Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
BMC Plant Biol ; 24(1): 777, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39143569

RESUMEN

Chromium (Cr) is a toxic metal in soil-plant system, hence causing possible health risks prominently in the areas with forgoing industrial activities. Copper nanoparticles (Cu NPs) have been reported as an excellent adsorbent for pollutants. Therefore, this study investigates how copper nanoparticles enhance onion growth while decreasing chromium uptake in onion plants. Additionally, it examines the potential health risks of consuming onion plants with elevated chromium levels. The results demonstrated that the addition of CuNPs at 15 mg kg-1 significantly improved the plant height (48%), leaf length (37%), fresh weight of root (61%), root dry weight (70%), fresh weight of bulb (52%), bulb dry weight (59%), leaves fresh weight (52%) and dry weight of leaves (59%), leaf area (72%), number of onion leaves per plant (60%), Chl. a (42%), chl. b (36%), carotenoids (40%), total chlorophyll (40%), chlorophyll contents SPAD value (56%), relative water contents (35%), membrane stability index (16%), total sugars (25%), crude protein (21%), ascorbic acid (19%) and ash contents (64%) at 10 mg kg-1 Cr. Whereas, maximum decline of Cr by 46% in roots, 68% in leaves and 92% in bulb was found with application of 15 mg kg-1 of Cu NPs in onion plants under 10 mg kg-1 Cr toxicity. The health risk assessment parameters of onion plants showed minimum values 0.0028 for average daily intake (ADI), 0.001911 for Non-cancer risk (NCR), and 0.001433 for cancer risk (CR) in plants treated with Cu NPs at 15 mg kg-1 concentration grown in soil spiked with 10 mg kg-1 chromium. It is concluded that Cu NPs at 15 mg kg-1 concentration improved growth of plants in control as well as Cr contaminated soil. Therefore, use of Cu NPs at 15 mg kg-1 concentration is recommended for improving growth of plants under normal and metal contaminated soils.


Asunto(s)
Cromo , Cobre , Nanopartículas del Metal , Cebollas , Contaminantes del Suelo , Cebollas/efectos de los fármacos , Cebollas/crecimiento & desarrollo , Cobre/toxicidad , Cromo/toxicidad , Contaminantes del Suelo/toxicidad , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Clorofila/metabolismo
2.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612800

RESUMEN

Synthetic dyes are persistent organic environmental pollutants that can cause extensive damage to living beings and to the ecosystem as a whole. Cost-effective, sustainable, and efficient strategies to deal with this type of pollution are necessary as it commonly resists conventional water treatment methods. Silver nanoparticles (AgNPs) synthesized using the aqueous extract from the leaves, stem, and fruits of Leucaena leucocephala (Leucena) were produced and characterized through UV-vis, TEM, EDS, SDL, XPS, XRD, and zeta potential, and they proved to be able to promote adsorption to remediate methylene blue and tartrazine pollution in water. The nanoremediation was performed and did not require direct exposure to sunlight or any special lamp or a specific reduction agent. The AgNPs produced using the extract from the leaves exhibited the best performance in nanoremediation and also presented antioxidant activity that surpassed the one from butylated hydroxytoluene (BHT). Consequently, it is an interesting nanotool to use in dye nanoremediation and/or as an antioxidant nanostructure.


Asunto(s)
Frutas , Nanopartículas del Metal , Antioxidantes/farmacología , Ecosistema , Plata , Colorantes
3.
Crit Rev Food Sci Nutr ; 63(16): 2672-2686, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34554039

RESUMEN

Soil contamination with toxic heavy metals (HMs) poses a serious threat to global food safety, soil ecosystem and human health. The rapid industrialization, urbanization and extensive application of agrochemicals on arable land have led to paddy soil pollution worldwide. Rice plants easily accumulate toxic HMs from contaminated agricultural soils, which ultimately accumulated in grains and enters the food chain. Although, physical and chemical remediation techniques have been used for the treatment of HMs-contaminated soils, however, they also have many drawbacks, such as toxicity, capital investment and environmental-associated hazards. Recently, engineered nanomaterials (ENMs) have gained substantial attention owing to their promising environmental remediation applications. Numerous studies have revealed the use of ENMs for reclamation of toxic HMs from contaminated environment. This review mainly focuses on HMs toxicity in paddy soils along with potential health risks to humans. It also provides a critical outlook on the recent advances and future perspectives of nanoremediation strategies. Additionally, we will also propose the interacting mechanism of HMs-ENMs to counteract metal-associated phytotoxicities in rice plants to achieve global food security and environmental safety.


Asunto(s)
Metales Pesados , Nanoestructuras , Oryza , Contaminantes del Suelo , Humanos , Ecosistema , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Metales Pesados/toxicidad , Metales Pesados/análisis , Inocuidad de los Alimentos , Suelo , Nanoestructuras/toxicidad
4.
Proc Natl Acad Sci U S A ; 117(24): 13366-13373, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32487728

RESUMEN

Nanoscale zero-valent iron (nZVI) particles have excellent capacity for in situ remediation of groundwater resources contaminated by a range of organic and inorganic contaminants. Chlorinated solvents are by far the most treated compounds. Studies at column, pilot, and field scales have reported successful decrease in contaminant concentration upon injection of nZVI suspensions in the contaminated zones. However, the field application is far from optimized, particularly for treatments at-or close to-the source, in the presence of residual nonaqueous liquid (NAPL). The knowledge gaps surrounding the processes that occur within the pores of the sediments hosting those contaminants at microscale limit our ability to design nanoremediation processes that are optimized at larger scales. This contribution provides a pore-scale picture of the nanoremediation process. Our results reveal how the distribution of the trapped contaminant evolves as a result of contaminant degradation and generation of gaseous products. We have used state-of-the-art four-dimensional (4D) imaging (time-resolved three-dimensional [3D]) experiments to understand the details of this degradation reaction at the micrometer scale. This contribution shows that the gas released (from the reduction reaction) remobilizes the trapped contaminant by overcoming the capillary forces. Our results show that the secondary sources of NAPL contaminations can be effectively treated by nZVI, not only by in situ degradation, but also through pore-scale remobilization (induced by the evolved gas phase). The produced gas reduces the water relative permeability to less than 1% and, therefore, significantly limits the extent of plume migration in the short term.

5.
Ecotoxicol Environ Saf ; 264: 115422, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37660529

RESUMEN

Agricultural soil pollution with potentially toxic trace elements (PTEs) has emerged as a significant environmental concern, jeopardizing food safety and human health. Although, conventional remediation approaches have been used for PTEs-contaminated soils treatment; however, these techniques are toxic, expensive, harmful to human health, and can lead to environmental contamination. Nano-enabled agriculture has gained significant attention as a sustainable approach to improve crop production and food security. Silicon nanomaterials (SiNMs) have emerged as a promising alternative for PTEs-contaminated soils remediation. SiNMs have unique characteristics, such as higher chemical reactivity, higher stability, greater surface area to volume ratio and smaller size that make them effective in removing PTEs from the environment. The review discusses the recent advancements and developments in SiNMs for the sustainable remediation of PTEs in agricultural soils. The article covers various synthesis methods, characterization techniques, and the potential mechanisms of SiNMs to alleviate PTEs toxicity in plant-soil systems. Additionally, we highlight the potential benefits and limitations of SiNMs and discusses future directions for research and development. Overall, the use of SiNMs for PTEs remediation offers a sustainable platform for the protection of agricultural soils and the environment.


Asunto(s)
Nanoestructuras , Oligoelementos , Humanos , Silicio , Suelo , Agricultura
6.
Environ Monit Assess ; 195(11): 1368, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37875634

RESUMEN

Environmental nanoremediation is an emerging technology that aims to rapidly and efficiently remove contaminants from the polluted sites using engineered nanomaterials (ENMs). Inorganic nanoparticles which are generally metallic, silica-based, carbon-based, or polymeric in nature serve to remediate through chemical reactions, filtration, or adsorption. Their greater surface area per unit mass and high reactivity enable them to treat groundwater, wastewater, oilfields, and toxic industrial contaminants. Despite the growing interest in nanotechnological solutions for bioremediation, the environmental and human hazard associated with their use is raising concerns globally. Nanoremediation techniques when compared to conventional remediation solutions show increased effectivity in terms of cost and time; however, the main challenge is the ability of ENMs to remove contaminants from different environmental mediums by safeguarding the ecosystem. ENMs improving the accretion of the pollutant and increasing their bioavailability should be rectified along with the vigilant management of their transfer to the upper levels of the food chain which subsequently causes biomagnification. The ecosystem-centered approach will help monitor the ecotoxicological impacts of nanoremediation considering the safety, sustainability, and proper disposal of ENMs. The environment and human health risk assessment of each novel engineered nanomaterial along with the regulation of life cycle assessment (LCA) tools of ENMs for nanoremediation can help investigate the possible environmental hazard. This review focuses on the currently available nanotechnological methods used for environmental remediation and their potential toxicological impacts on the ecosystem.


Asunto(s)
Restauración y Remediación Ambiental , Nanoestructuras , Humanos , Ecosistema , Monitoreo del Ambiente , Nanotecnología/métodos , Nanoestructuras/toxicidad
7.
Indian J Microbiol ; 63(3): 244-252, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37781004

RESUMEN

The art of utilizing and manipulating micro materials have been dated back to antient era. With the advancement in technologies, the state-of-art methods of nano technologies and nano sciences has been employed in various sectors including environment, product designing, food industry, pharmaceuticals industries to way out solve standard problem of mankind. Due to rapid industrialization and the alarming levels of pollution there has been an urgent need to address the environmental and energy issues. Environmental sustainability concerns the global climate change and pollution including air, water, soil. The field of nanotechnology has proven to be a promising field where sensing and remediation, have been dramatically advanced by the use of nanomaterials. This emergent science of surface to mass ratio is the principle theorem for manipulating structure at molecular levels. The review sums up all the advancements in the field of nanotechnology and their recent application in the environment. New opportunities and challenges have also been discussed in detail to understand the use of nanotechnology as problem-to-solution ratio. Graphical abstract: Image depicting the application of nanotechnology in environmental concerns. The combinations of technologies like bioremediations, bioaugmentations with state-of-the-art nanotechnology like carbon nanotubes and Nano capsules to answer the environmental challenges of soil quality, and plant productivity.

8.
Environ Res ; 212(Pt D): 113411, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35561819

RESUMEN

Over the years, extensive urbanization and industrialization have led to xenobiotics contamination of the environment and also posed a severe threat to human health. Although there are multiple physical and chemical techniques for xenobiotic pollutants management, bioremediation seems to be a promising technology from the environmental perspective. It is an eco-friendly and low-cost method involving the application of microbes, plants, or their enzymes to degrade xenobiotics into less toxic or non-toxic forms. Moreover, bioremediation involving enzymes has gained an advantage over microorganisms or phytoremediation due to better activity for pollutant degradation with less waste generation. However, the significant disadvantages associated with the application of enzymes are low stability (storage, pH, and temperature) as well as the low possibility of reuse as it is hard to separate from reaction media. The immobilization of enzymes without affecting their activity provides a possible solution to the problems and allows reusability by easing the process of separation with improved stability to various environmental factors. The present communication provides an overview of the importance of enzyme immobilization in bioremediation, carrier selection, and immobilization methods, as well as the pros and cons of immobilization and its prospects.


Asunto(s)
Contaminantes Ambientales , Xenobióticos , Biodegradación Ambiental , Contaminantes Ambientales/metabolismo , Humanos , Plantas/metabolismo , Xenobióticos/metabolismo
9.
Environ Res ; 211: 113060, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35283076

RESUMEN

The absence of novel and efficient methods for the elimination of persistent organic pollutants (POPs) from the environment is a serious concern in the society. The pollutants release into the atmosphere by means of industrialization and urbanization is a massive global hazard. Although, the eco-toxicity associated with nanotechnology is still being debated, nano-remediation is a potentially developing tool for dealing with contamination of the environment, particularly POPs. Nano-remediation is a novel strategy to the safe and long-term removal of POPs. This detailed review article presents an important perspective on latest innovations and future views of nano-remediation methods used for environmental decontamination, like nano-photocatalysis and nanosensing. Different kinds of nanomaterials including nanoscale zero-valent iron (nZVI), carbon nanotubes (CNTs), magnetic and metallic nanoparticles, silica (SiO2) nanoparticles, graphene oxide, covalent organic frameworks (COFs), and metal organic frameworks (MOFs) have been summarized for the mitigation of POPs. Furthermore, the long-term viability of nano-remediation strategies for dealing with legacy contamination was considered, with a particular emphasis on environmental and health implications. The assessment goes on to discuss the environmental consequences of nanotechnology and offers consensual recommendations on how to employ nanotechnology for a greater present and a more prosperous future.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Estructuras Metalorgánicas , Nanotubos de Carbono , Contaminantes Ambientales/toxicidad , Hierro , Nanotubos de Carbono/toxicidad , Contaminantes Orgánicos Persistentes , Dióxido de Silicio
10.
Environ Res ; 204(Pt D): 112407, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34801543

RESUMEN

The current nanotechnological advancements provide an astonishing insight to fabricate nanomaterials for nano-bioremediation purposes. Exciting characteristics possessed by hybrid matrices at the nanoscale knock endless opportunities to nano-remediate environmentally-related pollunanomaterials tants of emerging concern. Nanometals are considered among the oldest generation of the world has ever noticed. These tiny nanometals and nanometal oxides showed enormous potential in almost every extent of industrial and biotechnological domains, including their potential multipurpose approach to deal with water impurities. In this manuscript, we discussed their role in the diversity of water treatment technologies used to remove bacteria, viruses, heavy metals, pesticides, and organic impurities, providing an ample perspective on their recent advances in terms of their characteristics, attachment strategies, performance, and their scale-up challenges. Finally, we tried to explore their futuristic contribution to nano-remediate environmentally-related pollutants of emerging concern aiming to collect treated yet safe water that can be reused for multipurpose.


Asunto(s)
Nanopartículas del Metal , Metales Pesados , Purificación del Agua , Biodegradación Ambiental , Descontaminación
11.
J Environ Manage ; 311: 114828, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35278918

RESUMEN

Zero-valent iron nanoparticles (EGnZVI) were synthesized using Eucalyptus grandis (EG) leaf extract as a reducing/stabilizing agent. The studied materials (EG leaves, extract and EGnZVI) were characterized using the XRD, FTIR, Raman spectroscopy, SEM, TEM/EDS techniques. The results indicate that several organic compounds, including phenolics, present in the EG leaves were successfully extracted and incorporated into the structure of the material, possibly promoting the capping and stabilization of the formed zero-valent iron particles. The EGnZVI presented low crystallinity, varied size (50-500 nm), approximately spherical shape, and formed aggregates. The EGnZVI were utilized in the removal of the Direct Red 80 (DR80), an azo dye. The effects of the temperature (15-35 °C), initial DR80 concentration (10-250 mg L-1), initial pH (2.5-8.5), the doses of H2O2 (0.5-5 mmol L-1) and EGnZVI (0.2-10 mg L-1), and the incidence of UV-light were evaluated. The EGnZVI did not present reactivity towards the DR80 in the absence of H2O2. However, in the presence of H2O2, the EGnZVI was highly efficient at removing the DR80 at slightly acidic pH0 values (4 and 5.5). Under these pH0 conditions, the EGnZVI/Fenton process proved to be more effective than the classic homogenous Fenton. Finally, in the presence of the UV-light, the process was highly efficient throughout the studied pH0 interval, with increased removal rates. Therefore, the nZVI/Fenton process, using the synthesized material, presents itself as a promising alternative for the degradation of organic pollutants, and the incidence of UV light can considerably improve its efficiency.

12.
J Environ Manage ; 296: 113231, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34252850

RESUMEN

Heavy metals frequently occur as silent poisons present in our daily diet, the environment we live and the products we use, leaving us victims to various associated drastic health and ecological bad effects even in meagre quantities. The prevalence of heavy metals can be traced from children's toys, electronic goods, industrial effluents, pesticide preparation, and even in drinking water in some instances; necessitating methods to remediate them. The current review discusses the various physicochemical and biological methods employed to tackle the problem of heavy metal pollution. Apart from the conventional methods following the principles of adsorption, precipitation, coagulation, and various separation techniques, the advancements made in the directions of biological heavy metal detoxification using microbes, plants, algae have been critically analyzed to identify the specific utility of different agents for specific heavy metal removal. The review paper is a nutshell of different heavy metal remediation strategies, their merits, demerits, and modifications done to alleviate process of heavy metal pollution.


Asunto(s)
Metales Pesados , Adsorción , Biodegradación Ambiental , Niño , Humanos , Metales Pesados/toxicidad , Plantas
13.
Ecotoxicol Environ Saf ; 192: 110307, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32070781

RESUMEN

An increasing concern for natural resources preservation and environmental safety is the removal of heavy metals from contaminated water. It is essential to develop simple procedures that use ecofriendly materials with high removal capacities. In this context, we have synthesized a new hybrid material in which eggshell membranes (ESMs) act as nucleation sites for magnetite nanoparticles (MNPs) precipitation in the presence of an external magnetic field. As a result, ESM was transformed into a magnetic biomaterial (MESM) in order to combine the Pb adsorption abilities of both MNPs and ESM and to facilitate collection of the bioadsorbant using an external magnetic field. This green co-precipitation method produced long strands of bead-like 50 nm superparamagnetic MNPs decorating the ESM fibers. When MESM were incubated in Pb(NO3)2 solutions, the hybrid material displayed a 2.5-fold increase in binding constant with respect to that of ESM alone, and a 10-fold increased capacity to remove Pb ions from aqueous solution. The manufactured MESMs present a maximum loading capacity of 0.066 ± 0.009 mg Pb/mg MNPs at 25 °C, which is increased up to 0.15 ± 0.05 mg Pb/mg MNPs at 45 °C. Moreover, the MESM system is very stable, since incubation in 1% HCl solution resulted in rapid Pb desorption, while MNP release from the MESM during the same period was negligible. Altogether, these results suggest that MESM could be utilized as an efficient nanoremediation agent for separation/removal of heavy metal ions or other charged pollutants from contaminated waters, with facile recovery for recycling.


Asunto(s)
Cáscara de Huevo/química , Plomo/aislamiento & purificación , Fenómenos Magnéticos , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/instrumentación , Adsorción , Animales , Conservación de los Recursos Naturales , Plomo/química , Nanopartículas de Magnetita/química , Membranas Artificiales , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
14.
J Environ Manage ; 267: 110640, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32421672

RESUMEN

Shooting range facilities in military areas have been indicated as a hotspot of land degradation with high contents of Potentially Toxic Elements (PTEs). Currently, based on the new nanomaterials with specific characteristics, nanoremediation technologies are used to immobilise and to reduce the availability of PTEs in field and laboratory conditions. In this study, the effects of nano-hydroxyapatite and/or hematite on PTEs immobilisation (As, Cd, Cu, Pb, Sb and Zn) in military shooting range soils were assessed through the measure of available and leachable forms with three single-extractions: calcium chloride (0.01M CaCl2), low molecular weight organic acids (10 mM LMWOAs) and toxicity characteristic leaching procedure (TCLP). A sequential chemical extraction was used to determine the distribution of the PTEs in the different geochemical phases of the soils before and after the nanomaterial treatments. Results showed that the availability of PTEs decreased, especially for Pb (40-95%) and Zn (50-99%) after nanomaterial treatments. When both nanomaterial (hydroxyapatite + hematite) were combined, the immobilisation rate improved. However, when each nanomaterial was added individually to the soils, some elements, such as, Cu or Sb, showed a slight increment of their mobilisation. The sequential chemical extraction showed that the highest percentage of PTEs were mainly in the residual fraction before and after adding nanomaterials, being even higher in soils after the nanomaterial treatments. Likewise, the mobile fractions decreased after the treatment with nanomaterials. Our findings suggest that nanoremediation techniques improve the soil conditions, but they should be used carefully to avoid mobilisation of non-target PTEs or unexpected potentially impacts for soil biota.


Asunto(s)
Metales Pesados , Nanoestructuras , Contaminantes del Suelo , Calcio , Hierro , Suelo
15.
Bull Environ Contam Toxicol ; 104(5): 619-626, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32172338

RESUMEN

Cadmium contamination of agricultural soils is a serious problem due to its toxic effects on health and yield of crop plants. This study investigates the potential of low-dose nano-TiO2 as soil nanoremediation on Cd toxicity in cowpea plants. To achieve this goal, cowpea seeds were germinated on Cd-spiked soils at 10 mg/kg for 14 days and later augmented with 100 mg nTiO2/kg (nTiO2-50 nm and bTiO2-68 nm, respectively). The results showed that chlorophylls were not altered by nano-TiO2 intervention. Cadmium partitioning in roots and leaves was reduced by the applied nano-TiO2 but significantly higher than control. Ascorbate peroxidase and catalase activities in roots and leaves were promoted by nano-TiO2 intervention compared to control and sole Cd, respectively. However, magnitudes of activity of enzyme activities were higher in nTiO2 compared to bTiO2 treatments. The enhanced enzymes activity led to reduced malonaldehyde content in plant tissues. The study concludes that soil application of nano-TiO2 could be a green alternative to ameliorate soil Cd toxicity in cowpea plants.


Asunto(s)
Cadmio/metabolismo , Nanopartículas/química , Estrés Oxidativo/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Titanio/farmacología , Vigna/efectos de los fármacos , Vigna/enzimología , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Cadmio/toxicidad , Clorofila/metabolismo , Germinación , Malondialdehído/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Semillas , Suelo/química , Contaminantes del Suelo/metabolismo , Titanio/química , Vigna/crecimiento & desarrollo
16.
Ecotoxicol Environ Saf ; 154: 237-244, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29476973

RESUMEN

The use of engineered nanomaterials (ENMs) for environmental remediation, known as nanoremediation, represents a challenging and innovative solution, ensuring a quick and efficient removal of pollutants from contaminated sites. Although the growing interest in nanotechnological solutions for pollution remediation, with significant economic investment worldwide, environmental and human risk assessment associated with the use of ENMs is still a matter of debate and nanoremediation is seen yet as an emerging technology. Innovative nanotechnologies applied to water and soil remediation suffer for a proper environmental impact scenario which is limiting the development of specific regulatory measures and the exploitation at European level. The present paper summarizes the findings from the workshop: "Ecofriendly Nanotechnology: state of the art, future perspectives and ecotoxicological evaluation of nanoremediation applied to contaminated sediments and soils" convened during the Biannual ECOtoxicology Meeting 2016 (BECOME) held in Livorno (Italy). Several topics have been discussed and, starting from current state of the art of nanoremediation, which represents a breakthrough in pollution control, the following recommendations have been proposed: (i) ecosafety has to be a priority feature of ENMs intended for nanoremediation; ii) predictive safety assessment of ENMs for environmental remediation is mandatory; (iii) greener, sustainable and innovative nano-structured materials should be further supported; (iii) those ENMs that meet the highest standards of environmental safety will support industrial competitiveness, innovation and sustainability. The workshop aims to favour environmental safety and industrial competitiveness by providing tools and modus operandi for the valorization of public and private investments.


Asunto(s)
Restauración y Remediación Ambiental , Nanoestructuras , Nanotecnología , Consenso , Ecotoxicología , Contaminación Ambiental , Contaminantes del Suelo , Contaminación del Agua
17.
Plant Physiol Biochem ; 210: 108604, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608505

RESUMEN

The rapid advancement of nanotechnology has led to unprecedented innovations across diverse industries, including pharmaceuticals, agriculture, cosmetics, electronics, textiles, and food, owing to the unique properties of nanoparticles. The extensive production and unregulated release of synthetic nanoparticles may contribute to nanopollution within the ecosystem. In the agricultural sector, nanotechnology is increasingly utilized to improve plant productivity, enhance resistance to stressors, and reduce the usage of chemicals. However, the uncontrolled discharge of nanoparticles into the natural environment raises concerns regarding possible plant toxicological impacts. The review focuses on the translocation of these particles within the plants, emphasizing their phytotoxicological effects at morphological, physiological, biochemical, and molecular levels. Eventhough the beneficial aspects of these nanoparticles are evident, excessive usage of nanoparticles at higher concentrations may lead to potential adverse effects. The phytotoxicity resulting from excessive amounts of nanoparticles affects seed germination and biomass production, disrupts the photosynthesis system, induces oxidative stress, impacts cell membrane integrity, alters gene expression, causes DNA damage, and leads to epigenetic variations in plants. Nanoparticles are found to directly associate with the cell membrane and cell organelles, leading to the dissolution and release of toxic ions, generation of reactive oxygen species (ROS) and subsequent oxidative stress. The present study signifies and accumulates knowledge regarding the application of nanoparticles in agriculture and illustrates a clear picture of their possible impacts on plants and soil microbes, thereby paving the way for future developments in nano-agrotechnology. The review concludes by addressing current challenges and proposing future directions to comprehend and mitigate the possible biological risks associated with nanoparticles in agriculture.


Asunto(s)
Nanopartículas , Plantas , Nanopartículas/toxicidad , Nanopartículas/química , Plantas/efectos de los fármacos , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos
18.
Sci Total Environ ; 916: 170064, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38242481

RESUMEN

The unrestricted release of various toxic substances into the environment is a critical global issue, gaining increased attention in modern society. Many of these substances are pristine to various environmental compartments known as contaminants/emerging contaminants (ECs). Nanoparticles and emerging sorbents enhanced remediation is a compelling methodology exhibiting great potential in addressing EC-related issues and facilitating their elimination from the environment, particularly those compounds that demonstrate eco-toxicity and pose considerable challenges in terms of removal. It provides a novel technique enabling the secure and sustainable removal of various ECs, including persistent organic compounds, microplastics, phthalate, etc. This extensive review presents a critical perspective on the current advancements and potential outcomes of nano-enhanced remediation techniques such as photocatalysis, nano-sensing, nano-enhanced sorbents, bio/phyto-remediation, which are applied to clean-up the natural environment. In addition, when dealing with residual contaminants, special attention is paid to both health and environmental implications; therefore, an evaluation of the long-term sustainability of nano-enhanced remediation methods has been considered. The integrated mechanical approaches were thoroughly discussed and presented in graphical forms. Thus, the critical evaluation of the integrated use of most emerging remediation technologies will open a new dimension in environmental safety and clean-up program.


Asunto(s)
Restauración y Remediación Ambiental , Nanopartículas , Nanoestructuras , Plásticos , Carbón Orgánico
19.
Sci Total Environ ; 930: 172451, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38641107

RESUMEN

Here we addressed the capacity of distinct amendments to reduce arsenic (As), copper (Cu), selenium (Se) and zinc (Zn) associated risks and improve the biogeochemical functions of post-mining soil. To this, we examined nanoparticles (NPs) and/or biochar effects, combined with phytostabilization using Lolium perenne L. Soil samples were taken in a former metal mine surroundings. Ryegrass seeds were sown in pots containing different combinations of NPs (zero-valent iron (nZVI) or hydroxyapatite (nH)) (0 and 2 %), and biochar (0, 3 and 5 %). Plants were grown for 45 days and the plant yield and element accumulation were evaluated, also soil properties (element distribution within the soil fractions, fertility, and enzymatic activities associated with microbiota functionality and nutrient cycling) were determined. Results showed biochar-treated soil had a higher pH, and much higher organic carbon (C) content than control soil and NP-treated soils, and it revealed increased labile C, total N, and available P concentrations. Soil treatment with NP-biochar combinations increased exchangeable non-acid cation concentrations and reduced exchangeable Na%, improved soil fertility, reduced sodicity risk, and increased ryegrass biomass. Enzymatic activities, particularly dehydrogenase and glucosidase, increased upon the addition of biochar, and this effect was fostered by NPs. Most treatments led to a significant reduction of metal(loid)s contents in biomass, mitigating contamination risks. The two different NPs had similar effects in many parameters, nH outperformed nZVI in terms of increased nutrients, C content, and enzymatic activities. On the basis of our results, combined biochar-NP amendments use, specially nH, emerges as a potential post-mining soil restoration strategy.


Asunto(s)
Carbón Orgánico , Lolium , Minería , Contaminantes del Suelo , Suelo , Carbón Orgánico/química , Contaminantes del Suelo/análisis , Suelo/química , Nanopartículas , Biodegradación Ambiental , Nanopartículas del Metal , Restauración y Remediación Ambiental/métodos
20.
Environ Pollut ; 350: 123952, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38641035

RESUMEN

The adversities of cadmium (Cd) contamination are quite distinguished among other heavy metals (HMs), and so is the efficacy of zinc (Zn) nutrition in mitigating Cd toxicity. Rice (Oryza sativa) crop, known for its ability to absorb HMs, inadvertently facilitates the bioaccumulation of Cd, posing a significant risk to both the plant itself and to humans consuming its edible parts, and damaging the environment as well. The use of nanoparticles, such as nano-zinc oxide (nZnO), to improve the nutritional quality of crops and combat the harmful effects of HMs, have gained substantial attention among scientists and farmers. While previous studies have explored the individual effects of nZnO or Serendipita indica (referred to as S.i) on Cd toxicity, the synergistic action of these two agents has not been thoroughly investigated. Therefore, the gift of nature, i.e., S. indica, was incorporated alongside nZnO (50 mg L-1) against Cd stress (15 µM L-1) and their alliance manifested as phenotypic level modifications in two rice genotypes (Heizhan43; Hz43 and Yinni801; Yi801). Antioxidant activities were enhanced, specifically peroxidase (61.5 and 122.5% in Yi801 and Hz43 roots, respectively), leading to a significant decrease in oxidative burst; moreover, Cd translocation was reduced (85% for Yi801 and 65.5% for Hz43 compared to Cd alone treatment). Microstructural study showed a decrease in number of vacuoles and starch granules with ameliorative treatments. Overall, plants treated with nZnO displayed gene expression pattern (particularly of ZIP genes), different from the ones with alone or combined S.i and Cd. Inferentially, the integration of nZnO and S.i holds great promise as an effective strategy for alleviating Cd toxicity in rice plants. By immobilizing Cd ions in the soil and promoting their detoxification, this novel approach contributes to environmental restoration and ensures food safety worldwide.


Asunto(s)
Antioxidantes , Cadmio , Oryza , Contaminantes del Suelo , Oryza/genética , Oryza/metabolismo , Cadmio/toxicidad , Antioxidantes/metabolismo , Contaminantes del Suelo/toxicidad , Zinc/toxicidad , Óxido de Zinc/toxicidad , Óxido de Zinc/farmacología , Nanopartículas del Metal/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA