Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.167
Filtrar
Más filtros

Intervalo de año de publicación
1.
Trends Biochem Sci ; 48(5): 410-413, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36925316

RESUMEN

Students are self-motivated to learn when provided opportunities that connect theory and real-world applications. Here, we describe for biochemistry majors a newborn screening-focused outreach activity that seeks to develop students' mastery of disciplinary content and soft skills (e.g., critical thinking, teamwork, effective communication, community engagement) and to enhance student engagement.


Asunto(s)
Bioquímica , Humanos , Bioquímica/educación , Estudiantes
2.
Am J Hum Genet ; 110(7): 1034-1045, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37279760

RESUMEN

Newborn genomic sequencing (NBSeq) to screen for medically important genetic information is of considerable interest but data characterizing the actionability of such findings, and the downstream medical efforts in response to discovery of unanticipated genetic risk variants, are lacking. From a clinical trial of comprehensive exome sequencing in 127 apparently healthy infants and 32 infants in intensive care, we previously identified 17 infants (10.7%) with unanticipated monogenic disease risks (uMDRs). In this analysis, we assessed actionability for each of these uMDRs with a modified ClinGen actionability semiquantitative metric (CASQM) and created radar plots representing degrees of penetrance of the condition, severity of the condition, effectiveness of intervention, and tolerability of intervention. In addition, we followed each of these infants for 3-5 years after disclosure and tracked the medical actions prompted by these findings. All 17 uMDR findings were scored as moderately or highly actionable on the CASQM (mean 9, range: 7-11 on a 0-12 scale) and several distinctive visual patterns emerged on the radar plots. In three infants, uMDRs revealed unsuspected genetic etiologies for existing phenotypes, and in the remaining 14 infants, uMDRs provided risk stratification for future medical surveillance. In 13 infants, uMDRs prompted screening for at-risk family members, three of whom underwent cancer-risk-reducing surgeries. Although assessments of clinical utility and cost-effectiveness will require larger datasets, these findings suggest that large-scale comprehensive sequencing of newborns will reveal numerous actionable uMDRs and precipitate substantial, and in some cases lifesaving, downstream medical care in newborns and their family members.


Asunto(s)
Pruebas Genéticas , Genoma Humano , Humanos , Recién Nacido , Tamizaje Neonatal , Genómica , Secuenciación del Exoma
3.
Am J Hum Genet ; 109(9): 1605-1619, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007526

RESUMEN

Newborn screening (NBS) dramatically improves outcomes in severe childhood disorders by treatment before symptom onset. In many genetic diseases, however, outcomes remain poor because NBS has lagged behind drug development. Rapid whole-genome sequencing (rWGS) is attractive for comprehensive NBS because it concomitantly examines almost all genetic diseases and is gaining acceptance for genetic disease diagnosis in ill newborns. We describe prototypic methods for scalable, parentally consented, feedback-informed NBS and diagnosis of genetic diseases by rWGS and virtual, acute management guidance (NBS-rWGS). Using established criteria and the Delphi method, we reviewed 457 genetic diseases for NBS-rWGS, retaining 388 (85%) with effective treatments. Simulated NBS-rWGS in 454,707 UK Biobank subjects with 29,865 pathogenic or likely pathogenic variants associated with 388 disorders had a true negative rate (specificity) of 99.7% following root cause analysis. In 2,208 critically ill children with suspected genetic disorders and 2,168 of their parents, simulated NBS-rWGS for 388 disorders identified 104 (87%) of 119 diagnoses previously made by rWGS and 15 findings not previously reported (NBS-rWGS negative predictive value 99.6%, true positive rate [sensitivity] 88.8%). Retrospective NBS-rWGS diagnosed 15 children with disorders that had been undetected by conventional NBS. In 43 of the 104 children, had NBS-rWGS-based interventions been started on day of life 5, the Delphi consensus was that symptoms could have been avoided completely in seven critically ill children, mostly in 21, and partially in 13. We invite groups worldwide to refine these NBS-rWGS conditions and join us to prospectively examine clinical utility and cost effectiveness.


Asunto(s)
Tamizaje Neonatal , Medicina de Precisión , Niño , Enfermedad Crítica , Pruebas Genéticas/métodos , Humanos , Recién Nacido , Tamizaje Neonatal/métodos , Estudios Retrospectivos
4.
Hum Genomics ; 18(1): 45, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720401

RESUMEN

BACKGROUND: Implementing genomic sequencing into newborn screening programs allows for significant expansion in the number and scope of conditions detected. We sought to explore public preferences and perspectives on which conditions to include in genomic newborn screening (gNBS). METHODS: We recruited English-speaking members of the Australian public over 18 years of age, using social media, and invited them to participate in online focus groups. RESULTS: Seventy-five members of the public aged 23-72 participated in one of fifteen focus groups. Participants agreed that if prioritisation of conditions was necessary, childhood-onset conditions were more important to include than later-onset conditions. Despite the purpose of the focus groups being to elicit public preferences, participants wanted to defer to others, such as health professionals or those with a lived experience of each condition, to make decisions about which conditions to include. Many participants saw benefit in including conditions with no available treatment. Participants agreed that gNBS should be fully publicly funded. CONCLUSION: How many and which conditions are included in a gNBS program will be a complex decision requiring detailed assessment of benefits and costs alongside public and professional engagement. Our study provides support for implementing gNBS for treatable childhood-onset conditions.


Asunto(s)
Tamizaje Neonatal , Humanos , Recién Nacido , Australia , Adulto , Femenino , Masculino , Persona de Mediana Edad , Anciano , Genómica , Grupos Focales , Opinión Pública , Pruebas Genéticas , Adulto Joven
5.
J Allergy Clin Immunol ; 153(1): 330-334, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37678573

RESUMEN

BACKGROUND: Newborn screening (NBS) programs for severe combined immunodeficiency facilitate early diagnosis of severe combined immunodeficiency and promote early treatment with hematopoietic stem cell transplantation, resulting in improved clinical outcomes. Infants with congenital athymia are also identified through NBS because of severe T-cell lymphopenia. With the expanding introduction of NBS programs, referrals of athymic patients for treatment with thymus transplantation have recently increased at Great Ormond Street Hospital (GOSH) (London, United Kingdom). OBJECTIVE: We studied the impact of NBS on timely diagnosis and treatment of athymic infants with thymus transplantation at GOSH. METHODS: We compared age at referral and complications between athymic infants diagnosed after clinical presentation (n = 25) and infants identified through NBS (n = 19) who were referred for thymus transplantation at GOSH between October 2019 and February 2023. We assessed whether age at time of treatment influences thymic output at 6 and 12 months after transplantation. RESULTS: The infants referred after identification through NBS were significantly younger and had fewer complications, in particular fewer infections. All deaths occurred in the group of those who did not undergo NBS, including 6 patients before and 2 after thymus transplantation because of preexisting infections. In the absence of significant comorbidities or diagnostic uncertainties, timely treatment was achieved more frequently after NBS. Treatment when younger than age 4 months was associated with higher thymic output at 6 and 12 months after transplantation. CONCLUSION: NBS contributes to earlier recognition of congenital athymia, promoting referral of athymic patients for thymus transplantation before they acquire infections or other complications and facilitating treatment at a younger age, thus playing an important role in improving their outcomes.


Asunto(s)
Síndromes de Inmunodeficiencia , Inmunodeficiencia Combinada Grave , Lactante , Recién Nacido , Humanos , Inmunodeficiencia Combinada Grave/diagnóstico , Inmunodeficiencia Combinada Grave/terapia , Tamizaje Neonatal , Timo
6.
Br J Haematol ; 204(1): 337-345, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37728227

RESUMEN

Sickle cell disease (SCD) is a life-threatening disease requiring reliable early diagnosis. We assessed the acceptability and diagnostic performances of two rapid diagnostic tests (RDTs) to identify SCD (HbSS, HbSC, HbS/ß-thalassaemia) or SCD carrier (HbS/HbC) in a pilot SCD newborn screening (NBS) strategy in Mali. All consenting delivering women were offered SCD NBS using cord blood sampling on two RDTs (SickleScan® and HemotypeSC®) compared to the high-performance liquid chromatography (HPLC) gold standard to detect SCD states. From April 2021 to August 2021, 4333 delivering women were eligible of whom 96.1% were offered NBS: 1.6% refused, 13.8% delivered before consenting and 84.6% consented; 3648 newborns were diagnosed by HPLC; 1.64% had SCD (0.63% HbSS, 0.85% HbSC, 0.16 HbS/ß-plus-thalassaemia); 21.79% were SCD carrier. To detect accurately SCD, SickleScan® had a sensitivity of 81.67% (95% confidence interval [CI]: 71.88-91.46) and a negative predictive value (NPV) of 99.69% (95% CI: 99.51-99.87); HemotypeSC® had a sensitivity of 78.33% (95% CI: 67.91-88.76) and a NPV of 99.64% (95% CI: 99.44-99.83). To detect SCD carrier: SickleScan® sensitivity was 96.10% (95% CI: 94.75-97.45) and NPV, 98.90% (95% CI: 98.51-99.29); HemotypeSC® sensitivity was 95.22% (95% CI: 93.74-96.70) and NPV, 98.66% (95% CI: 98.24-99.03). Routine SCD NBS was acceptable. Compared with HPLC, both RDTs had reliable diagnostic performances to exclude SCD-free newborns and to identify SCD carriers to be further confirmed. This strategy could be implemented in large-scale NBS programmes.


Asunto(s)
Anemia de Células Falciformes , Enfermedad de la Hemoglobina SC , Humanos , Recién Nacido , Femenino , Tamizaje Neonatal/métodos , Prueba de Diagnóstico Rápido , Sangre Fetal , Malí , Anemia de Células Falciformes/diagnóstico , Hemoglobina Falciforme/análisis
7.
J Clin Immunol ; 44(4): 93, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578360

RESUMEN

Newborn screening (NBS) for severe inborn errors of immunity (IEI), affecting T lymphocytes, and implementing measurements of T cell receptor excision circles (TREC) has been shown to be effective in early diagnosis and improved prognosis of patients with these genetic disorders. Few studies conducted on smaller groups of newborns report results of NBS that also include measurement of kappa-deleting recombination excision circles (KREC) for IEI affecting B lymphocytes. A pilot NBS study utilizing TREC/KREC detection was conducted on 202,908 infants born in 8 regions of Russia over a 14-month period. One hundred thirty-four newborns (0.66‰) were NBS positive after the first test and subsequent retest, 41% of whom were born preterm. After lymphocyte subsets were assessed via flow cytometry, samples of 18 infants (0.09‰) were sent for whole exome sequencing. Confirmed genetic defects were consistent with autosomal recessive agammaglobulinemia in 1/18, severe combined immunodeficiency - in 7/18, 22q11.2DS syndrome - in 4/18, combined immunodeficiency - in 1/18 and trisomy 21 syndrome - in 1/18. Two patients in whom no genetic defect was found met criteria of (severe) combined immunodeficiency with syndromic features. Three patients appeared to have transient lymphopenia. Our findings demonstrate the value of implementing combined TREC/KREC NBS screening and inform the development of policies and guidelines for its integration into routine newborn screening programs.


Asunto(s)
Linfopenia , Inmunodeficiencia Combinada Grave , Lactante , Recién Nacido , Humanos , Tamizaje Neonatal/métodos , Proyectos Piloto , Linfopenia/diagnóstico , Linfocitos T , Inmunodeficiencia Combinada Grave/diagnóstico , Inmunodeficiencia Combinada Grave/genética , ADN , Receptores de Antígenos de Linfocitos T/genética
8.
J Clin Immunol ; 44(3): 79, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457046

RESUMEN

Congenital athymia is a rare T-lymphocytopaenic condition, which requires early corrective treatment with thymus transplantation (TT). Athymic patients are increasingly identified through newborn screening (NBS) for severe combined immunodeficiency (SCID). Lack of relatable information resources contributes to challenging patient and family journeys during the diagnostic period following abnormal NBS results. Patient and Public Involvement and Engagement (PPIE) activities, including parental involvement in paediatrics, are valuable initiatives to improve clinical communication and parental information strategies. Parents of infants with suspected athymia were therefore invited to discuss the information they received during the diagnostic period following NBS with the aim to identify parental information needs and targeted strategies to address these adequately. Parents reported that athymia was not considered with them as a possible differential diagnosis until weeks after initial NBS results. Whilst appropriate clinical information about athymia and TT was available upon referral to specialist immunology services, improved access to easy-to-understand information from reliable sources, including from clinical nurse specialists and peer support systems, remained desirable. A roadmap concept, with written or digital information, addressing parental needs in real time during a potentially complex diagnostic journey, was proposed and is transferrable to other inborn errors of immunity (IEI) and rare diseases. This PPIE activity provides insight into the information needs of parents of infants with suspected athymia who are identified through SCID NBS, and highlights the role for PPIE in promoting patient- and family-centred strategies to improve IEI care.


Asunto(s)
Síndromes de Inmunodeficiencia , Inmunodeficiencia Combinada Grave , Timo/anomalías , Lactante , Recién Nacido , Humanos , Niño , Tamizaje Neonatal , Padres , Inmunodeficiencia Combinada Grave/diagnóstico , Inmunodeficiencia Combinada Grave/terapia
9.
Genet Med ; 26(1): 101009, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37864479

RESUMEN

PURPOSE: Current and emerging treatments for Duchenne muscular dystrophy (DMD) position DMD as a candidate condition for newborn screening (NBS). In anticipation of the nomination of DMD for universal NBS, we conducted a prospective study under the Early Check voluntary NBS research program in North Carolina, United States. METHODS: We performed screening for creatine kinase-MM (CK-MM), a biomarker of muscle damage, on residual routine newborn dried blood spots (DBS) from participating newborns. Total creatine kinase testing and next generation sequencing of an 86-neuromuscular gene panel that included DMD were offered to parents of newborns who screened positive. Bivariate and multivariable analyses were performed to assess effects of biological and demographic predictors on CK-MM levels in DBS. RESULTS: We screened 13,354 newborns and identified 2 males with DMD. The provisional 1626 ng/mL cutoff was raised to 2032 ng/mL to improve specificity, and additional cutoffs (900 and 360 ng/mL) were implemented to improve sensitivity for older and low-birthweight newborns. CONCLUSION: Population-scale screening for elevated CK-MM in DBS is a feasible approach to identify newborns with DMD. Inclusion of birthweight- and age-specific cutoffs, repeat creatine kinase testing after 72 hours of age, and DMD sequencing improve sensitivity and specificity of screening.


Asunto(s)
Distrofia Muscular de Duchenne , Masculino , Humanos , Recién Nacido , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/epidemiología , Distrofia Muscular de Duchenne/genética , Tamizaje Neonatal , Peso al Nacer , North Carolina/epidemiología , Estudios Prospectivos , Creatina Quinasa
10.
Genet Med ; 26(5): 101077, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38275146

RESUMEN

PURPOSE: Gene selection for genomic newborn screening (gNBS) underpins the validity, acceptability, and ethical application of this technology. Existing gNBS gene lists are highly variable despite being based on shared principles of gene-disease validity, treatability, and age of onset. This study aimed to curate a gNBS gene list that builds upon existing efforts and provide a core consensus list of gene-disease pairs assessed by multiple expert groups worldwide. METHODS: Our multidisciplinary expert team curated a gene list using an open platform and multiple existing curated resources. We included severe treatable disorders with age of disease onset <5 years with established gene-disease associations and reliable variant detection. We compared the final list with published lists from 5 other gNBS projects to determine consensus genes and to identify areas of discrepancy. RESULTS: We reviewed 1279 genes and 604 met our inclusion criteria. Metabolic conditions comprised the largest group (25%), followed by immunodeficiencies (21%) and endocrine disorders (15%). We identified 55 consensus genes included by all 6 gNBS research projects. Common reasons for discrepancy included variable definitions of treatability and strength of gene-disease association. CONCLUSION: We have identified a consensus gene list for gNBS that can be used as a basis for systematic harmonization efforts internationally.


Asunto(s)
Pruebas Genéticas , Genómica , Tamizaje Neonatal , Humanos , Tamizaje Neonatal/métodos , Recién Nacido , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Genómica/métodos , Consenso
11.
Genet Med ; 26(4): 101055, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38146699

RESUMEN

PURPOSE: Expanded carrier screening (ECS) gene panels have several limitations, including variable content, current knowledge of disease-causing variants, and differing reporting policies. This study evaluated if the disease-associated variants identified in affected neonates who screened positive by California newborn screening (NBS) for an inherited metabolic disorder (IMD) by tandem mass spectrometry (MS/MS) would likely be reported by ECS gene panels. METHODS: Retrospective review of neonates referred by the California Department of Public Health for a positive NBS by multianalyte MS/MS from January 1, 2020 through June 30, 2021. RESULTS: One hundred thirty-six neonates screened positive for ≥1 NBS MS/MS indication. Nineteen neonates (14%) were ultimately diagnosed with an IMD, all of whom had abnormal biochemical testing. Eighteen of the 19 underwent molecular testing; 10 (56%) neonates had ≥1 variants of uncertain significance, 9 of whom were of non-White ancestry. ECS panels would have been negative for 56% (20/36) of parents with an affected neonate, 85% (17/20) of whom were of non-White ancestry. CONCLUSION: The number of variants of uncertain significance identified in this cohort highlights the need for more diversified variant databases. Due in part to the lack of diversity in currently sequenced populations, genomic sequencing cannot replace biochemical testing for the diagnosis of an IMD.


Asunto(s)
Enfermedades Metabólicas , Tamizaje Neonatal , Recién Nacido , Humanos , Tamizaje Neonatal/métodos , Espectrometría de Masas en Tándem , Enfermedades Metabólicas/diagnóstico , Reproducción , Técnicas de Diagnóstico Molecular
12.
Mol Genet Metab ; 141(1): 108105, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128203

RESUMEN

Previously we developed a multiplex liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay using dried blood spots for all subtypes of mucopolysaccharidoses (MPS) except MPS-IIID. Here we show that the MPS-IIID enzyme N-acetylglucosamine-6-sulfatase (GNS) is inhibited in dried blood spot (DBS) extracts, but activity can be recovered if the extract is diluted to reduce the concentrations of endogenous inhibitors. The new GNS assay displays acceptable characteristics including linearity in product formation with incubation time and amount of enzyme, low variability, and ability to distinguish MPS-IIID-affected from healthy patients using DBS. The assay can be added to the LC-MS/MS multiplex panel for all MPS subtypes requiring ∼2 min per newborn for the LC-MS/MS run.


Asunto(s)
Mucopolisacaridosis , Mucopolisacaridosis VI , Recién Nacido , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Sulfatasas , Pruebas con Sangre Seca/métodos
13.
Mol Genet Metab ; 142(4): 108517, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38908075

RESUMEN

GM2 gangliosidosis is a group of rare lysosomal storage disorders (LSDs) including Tay-Sachs disease (TSD) and Sandhoff disease (SD), caused by deficiency in activity of either ß-hexosaminidase A (HexA) or both ß-hexosaminidase A and ß-hexosaminidase B (HexB). Methods for screening and diagnosis of TSD and SD include measurement and comparison of the activity of these two enzymes. Here we report a novel method for duplex screening of dried blood spots (DBS) for TSD and SD by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The method requires incubation of a single 3 mm DBS punch with the assay cocktail followed by the injection into the LC-MS/MS. The performance of the method was evaluated by comparing the confirmed TSD and SD patient DBS to random healthy newborn DBS which showed easy discrimination between the three cohorts. The method is multiplexable with other LSD MS/MS enzyme assays which is critical to the continued expansion of the NBS panels.

14.
Mol Genet Metab ; 142(1): 108349, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458124

RESUMEN

Metachromatic leukodystrophy (MLD) is a devastating rare neurodegenerative disease. Typically, loss of motor and cognitive skills precedes early death. The disease is characterised by deficient lysosomal arylsulphatase A (ARSA) activity and an accumulation of undegraded sulphatide due to pathogenic variants in the ARSA gene. Atidarsagene autotemcel (arsa-cel), an ex vivo haematopoietic stem cell gene therapy was approved for use in the UK in 2021 to treat early-onset forms of pre- or early-symptomatic MLD. Optimal outcomes require early diagnosis, but in the absence of family history this is difficult to achieve without newborn screening (NBS). A pre-pilot MLD NBS study was conducted as a feasibility study in Manchester UK using a two-tiered screening test algorithm. Pre-established cutoff values (COV) for the first-tier C16:0 sulphatide (C16:0-S) and the second-tier ARSA tests were evaluated. Before the pre-pilot study, initial test validation using non­neonatal diagnostic bloodspots demonstrated ARSA pseudodeficiency status was associated with normal C16:0-S results for age (n = 43) and hence not expected to cause false positive results in this first-tier test. Instability of ARSA in bloodspot required transfer of NBS bloodspots from ambient temperature to -20°C storage within 7-8 days after heel prick, the earliest possible in this UK pre-pilot study. Eleven of 3687 de-identified NBS samples in the pre-pilot were positive for C16:0-S based on the pre-established COV of ≥170 nmol/l or ≥ 1.8 multiples of median (MoM). All 11 samples were subsequently tested negative determined by the ARSA COV of <20% mean of negative controls. However, two of 20 NBS samples from MLD patients would be missed by this C16:0-S COV. A further suspected false negative case that displayed 4% mean ARSA activity by single ARSA analysis for the initial test validation was confirmed by genotyping of this NBS bloodspot, a severe late infantile MLD phenotype was predicted. This led to urgent assessment of this child by authority approval and timely commencement of arsa-cel gene therapy at 11 months old. Secondary C16:0-S analysis of this NBS bloodspot was 150 nmol/l or 1.67 MoM. This was the lowest result reported thus far, a new COV of 1.65 MoM is recommended for future pilot studies. Furthermore, preliminary data of this study showed C16:1-OH sulphatide is more specific for MLD than C16:0-S. In conclusion, this pre-pilot study adds to the international evidence that recommends newborn screening for MLD, making it possible for patients to benefit fully from treatment through early diagnosis.


Asunto(s)
Cerebrósido Sulfatasa , Leucodistrofia Metacromática , Tamizaje Neonatal , Humanos , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/terapia , Leucodistrofia Metacromática/genética , Tamizaje Neonatal/métodos , Recién Nacido , Proyectos Piloto , Cerebrósido Sulfatasa/genética , Femenino , Masculino , Sulfoglicoesfingolípidos , Lactante , Terapia Genética
15.
Mol Genet Metab ; 142(1): 108436, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552449

RESUMEN

Newborn screening (NBS) for metachromatic leukodystrophy (MLD) is based on first-tier measurement of sulfatides in dried blood spots (DBS) followed by second-tier measurement of arylsulfatase A in the same DBS. This approach is very precise with 0-1 false positives per ∼30,000 newborns tested. Recent data reported here shows that the sulfatide molecular species with an α-hydroxyl, 16­carbon, mono-unsaturated fatty acyl group (16:1-OH-sulfatide) is superior to the original biomarker 16:0-sulfatide in reducing the number of first-tier false positives. This result is consistent across 4 MLD NBS centers. By measuring 16:1-OH-sulfatide alone or together with 16:0-sulfatide, the estimated false positive rate is 0.048% and is reduced essentially to zero with second-tier arylsulfatase A activity assay. The false negative rate is predicted to be extremely low based on the demonstration that 40 out of 40 newborn DBS from clinically-confirmed MLD patients are detected with these methods. The work shows that NBS for MLD is extremely precise and ready for deployment. Furthermore, it can be multiplexed with several other inborn errors of metabolism already tested in NBS centers worldwide.


Asunto(s)
Cerebrósido Sulfatasa , Pruebas con Sangre Seca , Leucodistrofia Metacromática , Tamizaje Neonatal , Sulfoglicoesfingolípidos , Humanos , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/sangre , Recién Nacido , Sulfoglicoesfingolípidos/sangre , Tamizaje Neonatal/métodos , Cerebrósido Sulfatasa/sangre , Cerebrósido Sulfatasa/genética , Pruebas con Sangre Seca/métodos , Reacciones Falso Positivas , Biomarcadores/sangre
16.
Mol Genet Metab ; 141(1): 108098, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061323

RESUMEN

BACKGROUND: Inborn errors of metabolism (IEMs) frequently result in progressive and irreversible clinical consequences if not be diagnosed or treated timely. The tandem mass spectrometry (MS/MS)-based newborn screening (NBS) facilitates early diagnosis and treatment of IEMs. The aim of this study was to determine the characteristics of IEMs and the successful deployment and application of MS/MS screening over a 19-year time period in Shanghai, China, to inform national NBS policy. METHODS: The amino acids and acylcarnitines in dried blood spots from 1,176,073 newborns were assessed for IEMs by MS/MS. The diagnosis of IEMs was made through a comprehensive consideration of clinical features, biochemical performance and genetic testing results. The levels of MS/MS testing parameters were compared between various IEM subtypes and genotypes. RESULTS: A total of 392 newborns were diagnosed with IEMs from January 2003 to June 2022. There were 196 newborns with amino acid disorders (50.00%, 1: 5910), 115 newborns with organic acid disorders (29.59%, 1: 10,139), and 81 newborns with fatty acid oxidation disorders (20.41%; 1:14,701). Phenylalanine hydroxylase deficiency, methylmalonic acidemia and primary carnitine deficiency were the three most common disorders. Some hotspot variations in eight IEM genes (PAH, SLC22A5, MMACHC, MMUT, MAT1A, MCCC2, ACADM, ACAD8), 35 novel variants and some genotype-biochemical phenotype associations were identified. CONCLUSIONS: A total of 28 types of IEMs were identified, with an overall incidence of 1: 3000 in Shanghai, China. Our study offered clinical guidance for the implementation of MS/MS-based NBS and genetic counseling for IEMs in this city.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Errores Innatos del Metabolismo , Humanos , Recién Nacido , Espectrometría de Masas en Tándem/métodos , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/epidemiología , Errores Innatos del Metabolismo/genética , China/epidemiología , Tamizaje Neonatal/métodos , Miembro 5 de la Familia 22 de Transportadores de Solutos , Oxidorreductasas/metabolismo
17.
Clin Endocrinol (Oxf) ; 101(2): 108-113, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38796770

RESUMEN

BACKGROUND: Newborn screening (NBS) reduces the risk of mortality in congenital adrenal hyperplasia (CAH), mainly due to the salt-wasting form of 21-hydroxylase deficiency. There is limited knowledge regarding the results of NBS in non-CAH primary adrenal insufficiency (non-CAH PAI). PATIENTS AND METHODS: Clinical and NBS for CAH data of neonates who were diagnosed with non-CAH PAI between January and December 2022 were examined. RESULTS: Patients (n = 6, 4 females) were presented with severe hyperpigmentation (n = 6), hypoglycemia (n = 4), hyponatremia (n = 3), hyperkalemia (n = 1), respiratory distress syndrome (n = 1) between 3rd hour to 2 months of life. All had normal NBS results. The median first-tier 17-hydroxyprogesterone (17OHP) concentration in NBS for CAH was 0.14 ng/mL (range; 0.05-0.85). Molecular studies revealed biallelic mutations in the MC2R (n = 4; 3 homozygous, 1 compound heterozygous), MRAP (n = 1) and STAR (n = 1) genes. Glucocorticoid with or without mineralocorticoid replacement was initiated once the diagnosis of non-CAH PAI was established. CONCLUSION: Neonates with non-CAH PAI have always normal NBS due to persistently low 17OHP, even when these newborn infants are severely symptomatic for adrenal insufficiency. Clinicians should be alert for signs of adrenal insufficiency in neonates, even if the patient has a 'normal' screening for CAH, so as not to delay diagnosis and treatment. This fact should be kept in mind particularly in countries where these conditions are more common than elsewhere.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Insuficiencia Suprarrenal , Tamizaje Neonatal , Humanos , Recién Nacido , Tamizaje Neonatal/métodos , Femenino , Masculino , Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/genética , Hiperplasia Suprarrenal Congénita/sangre , Insuficiencia Suprarrenal/diagnóstico , Insuficiencia Suprarrenal/sangre , 17-alfa-Hidroxiprogesterona/sangre , Mutación
18.
Cytotherapy ; 26(7): 739-748, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613540

RESUMEN

Metachromatic leukodystrophy (MLD) is a fatal, progressive neurodegenerative disorder caused by biallelic pathogenic mutations in the ARSA (Arylsulfatase A) gene. With the advent of presymptomatic diagnosis and the availability of therapies with a narrow window for intervention, it is critical to define a standardized approach to diagnosis, presymptomatic monitoring, and clinical care. To meet the needs of the MLD community, a panel of MLD experts was established to develop disease-specific guidelines based on healthcare resources in the United States. This group developed a consensus opinion for best-practice recommendations, as follows: (i) Diagnosis should include both genetic and biochemical testing; (ii) Early diagnosis and treatment for MLD is associated with improved clinical outcomes; (iii) The panel supported the development of newborn screening to accelerate the time to diagnosis and treatment; (iv) Clinical management of MLD should include specialists familiar with the disease who are able to follow patients longitudinally; (v) In early onset MLD, including late infantile and early juvenile subtypes, ex vivo gene therapy should be considered for presymptomatic patients where available; (vi) In late-onset MLD, including late juvenile and adult subtypes, hematopoietic cell transplant (HCT) should be considered for patients with no or minimal disease involvement. This document summarizes current guidance on the presymptomatic monitoring of children affected by MLD as well as the clinical management of symptomatic patients. Future data-driven evidence and evolution of these recommendations will be important to stratify clinical treatment options and improve clinical care.


Asunto(s)
Leucodistrofia Metacromática , Humanos , Recién Nacido , Cerebrósido Sulfatasa/genética , Consenso , Terapia Genética/métodos , Leucodistrofia Metacromática/terapia , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/genética , Tamizaje Neonatal/métodos , Estados Unidos
19.
Ann Hematol ; 103(1): 29-36, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37971548

RESUMEN

OBJECTIVES: This study aimed to investigate the incidence rate and spectrum of gene mutations of Glucose-6-phosphate dehydrogenase (G6PD) deficiency in the Huizhou city of southern China to provide a scientific basis for disease prevention and control in the area. METHODS: From March 2003 to December 2022, newborn screening for G6PD enzyme activity was carried out in Huizhou city using the fluorescence quantitative method. Infants who tested positive during the initial screening were diagnosed using the nitroblue tetrazolium ratio method, while a subset of infants received further gene mutation analysis using the multicolor probe melting curve analysis method. RESULTS: A total of 1,291,274 newborns were screened and the screening rate has increased from 20.39% to almost 100%. In the 20-year period, 57,217 (4.43%) infants testing positive during the initial screening. Out of these infants, 49,779 (87%) were recalled for confirmatory testing. G6PD deficiency was confirmed in 39,261 of the recalled infants, indicating a positive predictive value of 78.87%. The estimated incidence rate of G6PD deficiency in the region was 3.49%, which was significantly higher than the average incidence rate of 2.1% in southern China. On the other hand, seven pathogenic G6PD variants were identified in the analysis of the 99 diagnosed infants with the most common being c.1388 G > A (48.5%), followed by c.95 A > G (19.2%), c.1376 G > T (15.2%), c.871 G > A (9.1%), c.1360 C > T (3.0%), c.392 G > T (3.0%), and c.487 G > A (1.0%). CONCLUSION: The incidence of G6PD deficiency in newborns in the Huizhou city was higher than the southern China average level, while the types and frequencies of gene mutations were found to vary slightly from other regions. Our findings suggested that free government screening and nearby diagnosis strategies could reduce the incidence of G6PD deficiency in the area.


Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa , Lactante , Humanos , Recién Nacido , Deficiencia de Glucosafosfato Deshidrogenasa/diagnóstico , Deficiencia de Glucosafosfato Deshidrogenasa/epidemiología , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Tasa de Mutación , Glucosafosfato Deshidrogenasa/genética , Mutación , Tamizaje Neonatal , China/epidemiología
20.
J Inherit Metab Dis ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520225

RESUMEN

The field of inherited metabolic diseases (IMD) has initially emerged and developed over decades in pediatric departments. Still, today, about 50% of patients with IMD are adults, and adult metabolic medicine (AMM) is getting more structured at national and international levels. There are several domains in which pediatricians can learn from AMM. First, long-term evolution of IMD patients, especially those treated since childhood, is critical to determine nutritional and neuropsychiatric outcomes in adults so that these outcomes can be better monitored, and patient care adjusted as much as possible from childhood. Conversely, the observation of attenuated phenotypes in adults of IMD known to present with severe phenotypes in children calls for caution in the development of newborn screening programs and, more largely, in the interpretation of next-generation sequencing data. Third, it is important for pediatricians to be familiar with adult-onset IMD as they expand our understanding of metabolism, including in children, such as oxysterols and glycogen metabolism. Last, the identification of common molecular and cellular mechanisms in neurodevelopment and neurodegeneration opens the way to synergistic therapeutic developments that will benefit both fields of pediatric and adult medicine. Overall, these observations underline the need of strong interdisciplinarity between pediatricians and adult specialists for the diagnosis and the treatment of IMD well beyond the issues of patient transition from pediatric to adult medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA