Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.064
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2322684121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588426

RESUMEN

Many composites consist of matrices of elastomers and nanoparticles of stiff materials. Such composites often have superior properties and are widely used. Embedding elastomers with nanoparticles commonly necessitates intense shear, using machines like extruders and roll millers, which cut polymer chains and degrade properties. Here, we prepare a rubber-glass nanocomposite by using two aqueous emulsions. Each emulsion is separately prepared with a single species of polymer chains. Each polymer chain is copolymerized with a small amount of silane coupling agent. Upon mixing the two emulsions, as water evaporates, the glassy particles retain the shape, and the rubbery particles change shape to form a continuous matrix. Subsequently, the silane coupling agent condensates, which cross-links the rubbery chains and interlinks the rubbery chains to the glassy particles. The cross-links and interlinks stabilize the nanostructure and lead to superior properties. The nanocomposite simultaneously achieves high modulus (~30 MPa), high toughness (~100 kJ m-2), and high fatigue threshold (~1,000 J m-2). The method of mixed emulsion is environmentally friendly and compatible with various open-air manufacturing processes, such as coat, cast, spray, print, and brush. Additionally, the silane coupling agent can interlink the nanocomposite to other materials. The method of mixed emulsion can be used to fabricate objects of complex shapes, fine features, and prescribed spatial variations of compositions.

2.
Proc Natl Acad Sci U S A ; 120(26): e2303262120, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339215

RESUMEN

Graphene nanoribbons (GNRs) are widely recognized as intriguing building blocks for high-performance electronics and catalysis owing to their unique width-dependent bandgap and ample lone pair electrons on both sides of GNR, respectively, over the graphene nanosheet counterpart. However, it remains challenging to mass-produce kilogram-scale GNRs to render their practical applications. More importantly, the ability to intercalate nanofillers of interest within GNR enables in-situ large-scale dispersion and retains structural stability and properties of nanofillers for enhanced energy conversion and storage. This, however, has yet to be largely explored. Herein, we report a rapid, low-cost freezing-rolling-capillary compression strategy to yield GNRs at a kilogram scale with tunable interlayer spacing for situating a set of functional nanomaterials for electrochemical energy conversion and storage. Specifically, GNRs are created by sequential freezing, rolling, and capillary compression of large-sized graphene oxide nanosheets in liquid nitrogen, followed by pyrolysis. The interlayer spacing of GNRs can be conveniently regulated by tuning the amount of nanofillers of different dimensions added. As such, heteroatoms; metal single atoms; and 0D, 1D, and 2D nanomaterials can be readily in-situ intercalated into the GNR matrix, producing a rich variety of functional nanofiller-dispersed GNR nanocomposites. They manifest promising performance in electrocatalysis, battery, and supercapacitor due to excellent electronic conductivity, catalytic activity, and structural stability of the resulting GNR nanocomposites. The freezing-rolling-capillary compression strategy is facile, robust, and generalizable. It renders the creation of versatile GNR-derived nanocomposites with adjustable interlay spacing of GNR, thereby underpinning future advances in electronics and clean energy applications.

3.
Nano Lett ; 24(1): 195-201, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38117033

RESUMEN

Vertically aligned self-assembled nanocomposite films have provided a unique platform to study magnetoelectric effects and other forms of coupling between complex oxides. However, the distribution in the locations and sizes of the phase-separated nanostructures limits their utility. In this work, we demonstrate a process to template the locations of the self-assembled structure using ion lithography, which is effective for general insulating substrates. This process was used to produce a nanocomposite consisting of fin-shaped vertical nanostructures of ferroelectric BiFeO3 and ferrimagnetic CoFe2O4 with a feature size of 100 nm on (111)-oriented SrTiO3 substrates. Cross-sectional imaging of the three-phase perovskite-spinel-substrate epitaxial interface reveals the selective nucleation of CoFe2O4 in the trenches of the patterned substrate, and the magnetic domains of CoFe2O4 were manipulated by applying an external magnetic field.

4.
Nano Lett ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771649

RESUMEN

Material advances in soft bioelectronics, particularly those based on stretchable nanocomposites─functional nanomaterials embedded in viscoelastic polymers with irreversible or reversible bonds─have driven significant progress in translational medical device research. The unique mechanical properties inherent in the stretchable nanocomposites enable stiffness matching between tissue and device, as well as its spontaneous mechanical adaptation to in vivo environments, minimizing undesired mechanical stress and inflammation responses. Furthermore, these properties allow percolative networks of conducting fillers in the nanocomposites to be sustained even under repetitive tensile/compressive stresses, leading to stable tissue-device interfacing. Here, we present an in-depth review of materials strategies, fabrication/integration techniques, device designs, applications, and translational opportunities of nanocomposite-based soft bioelectronics, which feature intrinsic stretchability, self-healability, tissue adhesion, and/or syringe injectability. Among many, applications to brain, heart, and peripheral nerves are predominantly discussed, and translational studies in certain domains such as neuromuscular and cardiovascular engineering are particularly highlighted.

5.
Nano Lett ; 24(26): 8107-8116, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888223

RESUMEN

The integration of sonodynamic therapy (SDT) with cuproptosis for targeted cancer treatment epitomizes a significant advancement in oncology. Herein, we present a dual-responsive therapeutic system, "CytoNano", which combines a cationic liposome infused with copper-nitride nanoparticles and oxygen-rich perfluorocarbon (Lip@Cu3N/PFC-O2), all enveloped in a biomimetic coating of neutrophil membrane and acid-responsive carboxymethylcellulose. CytoNano leverages the cellular mimicry of neutrophils and acid-responsive materials, enabling precise targeting of tumors and their acidic microenvironment. This strategic design facilitates the targeted release of Lip@Cu3N/PFC-O2 within the tumor, enhancing cancer cell uptake and mitochondrial localization. Consequently, it amplifies the therapeutic efficacy of both Cu3N-driven SDT and cuproptosis while preserving healthy tissues. Additionally, CytoNano's ultrasound responsiveness enhances intratumoral oxygenation, overcoming physiological barriers and initiating a combined sonodynamic-cuproptotic effect that induces multiple cell death pathways. Thus, we pioneer a biomimetic approach in precise sonodynamic cuproptosis, revolutionizing cancer therapy.


Asunto(s)
Mitocondrias , Terapia por Ultrasonido , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Animales , Terapia por Ultrasonido/métodos , Ratones , Línea Celular Tumoral , Neoplasias/terapia , Neoplasias/patología , Nanopartículas/química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Cobre/química , Cobre/farmacología , Liposomas/química , Fluorocarburos/química , Biomimética/métodos , Oxígeno/química
6.
Nano Lett ; 24(27): 8248-8256, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38949190

RESUMEN

Fast emitting polymeric scintillators are requested in advanced applications where high speed detectors with a large signal-to-noise ratio are needed. However, their low density implies a weak stopping power of high energy radiation and thus a limited light output and sensitivity. To enhance their performance, polymeric scintillators can be loaded with dense nanoparticles (NPs). We investigate the properties of a series of polymeric scintillators by means of photoluminescence and scintillation spectroscopy, comparing standard scintillators with a composite system loaded with dense hafnium dioxide (HfO2) NPs. The nanocomposite shows a scintillation yield enhancement of +100% with an unchanged time response. We provide for the first time an interpretation of this effect, pointing out the local effect of NPs in the generation of emissive states upon interaction with ionizing radiation. The obtained results indicate that coupling fast conjugated emitters with optically inert dense NPs could lead to surpassing the actual limits of pure polymeric scintillators.

7.
Small ; 20(9): e2306166, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37847895

RESUMEN

This study focuses on the fabrication of nanocomposite thermoelectric devices by blending either a naphthalene-diimide (NDI)-based conjugated polymer (NDI-T1 or NDI-T2), or an isoindigo (IID)-based conjugated polymer (IID-T2), with single-walled carbon nanotubes (SWCNTs). This is followed by sequential process doping method with the small molecule 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI) to provide the nanocomposite with n-type thermoelectric properties. Experiments in which the concentrations of the N-DMBI dopant are varied demonstrate the successful conversion of all three polymer/SWCNT nanocomposites from p-type to n-type behavior. Comprehensive spectroscopic, microstructural, and morphological analyses of the pristine polymers and the various N-DMBI-doped polymer/SWCNT nanocomposites are performed in order to gain insights into the effects of various interactions between the polymers and SWCNTs on the doping outcomes. Among the obtained nanocomposites, the NDI-T1/SWCNT exhibits the highest n-type Seebeck coefficient and power factor of -57.7 µV K-1 and 240.6 µW m-1 K-2 , respectively. However, because the undoped NDI-T2/SWCNT exhibits a slightly higher p-type performance, an integral p-n thermoelectric generator is fabricated using the doped and undoped NDI-T2/SWCNT nanocomposite. This device is shown to provide an output power of 27.2 nW at a temperature difference of 20 K.

8.
Small ; : e2307750, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38431939

RESUMEN

As an innovative technology, four-dimentional (4D) printing is built upon the principles of three-dimentional (3D) printing with an additional dimension: time. While traditional 3D printing creates static objects, 4D printing generates "responsive 3D printed structures", enabling them to transform or self-assemble in response to external stimuli. Due to the dynamic nature, 4D printing has demonstrated tremendous potential in a range of industries, encompassing aerospace, healthcare, and intelligent devices. Nanotechnology has gained considerable attention owing to the exceptional properties and functions of nanomaterials. Incorporating nanomaterials into an intelligent matrix enhances the physiochemical properties of 4D printed constructs, introducing novel functions. This review provides a comprehensive overview of current applications of nanomaterials in 4D printing, exploring their synergistic potential to create dynamic and responsive structures. Nanomaterials play diverse roles as rheology modifiers, mechanical enhancers, function introducers, and more. The overarching goal of this review is to inspire researchers to delve into the vast potential of nanomaterial-enabled 4D printing, propelling advancements in this rapidly evolving field.

9.
Small ; : e2401308, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773889

RESUMEN

Incorporating ultralow loading of nanoparticles into polymers has realized increases in dielectric constant and breakdown strength for excellent energy storage. However, there are still a series of tough issues to be dealt with, such as organic solvent uses, which face enormous challenges in scalable preparation. Here, a new strategy of dual in situ synthesis is proposed, namely polymerization of polyethylene terephthalate (PET) synchronizes with growth of calcium borate nanoparticles, making polyester nanocomposites from monomers directly. Importantly, this route is free of organic solvents and surface modification of nanoparticles, which is readily accessible to scalable synthesis of polyester nanocomposites. Meanwhile, uniform dispersion of as ultralow as 0.1 wt% nanoparticles and intense bonding at interfaces have been observed. Furthermore, the PET-based nanocomposite displays obvious increases in both dielectric constant and breakdown strength as compared to the neat PET. Its maximum discharged energy density reaches 15 J cm-3 at 690 MV m-1 and power density attains 218 MW cm-3 under 150 Ω resistance at 300 MV m-1, which is far superior to the current dielectric polymers that can be produced at large scales. This work presents a scalable, safe, low-cost, and environment-friendly route toward polymer nanocomposites with superior capacitive performance.

10.
Small ; 20(26): e2309114, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38233203

RESUMEN

Deep cracking of bulky hydrocarbons on zeolite-containing catalysts into light products with high activity, desired selectivity, and long-term stability is demanded but challenging. Herein, the efficient deep cracking of 1,3,5-triisopropylbenzene (TIPB) on intimate ZSM-5@AlSBA-15 composites via tandem catalysis is demonstrated. The rapid aerosol-confined assembly enables the synthesis of the composites composed of a continuous AlSBA-15 matrix decorated with isolated ZSM-5 nanoparticles. The two components at various ZSM-5/AlSBA-15 mass ratios are uniformly mixed with chemically bonded pore walls, interconnected pores, and eliminated external surfaces of nanosized ZSM-5. The typical composite with a ZSM-5/AlSBA-15 mass ratio of 0.25 shows superior performance in TIPB cracking with outstanding activity (≈100% conversion) and deep cracking selectivity (mass of propylene + benzene > 60%) maintained for a long time (> 6 h) under a high TIPB flux (2 mL h-1), far better (several to tens of times higher) than the single-component and physically mixed catalysts and superior to literature results. The high performance is attributed to the cooperative tandem catalytic process, that is, selective and timely pre-cracking of TIPB to isopropylbenzene (IPB) in AlSBA-15 and subsequently timely diffusion and deep cracking of IPB in nanosized ZSM-5.

11.
Small ; 20(24): e2308276, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38161263

RESUMEN

Dielectric polymer composites exhibit great application prospects in advanced pulse power systems and electric systems. However, the decline of breakdown strength by loading of single high dielectric constant nanofiller hinders the sustained increase in energy density of the composites. Here, a sandwich-structured nanocomposite prepared with mica nanosheets as the second filler exhibits decoupled modulation of dielectric constant and breakdown strength. The traditional layered clay mineral mica is exfoliated into nanosheets and filled into polyvinylidene difluoride (PVDF), which shows a special depolarization effect in the polymer matrix. In Kelvin probe microscopy characterization and thermally stimulated depolarization current indicates that the mica nanosheets provided space charge traps for the polymer matrix and effectively suppressed the carrier motion. A sandwich structure composite material with mica nanosheets as the central layer has achieved a high energy density of 11.48 J cm-3, 2.4 times higher than the pure PVDF film. This is due to the fact that randomly oriented distribution of nanosheets in a polymer matrix provide better current blocking. This work provides an effective method to improve the energy density of dielectric polymer composites by synergistically introducing insulating nanosheets and high dielectric constant nanofillers.

12.
Small ; 20(8): e2305925, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37821402

RESUMEN

Highly sensitive self-powered stretchable electronic skins with the capability of detecting broad-range dynamic and static pressures are urgently needed with the increasing demands for miniaturized wearable electronics, robots, artificial intelligence, etc. However, it remains a great challenge to achieve this kind of electronic skins. Here, unprecedented battery-type all-in-one self-powered stretchable electronic skins with a novel structure composed of pressure-sensitive elastic vanadium pentoxide (V2 O5 ) nanowire-based porous cathode, elastic porous polyurethane /carbon nanotube/polypyrrole anode, and polyacrylamide ionic gel electrolyte are reported. A new battery-type self-powered pressure sensing mechanism involving the output current variation caused by the resistance variation of the electrodes and electrolytes under external pressure is revealed. The battery-type self-powered electronic skins combining high sensitivity, broad response range (1.8 Pa-1.5 MPa), high fatigue resistance, and excellent stability against stretching (50% tensile strain) are achieved for the first time. This work provides a new and versatile battery-type sensing strategy for the design of next-generation all-in-one self-powered miniaturized sensors and electronic skins.

13.
Small ; : e2310058, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441362

RESUMEN

Nanocomposite materials have been thoroughly exploited in additive manufacturing, as a means to alter physical, chemical, and optical properties of resulting structures. Herein, nanocomposite materials suitable for direct laser writing (DLW) by two-photon polymerization are presented. These materials, comprising silica nanoparticles, bring significant added value to the technology through physical reinforcement and controllable photonic properties. Incorporation into acrylate photoresists, via a one-step fabrication process, enables the formation of complex structures with large overhangs. The inclusion of 150 nm silica nanoparticles in DLW photoresists at high concentrations, allows for the fabrication of composite microstructures that show reflected color, a product of the relative contributions from the quasi-ordering and random scattering. Using common DLW design parameters, such as slicing distance and structure dimension, a wide gamut of structural color, in solution, using a set concentration of nanoparticles is demonstrated. Numerical modeling is employed to predict the reflected wavelength of the pixel arrays, across the visible spectrum, and this information is used to encode reflected colors into different pixel arrays.

14.
Small ; : e2401510, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745545

RESUMEN

To simulate life's emergent functions, mining the multiple sensing capabilities of nanosystems, and digitizing networks of transduction signals and molecular interactions, is an ongoing endeavor. Here, multifunctional antimonene-silver nanocomposites (AM-Ag NCs) are synthesized facilely and fused for molecular sensing and digitization applications (including ultra-multi-mode and multi-analyte sensing, parallel and batch logic computing, long-text information protection). By mixing surfactant, AM, Ag+ and Sodium borohydride (NaBH4) at room temperature for 5 min, the resulting NCs are comprised of Ag nanoparticles scattered within AM nanosheets and protected by the surfactant. Interestingly, AM-Ag NCs exhibit ultra-multi-mode sensing ability for multiplex metal ions (Hg2+, Fe3+, or Al3+), which significantly improved selectivity (≈2 times) and sensitivity (≈400 times) when analyzing the combined channels. Moreover, multiple sensing capabilities of AM-Ag NCs enable diverse batch and parallel molecular logic computations (including advanced cascaded logic circuits). Ultra-multi-mode selective patterns of AM-Ag NCs to 18 kinds of metal ions can be converted into a series of binary strings by setting the thresholds, and realized high-density, long-text information protection for the first time. This study provides new ideas and paradigms for the preparation and multi-purpose application of 2D nanocomposites, but also offers new directions for the fusion of molecular sensing and informatization.

15.
Small ; : e2402015, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597684

RESUMEN

Water electrolysis is among the recent alternatives for generating clean fuels (hydrogen). It is an efficient way to produce pure hydrogen at a rapid pace with no unwanted by-products. Effective and cheap water-splitting electrocatalysts with enhanced activity, specificity, and stability are currently widely studied. In this regard, noble metal-free transition metal-based catalysts are of high interest. Iron sulfide (FeS) is one of the essential electrocatalysts for water splitting because of its unique structural and electrochemical features. This article discusses the significance of FeS and its nanocomposites as efficient electrocatalysts for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), and overall water splitting. FeS and its nanocomposites have been studied also for energy storage in the form of electrode materials in supercapacitors and lithium- (LIBs) and sodium-ion batteries (SIBs). The structural and electrochemical characteristics of FeS and its nanocomposites, as well as the synthesis processes, are discussed in this work. This discussion correlates these features with the requirements for electrocatalysts in overall water splitting and its associated reactions. As a result, this study provides a road map for researchers seeking economically viable, environmentally friendly, and efficient electrochemical materials in the fields of green energy production and storage.

16.
Small ; 20(22): e2306665, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38150613

RESUMEN

Developing efficient, lightweight, and durable all-solid-state supercapacitors is crucial for future energy storage systems. The study focuses on optimizing electrode materials to achieve high capacitance and stability. This study introduces a novel two-step pyrolysis process to synthesize activated carbon nanosheets from jute sticks (JAC), resulting in an optimized JAC-2 material with a high yield (≈24%) and specific surface area (≈2600 m2 g-1). Furthermore, an innovative in situ synthesis approach is employed to synthesize hybrid nanocomposites (NiCoLDH-1@JAC-2) by integrating JAC nanosheets with nickel-cobalt-layered double hydroxide nanoflowers (NiCoLDH). These nanocomposites serve as positive electrode materials and JAC-2 as the negative electrode material in all-solid-state asymmetric hybrid supercapacitors (HSCs), exhibiting remarkable performance metrics. The HSCs achieve a specific capacitance of 750 F g-1, a specific capacity of 209 mAh g-1 (at 0.5 A g-1), and an energy density of 100 Wh kg-1 (at 250 W kg-1) using PVA/KOH solid electrolyte, while maintaining outstanding cyclic stability. Importantly, a density functional theory framework is utilized to validate the experimental findings, underscoring the potential of this novel approach for enhancing HSC performance and enabling the large-scale production of transition metal-based layered double hydroxides.

17.
Small ; 20(9): e2306781, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37806758

RESUMEN

The defect engineering of inorganic solids has received significant attention because of its high efficacy in optimizing energy-related functionalities. Consequently, this approach is effectively leveraged in the present study to synthesize atomically-thin holey 2D nanosheets of a MoN-Mo5 N6 composite. This is achieved by controlled nitridation of assembled MoS2 monolayers, which induced sequential cation/anion migration and a gradual decrease in the Mo valency. Precise control of the interlayer distance of the MoS2 monolayers via assembly with various tetraalkylammonium ions is found to be crucial for synthesizing sub-nanometer-thick holey MoN-Mo5 N6 nanosheets with a tunable anion/cation vacancy content. The holey MoN-Mo5 N6 nanosheets are employed as efficient immobilization matrices for Pt single atoms to achieve high electrocatalytic mass activity, decent durability, and low overpotential for the hydrogen evolution reaction (HER). In situ/ex situ spectroscopy and density functional theory (DFT) calculations reveal that the presence of cation-deficient Mo5 N6 domain is crucial for enhancing the interfacial interactions between the conductive molybdenum nitride substrate and Pt single atoms, leading to enhanced electron injection efficiency and electrochemical stability. The beneficial effects of the Pt-immobilizing holey MoN-Mo5 N6 nanosheets are associated with enhanced electronic coupling, resulting in improvements in HER kinetics and interfacial charge transfer.

18.
Small ; : e2311897, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456762

RESUMEN

Compartmentalization is a powerful concept to integrate multiscale components with diverse functionalities into miniature architectures. Inspired by evolution-optimized cell compartments, synthetic core-shell capsules enable storage of actives and on-demand delivery of programmed functions, driving scientific progress across various fields including adaptive materials, sustainable electronics, soft robotics, and precision medicine. To simultaneously maximize structural stability and environmental sensitivity, which are the two most critical characteristics dictating performance, diverse nanoparticles are incorporated into microcapsules with a dense shell and a liquid core. Recent studies have revealed that these nano-additives not only enhance the intrinsic properties of capsules including mechanical robustness, optical behaviors, and thermal conductivity, but also empower dynamic features such as triggered release, deformable structures, and fueled mobility. In this review, the physicochemical principles that govern nanoparticle assembly during microencapsulation are examined in detail and the architecture-controlled functionalities are outlined. Through the analysis of how each primary method implants nanoparticles into microcapsules, their distinct spatial organizations within the core-shell structures are highlighted. Following a detailed discussion of the specialized functions enabled by specific nanoparticles, the vision of the required fundamental insights and experimental studies for this class of microcarriers to fulfill its potential are sketched.

19.
Small ; 20(20): e2308212, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38100280

RESUMEN

The FeOOH/Zn(OH)2/CoS (FZC) nanocomposites are synthesized and show the outstanding electrochemical properties in both supercapacitor and catalytic hydrogen production. The specific area capacitance reaches 17.04 F cm-2, which is more than ten times higher than that of FeOOH/Zn(OH)2 (FZ) substrate: 1.58 F cm-2). FZC nanocomposites also exhibit the excellent cycling stability with an initial capacity retention rate of 93.6% after 10 000 long-term cycles. The electrolytic cell (FZC//FZC) assembled with FZC as both anode and cathode in the UOR (urea oxidation reaction)|| HER (hydrogen evolution reaction) coupled system requires a cell voltage of only 1.453 V to drive a current density of 10 mA cm-2. Especially, the electrochemical performances of FZC nanocomposites are enhanced in magnetic field, and the mechanism is proposed based on Stern double layer model at electrode-electrolyte interface (EEI). More electrolyte ions reach the surface of FZC electrode material under Kelvin force, moreover, the warburg impedance of FZC nanocomposites decrease under magnetic field action, which results in the enhanced behaviors for both the energy storage and urea oxidation reaction .

20.
Chemistry ; 30(29): e202400442, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38515307

RESUMEN

The efficiency of a catalytic process is assessed based on conversion, yield, and time effectiveness. However, these parameters are insufficient for evaluating environmentally sustainable research. As the world is urged to shift towards green catalysis, additional factors such as reaction media, raw material availability, sustainability, waste minimization and catalyst biosafety, need to be considered to accurately determine the efficacy and sustainability of the process. By combining the high porosity and versatility of metal organic frameworks (MOFs) and the activity of gold nanoparticles (AuNPs), efficient, cyclable and biosafe composite catalysts can be achieved. Thus, a composite based on AuNPs and the nanometric flexible porous iron(III) aminoterephthalate MIL-88B-NH2 was successfully synthesized and fully characterized. This nanocomposite was tested as catalyst in the reduction of nitroarenes, which were identified as anthropogenic water pollutants, reaching cyclable high conversion rates at short times for different nitroarenes. Both synthesis and catalytic reactions were performed using green conditions, and even further tested in a time-optimizing one-pot synthesis and catalysis experiment. The sustainability and environmental impact of the catalytic conditions were assessed by green metrics. Thus, this study provides an easily implementable synthesis, and efficient catalysis, while minimizing the environmental and health impact of the process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA