achieved with a good safety profile, but we failed to demonstrate that loading with α-GalCer provided an additional advantage to the T cell response with this cellular vaccine design. CLINICAL TRIAL REGISTRATION: ACTRN12612001101875. Funded by the Health Research Council of New Zealand.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Masculino , Humanos , Adolescente , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/metabolismo , Péptidos/metabolismo , Anticuerpos/metabolismo , Citocinas/metabolismo , Células Dendríticas , Antígenos de Neoplasias , Melanoma Cutáneo Maligno
5.
Cancer Immunol Immunother ; 72(10): 3309-3322, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37466668

RESUMEN

Antitumor virotherapy stimulates the antitumor immune response during tumor cell lysis induced by oncolytic viruses (OVs). OV can be modified to express additional transgenes that enhance their therapeutic potential. In this study, we armed the spontaneously oncolytic Schwarz strain of measles viruses (MVs) with the gene encoding the cancer/testis antigen NY-ESO-1 to obtain MVny. We compared MV and MVny oncolytic activity and ability to induce NY-ESO-1 expression in six human melanoma cell lines. After MVny infection, we measured the capacity of melanoma cells to present NY-ESO-1 peptides to CD4 + and CD8 + T cell clones specific for this antigen. We assessed the ability of MVny to induce NY-ESO-1 expression and presentation in monocyte-derived dendritic cells (DCs). Our results show that MVny and MV oncolytic activity are similar with a faster cell lysis induced by MVny. We also observed that melanoma cell lines and DC expressed the NY-ESO-1 protein after MVny infection. In addition, MVny-infected melanoma cells and DCs were able to stimulate NY-ESO-1-specific CD4 + and CD8 + T cells. Finally, MVny was able to induce DC maturation. Altogether, these results show that MVny could be an interesting candidate to stimulate NY-ESO-1-specific T cells in melanoma patients with NY-ESO-1-expressing tumor cells.


Asunto(s)
Sarampión , Melanoma , Virus Oncolíticos , Masculino , Humanos , Virus Oncolíticos/genética , Proteínas de la Membrana , Virus del Sarampión/genética , Melanoma/metabolismo , Linfocitos T CD8-positivos , Antígenos de Neoplasias , Anticuerpos/metabolismo , Células Dendríticas , Sarampión/metabolismo
6.
J Transl Med ; 21(1): 235, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37004094

RESUMEN

BACKGROUND: The mechanism of tumor immune escape and progression in colorectal cancer (CRC) is widely investigated in-vitro to help understand and identify agents that might play a crucial role in response to treatment and improve the overall survival of CRC patients. Several mechanisms of immune escape and tumor progression, including expression of stemness markers, inactivation of immunoregulatory genes by methylation, and epigenetic silencing, have been reported in CRC, indicating the potential of demethylating agents as anti-cancer drugs. Of these, a chemotherapeutic demethylating agent, Decitabine (DAC), has been reported to induce a dual effect on both DNA demethylation and histone changes leading to an increased expression of target biomarkers, thus making it an attractive anti-tumorigenic drug. METHODS: We compared the effect of DAC in primary 1076 Col and metastatic 1872 Col cell lines isolated and generated from patients' tumor tissues. Both cell lines were treated with DAC, and the expression of the NY-ESO-1 cancer-testis antigen, the PD-L1 immunoinhibitory marker, and the CD44, Nanog, KLF-4, CD133, MSI-1 stemness markers were analyzed using different molecular and immunological assays. RESULTS: DAC treatment significantly upregulated stemness markers in both primary 1076 Col and meta-static 1872 Col cell lines, although a lower effect occurred on the latter: CD44 (7.85 fold; ***p = 0.0001 vs. (4.19 fold; *p = 0.0120), Nanog (4.1 fold; ***p < 0.0001 vs.1.69 fold; ***p = 0.0008), KLF-4 (4.33 fold; ***p < 0.0001 vs.2.48 fold; ***p = 0.0005), CD133 (16.77 fold; ***p = 0.0003 vs.6.36 fold; *p = 0.0166), and MSI-1 (2.33 fold; ***p = 0.0003 vs.2.3 fold; ***p = 0.0004), respectively. Interestingly, in the metastatic 1872 Col cells treated with DAC, the expression of both PD-L1 and NY-ESO-1 was increased tenfold (*p = 0.0128) and fivefold (***p < 0.0001), respectively. CONCLUSIONS: We conclude that the upregulation of both stemness and immune checkpoint markers by DAC treatment on CRC cells might represent a mechanism of immune evasion. In addition, induction of NY-ESO-1 may represent an immuno-therapeutic option in metastatic CRC patients. Finally, the combination of DAC and anti-PD-1/anti-PD-L1 antibodies treatment should represent a potential therapeutic intervention for this group of patients.


Asunto(s)
Antígenos de Neoplasias , Neoplasias Colorrectales , Masculino , Humanos , Decitabina/farmacología , Decitabina/uso terapéutico , Antígenos de Neoplasias/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Inmunoterapia , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Línea Celular Tumoral
7.
Exp Dermatol ; 32(2): 126-134, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36222007

RESUMEN

Melanoma is one of the most severe skin cancers, derived from melanocytes. Among various therapies for melanoma, adoptive immunotherapy using tumor-infiltrating lymphocytes/chimeric antigen receptor-T cells (TCs) is advanced in recent years; however, the efficacy is still limited, and major challenges remain in terms of safety and cell supply. To solve the issues of adoptive immunotherapy, we utilized induced pluripotent stem cells (iPSCs), which have an unlimited proliferative ability and various differentiation capability. First, we monoclonally isolated CD8+ TCs specifically reactive with NY-ESO-1, one of tumor antigens, from the melanoma patient's monocytes after stimulated with NY-ESO-1 peptide by manual procedure, and cultured NY-ESO-1-specific TCs until proliferated and formed colonies. iPSCs were consequently generated from colony-forming TCs by exogenous expression of reprogramming factors using Sendai virus vector. After the RAG2 gene in TC-derived iPSCs (T-iPSCs) was knocked out for preventing T-cell receptor (TCR) rearrangement, T-iPSCs were re-differentiated into rejuvenated cytotoxic TCs. We confirmed that TCR of T-iPSC-derived TC was maintained as the same of original TCs. In conclusion, T-iPSCs have a potential to be an unlimited cell source for providing cytotoxic TCs. Our study could be a "touchstone" to develop iPSC-based adoptive immunotherapy for the treatment of melanoma for the future clinical use.


Asunto(s)
Células Madre Pluripotentes Inducidas , Melanoma , Humanos , Linfocitos T Citotóxicos/metabolismo , Inmunoterapia Adoptiva , Proyectos Piloto , Células Madre Pluripotentes Inducidas/metabolismo , Melanoma/patología , Linfocitos T CD8-positivos/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos de Neoplasias , Inmunoterapia
8.
Cancer Immunol Immunother ; 71(11): 2743-2755, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35429246

RESUMEN

The aim of this study was to determine the efficacy and the biomarkers of the CHP-NY-ESO-1 vaccine complexed with full-length NY-ESO-1 protein and a cholesteryl pullulan (CHP) in patients with esophageal squamous cell carcinoma (ESCC) after surgery. We conducted a randomized phase II trial. Fifty-four patients with NY-ESO-1-expressing ESCC who underwent radical surgery following cisplatin/5-fluorouracil-based neoadjuvant chemotherapy were assigned to receive either CHP-NY-ESO-1 vaccination or observation as control. Six doses of CHP-NY-ESO-1 were administered subcutaneously once every two weeks, followed by nine more doses once every four weeks. The endpoints were disease-free survival (DFS) and safety. Exploratory analysis of tumor tissues using gene-expression profiles was also performed to seek the biomarker. As there were no serious adverse events in 27 vaccinated patients, we verified the safety of the vaccine. DFS in 2 years were 56.0% and 58.3% in the vaccine arm and in the control, respectively. Twenty-four of 25 patients showed NY-ESO-1-specific IgG responses after vaccination. Analysis of intra-cohort correlations among vaccinated patients revealed that 5% or greater expression of NY-ESO-1 was a favorable factor. Comprehensive analysis of gene expression profiles revealed that the expression of the gene encoding polymeric immunoglobulin receptor (PIGR) in tumors had a significantly favorable impact on outcomes in the vaccinated cohort. The high PIGR-expressing tumors that had higher NY-ESO-1-specific IgA response tended to have favorable prognosis. These results suggest that PIGR would play a major role in tumor immunity in an antigen-specific manner during NY-ESO-1 vaccinations. The IgA response may be relevant.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Receptores de Inmunoglobulina Polimérica , Anticuerpos Antineoplásicos , Antígenos de Neoplasias , Cisplatino , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Fluorouracilo , Glucanos , Humanos , Inmunoglobulina A , Inmunoglobulina G , Proteínas de la Membrana , Pronóstico
9.
Cancer Immunol Immunother ; 70(11): 3081-3091, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33751208

RESUMEN

The nanoparticle complex of cholesteryl pullulan (CHP) and NY-ESO-1 antigen protein (CHP-NY-ESO-1) presents multiple epitope peptides to MHC class I and II pathways, leading to CD8+ and CD4+ T cell responses. Poly-ICLC is a synthetic, double-stranded RNA, an agonist of toll-like receptor (TLR)-3, and a cytoplasmic receptor of melanoma differentiation-associated gene (MDA)-5. It should be a suitable immune adjuvant of cancer vaccine to overcome the inhibitory tumor microenvironment. We conducted a phase 1 clinical trial of CHP-NY-ESO-1 with poly-ICLC in patients with advanced or recurrent esophageal cancer. CHP-NY-ESO-1/poly-ICLC (µg/mg) was administered at a dose of 200/0.5 or 200/1.0 (cohorts 1 and 2, respectively) every 2 weeks for a total of six doses. The primary endpoints were safety and immune response. The secondary endpoint was tumor response. In total, 16 patients were enrolled, and six patients in each cohort completed the trial. The most common adverse event (AE) was injection site skin reaction (86.7%). No grade 3 or higher drug-related AEs were observed. No tumor responses were observed, and three patients (30%) had stable disease. The immune response was comparable between the two cohorts, and all patients (100%) achieved antibody responses with a median of 2.5 vaccinations. Comparing CHP-NY-ESO-1 alone to the poly-ICLC combination, all patients in both groups exhibited antibody responses, but the titers were higher in the combination group. In a mouse model, adding anti-PD-1 antibody to the combination of CHP-NY-ESO-1/poly-ICLC suppressed the growth of NY-ESO-1-expressing tumors. Combining the vaccine with PD-1 blockade holds promise in human trials.


Asunto(s)
Antígenos de Neoplasias/uso terapéutico , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Carboximetilcelulosa de Sodio/análogos & derivados , Neoplasias Esofágicas/tratamiento farmacológico , Glucanos/uso terapéutico , Proteínas de la Membrana/uso terapéutico , Poli I-C/uso terapéutico , Polilisina/análogos & derivados , Adyuvantes Inmunológicos/uso terapéutico , Anciano , Anciano de 80 o más Años , Animales , Antígenos de Neoplasias/inmunología , Carboximetilcelulosa de Sodio/uso terapéutico , Neoplasias Esofágicas/inmunología , Femenino , Glucanos/inmunología , Humanos , Inductores de Interferón/inmunología , Inductores de Interferón/uso terapéutico , Masculino , Proteínas de la Membrana/inmunología , Ratones , Persona de Mediana Edad , Nanopartículas , Poli I-C/inmunología , Polilisina/inmunología , Polilisina/uso terapéutico
10.
Proc Natl Acad Sci U S A ; 115(45): E10702-E10711, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348802

RESUMEN

Tumor-specific T cell receptor (TCR) gene transfer enables specific and potent immune targeting of tumor antigens. Due to the prevalence of the HLA-A2 MHC class I supertype in most human populations, the majority of TCR gene therapy trials targeting public antigens have employed HLA-A2-restricted TCRs, limiting this approach to those patients expressing this allele. For these patients, TCR gene therapy trials have resulted in both tantalizing successes and lethal adverse events, underscoring the need for careful selection of antigenic targets. Broad and safe application of public antigen-targeted TCR gene therapies will require (i) selecting public antigens that are highly tumor-specific and (ii) targeting multiple epitopes derived from these antigens by obtaining an assortment of TCRs restricted by multiple common MHC alleles. The canonical cancer-testis antigen, NY-ESO-1, is not expressed in normal tissues but is aberrantly expressed across a broad array of cancer types. It has also been targeted with A2-restricted TCR gene therapy without adverse events or notable side effects. To enable the targeting of NY-ESO-1 in a broader array of HLA haplotypes, we isolated TCRs specific for NY-ESO-1 epitopes presented by four MHC molecules: HLA-A2, -B07, -B18, and -C03. Using these TCRs, we pilot an approach to extend TCR gene therapies targeting NY-ESO-1 to patient populations beyond those expressing HLA-A2.


Asunto(s)
Proteínas de Homeodominio/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Receptores de Antígenos de Linfocitos T/aislamiento & purificación , Receptores de Antígenos de Linfocitos T/metabolismo , Animales , Clonación Molecular , Humanos
11.
Cancer Immunol Immunother ; 69(4): 663-675, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31980914

RESUMEN

Cholesteryl pullulan (CHP) is a novel antigen delivery system. CHP and New York esophageal squamous cell carcinoma 1 (NY-ESO-1) antigen complexes (CHP-NY-ESO-1) present multiple epitope peptides to the MHC class I and II pathways. Adjuvants are essential for cancer vaccines. MIS416 is a non-toxic microparticle that activates immunity via the nucleotide-binding oligomerization domain 2 (NOD2) and TLR9 pathways. However, no reports have explored MIS416 as a cancer vaccine adjuvant. We conducted a first-in-human clinical trial of CHP-NY-ESO-1 with MIS416 in patients with NY-ESO-1-expressing refractory solid tumors. CHP-NY-ESO-1/MIS416 (µg/µg) was administered at 100/200, 200/200, 200/400 or 200/600 (cohorts 1, 2, 3 and 4, respectively) every 2 weeks for a total of 6 doses (treatment phase) followed by one vaccination every 4 weeks until disease progression or unacceptable toxicity (maintenance phase). The primary endpoints were safety and tolerability, and the secondary endpoint was the immune response. In total, 26 patients were enrolled. Seven patients (38%) continued vaccination in the maintenance phase. Grade 3 drug-related adverse events (AEs) were observed in six patients (23%): anorexia and hypertension were observed in one and five patients, respectively. No grade 4-5 drug-related AEs were observed. Eight patients (31%) had stable disease (SD). Neither augmentation of the NY-ESO-1-specific IFN-γ-secreting CD8+ T cell response nor an increase in the level of anti-NY-ESO-1 IgG1 was observed as the dose of MIS416 was increased. In a preclinical study, adding anti-PD-1 monoclonal antibody to CHP-NY-ESO-1 and MIS416 induced significant tumor suppression. This combination therapy is a promising next step.


Asunto(s)
Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Proteínas de la Membrana/inmunología , Neoplasias/inmunología , Proteína Adaptadora de Señalización NOD2/inmunología , Receptor Toll-Like 9/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Anticuerpos Antineoplásicos/sangre , Anticuerpos Antineoplásicos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Vacunas contra el Cáncer/administración & dosificación , Línea Celular Tumoral , Femenino , Humanos , Interferón gamma/inmunología , Interferón gamma/metabolismo , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , Neoplasias/patología , Neoplasias/terapia , Proteína Adaptadora de Señalización NOD2/metabolismo , Receptor Toll-Like 9/metabolismo , Vacunación/métodos
12.
J Transl Med ; 18(1): 140, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32220256

RESUMEN

INTRODUCTION: Cancer Immunotherapy has recently emerged as a promising and effective modality to treat different malignancies. Antigenic profiling of cancer tissues and determination of any pre-existing immune responses to cancer antigens may help predict responses to immune intervention in cancer. NY-ESO-1, a cancer testis antigen is the most immunogenic antigen to date. The promise of NY-ESO-1 as a candidate for specific immune recognition of cancer comes from its restricted expression in normal adult tissue but frequent occurrence in multiple tumors including melanoma and carcinomas of lung, esophageal, liver, gastric, prostrate, ovarian, and bladder. MAIN BODY: This review summarizes current knowledge of NY-ESO-1 as efficient biomarker and target of immunotherapy. It also addresses limitations and challenges preventing a robust immune response to NY-ESO-1 expressing cancers, and describes pre-clinical and clinical observations relevant to NY-ESO-1 immunity, holding potential therapeutic relevance for cancer treatment. CONCLUSION: NY-ESO-1 induces strong immune responses in cancer patients but has limited objective clinical responses to NY-ESO-1 expressing tumors due to effect of competitive negative signaling from immune-checkpoints and immune-suppressive tumor microenvironment. We propose that combination therapy to increase the efficacy of NY-ESO-1 specific immunotherapeutic interventions should be explored to unleash the immune response against NY-ESO-1 expressing tumors.


Asunto(s)
Neoplasias , Testículo , Adulto , Antígenos de Neoplasias , Humanos , Inmunidad , Inmunoterapia , Masculino , Proteínas de la Membrana , Neoplasias/terapia
13.
BMC Cancer ; 20(1): 606, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600281

RESUMEN

BACKGROUND: Cancer testis (CT) antigens are promising targets for cancer immunotherapies such as cancer vaccines and genetically modified adoptive T cell therapy. In this study, we evaluated the expression of three CT antigens, melanoma-associated antigen A4 (MAGE-A4), New York oesophageal squamous cell carcinoma 1 (NY-ESO-1) and sarcoma antigen gene (SAGE). METHODS: MAGE-A4, NY-ESO-1 and/or SAGE antigen expression in tumour samples was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Informed consent was obtained from individuals prior to study enrolment. RESULTS: In total, 585 samples in 21 tumour types were evaluated between June 2009 and March 2018. The positive expression rates of these CT antigens were as follows: MAGE-A4, 34.6% (range, 30.7-38.7); NY-ESO-1, 21.0% (range, 17.2-25.1); and SAGE, 21.8% (range, 18.5-25.4). The MAGE-A4 antigen was expressed in 54.9% of oesophageal cancers, 37.5% of head and neck cancers, 35.0% of gastric cancers and 34.2% of ovarian cancers; the NY-ESO-1 antigen was expressed in 28.6% of lung cancers, 25.3% of oesophageal cancers and 22.6% of ovarian cancers; and the SAGE antigen was expressed in 35.3% of prostate cancers, 32.9% of oesophageal cancers and 26.3% of ovarian cancers. The most common tumour type in this study was oesophageal cancer. MAGE-A4, NY-ESO-1 and SAGE antigen expression were assessed in 214 oesophageal cancer samples, among which 24 (11.2%) were triple-positive, 58 (27.1%) were positive for any two, 59 (27.6%) were positive for any one, and 73 (34.1%) were triple negative. CONCLUSIONS: Oesophageal cancer exhibited a relatively high rate of CT antigen mRNA expression positivity.


Asunto(s)
Antígenos de Neoplasias/genética , Regulación Neoplásica de la Expresión Génica/inmunología , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Antígenos de Neoplasias/inmunología , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/inmunología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/patología , ARN Mensajero/análisis , ARN Mensajero/metabolismo
14.
J Neurooncol ; 148(1): 1-7, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32383063

RESUMEN

PURPOSE: Glioblastoma prognosis remains grim despite maximal, multimodal management. Recent literature has demonstrated an increase in research devoted to experimental treatments, particularly those relying on the foundations of active immunotherapy with promising results. We hypothesize that the utilization of bioengineered recombinant vault nanoparticles coupled with glioma-associated antigens, such as the NY-ESO-1 peptide, may be capable of stimulating native dendritic cell (DC) maturation and inducing an anti-tumor response. METHODS: Immature DCs were cultured from the bone marrow of 4-6-week-old C57BL/6 mice. The three treatment groups consisted of: (1) DC and media, (2) DC with mCherry vault, and (3) DC with NYESO and vault. DC maturity was assessed via flow cytometric evaluation of CD11c, CD86, and MHC-II. Increase in CD86 Median Fluorescence Intensity (MFI) was analyzed in the CD11c+CD86+MHC-II+ population to determine the extent of maturation RESULTS: Our findings suggest that CP-MVP-NY-ESO-1-INT recombinant vault nanoparticles are efficiently bioengineered with exceptional integrity, are quickly internalized by immature DCs for antigen processing, and result in DC maturation. CONCLUSION: This study reports our preliminary results, which demonstrate the feasibility and progress regarding our immunotherapeutic technique utilizing NY-ESO-1 packaged vault nanoparticles to prime DCs for subsequent anti-cancer therapies.


Asunto(s)
Antígenos de Neoplasias/administración & dosificación , Antineoplásicos Inmunológicos/administración & dosificación , Células Dendríticas/inmunología , Glioma/inmunología , Glioma/terapia , Nanopartículas/administración & dosificación , Animales , Anticuerpos , Bioingeniería , Sistemas de Liberación de Medicamentos/métodos , Ratones Endogámicos C57BL , Proteínas Recombinantes/administración & dosificación
15.
Immunol Invest ; 49(7): 744-757, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32799717

RESUMEN

Exosomes, including human melanoma-derived exosomes (HMEX), are known to suppress the function of immune effector cells, which for HMEX has been associated with the surface presence of the immune checkpoint ligand PD-L1. This study investigated the relationship between the BRAF mutational status of melanoma cells and the inhibition of secreted HMEX exosomes on antigen-specific human T cells. Exosomes were isolated from two melanoma cell lines, 2183-Her4 and 888-mel, which are genetically wild-type BRAFWT and BRAFV600E, respectively. HMEX were isolated using a modified, size-exclusion chromatography (SEC) method shown to reduce co-isolation of non-exosome-associated cytokines compared to ultracentrifugation isolation. The immunoinhibitory effect of the exosomes was tested in vitro on patient-derived NY-ESO-1-specific CD8+ T cells challenged with NY-ESO-1 antigen. HMEX from both cell lines inhibited the immune response of antigen-specific T cells comparably, as evidenced by the reduction of IFN-γ and TNF-α in NY-ESO-1 tetramer-positive cells. This inhibition could be partially reversed by the presence of anti-PD-L1 and anti-IL-10 antibodies. IL-10 has been demonstrated to be a critical pathway for sustaining enhanced tumorigenesis in BRAFV600E mutant cells compared to BRAFWT melanoma cells. Thus, we demonstrate that HMEX inhibit antigen-specific T cell responses independent of the BRAF mutational status of the parent cells. In addition, PD-L1 and IL-10 contribute to the HMEX-mediated immunosuppression of antigen-specific human T cells. The inhibitory capacity of exosomes should be taken into consideration when developing therapies that are reliant upon the potency of customized, antigen-specific effector T cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Exosomas/metabolismo , Inmunomodulación/genética , Interleucina-10/metabolismo , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Alelos , Sustitución de Aminoácidos , Apoptosis , Biomarcadores de Tumor , Linfocitos T CD8-positivos/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citometría de Flujo , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Proteínas de Punto de Control Inmunitario/metabolismo , Inmunomodulación/efectos de los fármacos , Interleucina-10/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
16.
Bioorg Chem ; 103: 104138, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32745760

RESUMEN

Tumor immunotherapy based on specific tumor antigen has become the focus for breast cancer, and research into cancer/testes antigens (CTA) is progressing. As an important member in the CTA, NY-ESO-1 plays a crucial role in the treatment and prognosis of breast cancer. In this study, we aimed to improve the binding ability to MHC by designing and synthesizing stable NY-ESO-1-derived peptides, based on NetMHC 4.0 webserver (http://www.cbs.dtu.dk/services/NetMHC/) and HLP webserver (http://crdd.osdd.net/raghava/hlp/pep_both.htm). Moreover, after modification of the lead compound, affinity of the peptides to human leukocyte antigen-A2 (HLA-A2) was determined by a flow cytometry and an inverted fluorescence microscope in T2 cells that show high expression of HLA-A2. The results demonstrated that the affinity of peptides II-4 and II-10 to HLA-A2 was significantly better when compared to others (II-Lead, II-1 ~ II-3, II-5 ~ II-9, II-11 ~ II-15). Further studies indicated that II-4 and II-10, especially II-4, significantly promoted the maturation of HLA-A2-positive human peripheral blood-derived dendritic cells (DCs) from morphology and surface markers, the activation of CD8 + T lymphocytes, and the type-specific killing effect on HLA-A2+/NY-ESO-1+ MDA-MB-231 cells. Molecular docking studies suggested a strong interaction between peptide II-4 and HLA-A2, thereby indicating that the II-4 is a promising candidate with antigenic potential in the field of immunotherapy that needs more studies.


Asunto(s)
Antígenos de Neoplasias/inmunología , Neoplasias de la Mama/tratamiento farmacológico , Antígeno HLA-A2/inmunología , Péptidos/farmacología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Estructura Molecular , Péptidos/química , Péptidos/inmunología , Relación Estructura-Actividad
17.
Cancer Immunol Immunother ; 68(7): 1195-1209, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31177329

RESUMEN

The anti-tumor efficacy of TCR-engineered T cells in vivo depends largely on less-differentiated subsets such as T cells with naïve-like T cell (TN) phenotypes with greater expansion and long-term persistence. To increase these subsets, we compared the generation of New York esophageal squamous cell carcinoma-1 (NY-ESO-1)-specific T cells under supplementation with either IL-2 or IL-7/IL-15. PBMCs were transduced with MS3II-NY-ESO-1-siTCR retroviral vector. T cell generation was adapted from a CD19-specific CART cell production protocol. Comparable results in viability, expansion and transduction efficiency of T cells under stimulation with either IL-2 or IL-7/IL-15 were observed. IL-7/IL-15 led to an increase of CD4+ T cells and a decrease of CD8+ T cells, enriched the amount of TN among CD4+ T cells but not among CD8+ T cells. In a 51Cr release assay, similar specific lysis of NY-ESO-1-positive SW982 sarcoma cells was achieved. However, intracellular cytokine staining revealed a significantly increased production of IFN-γ and TNF-α in T cells generated by IL-2 stimulation. To validate these unexpected findings, NY-ESO-1-specific T cell production was evaluated in another protocol originally established for TCR-engineered T cells. IL-7/IL-15 increased the proportion of TN. However, the absolute number of TN did not increase due to a significantly slower expansion of T cells with IL-7/IL-15. In conclusion, IL-7/IL-15 does not seem to be superior to IL-2 for the generation of NY-ESO-1-specific T cells. This is in sharp contrast to the observations in CD19-specific CART cells. Changes of cytokine cocktails should be carefully evaluated for individual vector systems.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Ingeniería Celular/métodos , Inmunoterapia Adoptiva/métodos , Proteínas de la Membrana/metabolismo , Neoplasias/terapia , Receptores Quiméricos de Antígenos/inmunología , Antígenos CD19/metabolismo , Antígenos de Neoplasias/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/trasplante , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/trasplante , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Medios de Cultivo , Humanos , Interleucina-15/inmunología , Interleucina-2/inmunología , Interleucina-7/inmunología , Proteínas de la Membrana/inmunología , Neoplasias/inmunología , Receptores Quiméricos de Antígenos/genética
18.
Cancer Immunol Immunother ; 68(7): 1211-1222, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31069460

RESUMEN

Human tumor cells express antigens that serve as targets for the host cellular immune system. This phase 1 dose-escalating study was conducted to assess safety and tolerability of G305, a recombinant NY-ESO-1 protein vaccine mixed with glucopyranosyl lipid A (GLA), a synthetic TLR4 agonist adjuvant, in a stable emulsion (SE). Twelve patients with solid tumors expressing NY-ESO-1 were treated using a 3 + 3 design. The NY-ESO-1 dose was fixed at 250 µg, while GLA-SE was increased from 2 to 10 µg. Safety, immunogenicity, and clinical responses were assessed prior to, during, and at the end of therapy. G305 was safe and immunogenic at all doses. All related AEs were Grade 1 or 2, with injection site soreness as the most commonly reported event (100%). Overall, 75% of patients developed antibody response to NY-ESO-1, including six patients with increased antibody titer ( ≥ 4-fold rise) and three patients with seroconversion from negative (titer < 100) to positive (titer ≥ 100). CD4 T-cell responses were observed in 44.4% of patients; 33.3% were new responses and 1 was boosted ( ≥ 2-fold rise). Following treatment, 8 of 12 patients had stable disease for 3 months or more; at the end of 1 year, three patients had stable disease and nine patients were alive. G305 is a potent immunotherapeutic agent that can stimulate NY-ESO-1-specific antibody and T-cell responses. The vaccine was safe at all doses of GLA-SE (2-10 µg) and showed potential clinical benefit in this population of patients.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Antígenos de Neoplasias/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Glucósidos/administración & dosificación , Lípido A/administración & dosificación , Proteínas de la Membrana/administración & dosificación , Neoplasias/terapia , Adyuvantes Inmunológicos/efectos adversos , Adulto , Anciano , Antígenos de Neoplasias/efectos adversos , Antígenos de Neoplasias/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Vacunas contra el Cáncer/efectos adversos , Vacunas contra el Cáncer/inmunología , Drogas en Investigación/administración & dosificación , Drogas en Investigación/efectos adversos , Femenino , Glucósidos/efectos adversos , Glucósidos/inmunología , Humanos , Inmunogenicidad Vacunal , Inyecciones Intramusculares , Lípido A/efectos adversos , Lípido A/inmunología , Masculino , Proteínas de la Membrana/efectos adversos , Proteínas de la Membrana/inmunología , Persona de Mediana Edad , Neoplasias/inmunología , Neoplasias/patología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/inmunología , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/inmunología , Resultado del Tratamiento , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología , Adulto Joven
19.
Expert Opin Emerg Drugs ; 24(1): 43-53, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30841761

RESUMEN

INTRODUCTION: in this review we discuss the standard of care for both pediatric and adult synovial sarcoma (SS), the prognostic differences between them, and the treatments available for localized and advanced diseases. We also overview the biology and the recent drugs under consideration in clinical trials on SS. Areas covered: we focus on new targeted therapies being investigated for advanced SS, especially anti-angiogenic drugs, and immunotherapy. We review all the published data and ongoing trials dedicated to SS or to soft tissue sarcoma in general, paying particular attention to the results obtained in SS patients. Expert opinion: we expect new treatment strategies to become available for SS in the near future. The ongoing and published trials on targeted therapies and immunotherapy mainly concern adult patients, but the somatic biology of pediatric SS has some similarities as in adult disease. A stronger cooperation between adult and pediatric oncologists in recent years has led to a more shared effort to find new treatment strategies for advanced SS patients, regardless of their age.


Asunto(s)
Antineoplásicos/administración & dosificación , Terapia Molecular Dirigida , Sarcoma Sinovial/tratamiento farmacológico , Adulto , Factores de Edad , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Niño , Desarrollo de Medicamentos/métodos , Humanos , Inmunoterapia/métodos , Pronóstico , Sarcoma Sinovial/patología
20.
Urol Int ; 102(1): 77-82, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30384365

RESUMEN

BACKGROUND: Cancer/testis antigens (CTA) are expressed in urothelial bladder cancer (UBC). Their therapeutical and prognostic relevance remains unclear. We studied the correlation of MAGEA3 and CTAG1B with histopathological factors in UBC and their prognostic value. METHODS: Retrospective analysis of 93 patients who underwent treatment for UBC was conducted. Besides clinical and histopathological parameters, the expression of MAGEA3 and CTAG1B was assessed by immunohistochemistry. RESULTS: Median follow-up was 75 months. Fifteen per cent of patients showed strong positive reaction to MAGEA3 staining. These tumours were statistically and significantly more often correlated with unfavourable World Health Organization (WHO) grading (G1: 0%, G2: 10.3%, G3: 23.4%, p = 0.048; low grade 0%, high grade 18.4%, p = 0.046 respectively). Correlation of CTAG1B with WHO grading was impressive with strong expression in no G1, 31.1% of G2 and 51.1% of G3 tumours (low grade 0%, high grade 43.4%, p = 0.001, respectively). Concomitant carcinoma in situ (Cis) was associated with strong CTAG1B expression (54.2% in concomitant Cis vs. 29% without concomitant Cis, p = 0.026). Kaplan-Meier analysis revealed statistically and significantly worse 5 years progression-free survival (PFS) associated with a strong expression of MAGEA3 (59 vs. 84%, p = 0.032). CONCLUSIONS: Strong CTA expression was correlated with unfavourable histopathological features. A strong expression of MAGEA3 was statistically and significantly associated with worse PFS across all stages of UBC.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Urotelio/patología , Adulto , Anciano , Anciano de 80 o más Años , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Pronóstico , Análisis de Regresión , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA