Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202407613, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38736299

RESUMEN

Anion-exchange membrane fuel cells provide the possibility to use platinum group metal-free catalysts, but the anodic hydrogen oxidation reaction (HOR) suffers from sluggish kinetics and its source is still debated. Here, over nickel-tungsten (Ni-W) alloy catalysts, we show that the Ni : W ratio greatly governs the HOR performance in alkaline electrolyte. Experimental and theoretical studies unravel that alloying with W can tune the unpaired electrons in Ni, tailoring the potential of zero charge and the catalytic surface to favor hydroxyl adsorption (OHad). The OHad species coordinately interact with potassium (K+) ions, which break the K+ solvation sheath to leave free water molecules, yielding an improved connectivity of hydrogen-bond networks. Consequently, the optimal Ni17W3 alloy exhibits alkaline HOR activity superior to the state-of-the-art platinum on carbon (Pt/C) catalyst and operates steadily with negligible decay after 10,000 cycles. Our findings offer new understandings of alloyed HOR catalysts and will guide rational design of next-generation catalysts for fuel cells.

2.
Beilstein J Org Chem ; 16: 530-536, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32280382

RESUMEN

The regioselective C-H arylation of substituted polycyclic aromatic hydrocarbons (PAHs) is a desired but challenging task. A copper-catalyzed C7-H arylation of 1-naphthamides has been developed by using aryliodonium salts as arylating reagents. This protocol does not need to use precious metal catalysts and tolerates wide variety of functional groups. Under standard conditions, the remote C-H arylation of other PAHs including phenanthrene-9-carboxamide, pyrene-1-carboxamide and fluoranthene-3-carboxamide has also accomplished, which provides an opportunity for the development of diverse organic optoelectronic materials.

3.
Proc Natl Acad Sci U S A ; 112(34): 10629-34, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26261338

RESUMEN

Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A ⋅ cm(-3) at 0.9 V or 450 A ⋅ cm(-3) extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.

4.
ACS Appl Mater Interfaces ; 13(41): 48774-48783, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34628856

RESUMEN

The oxygen evolution reaction (OER) is crucial for hydrogen production from water splitting and rechargeable metal-air batteries. However, the four-electron mechanism results in slow reaction kinetics, which needed to be accelerated by efficient catalysts. Herein, a hybrid catalyst of novel nickel-iron layered double hydroxide (NiFe LDH) on porous indium tin oxide (ITO) is presented to lower the overpotential of the OER. The as-prepared NiFe LDH@ITO catalyst showed superior catalytic activity toward the OER with an overpotential of only 240 mV at a current density of 10 mA/cm2. The catalyst also offered high stability with almost no activity decay after more than 200 h of chronopotentiometry test. Furthermore, the applications of NiFe LDH@ITO in (flexible) rechargeable zinc-air batteries exhibited a better performance than commercial RuO2 and can remain stable in cycling tests. It is supposed that the superior catalytic behavior originates from the ITO conductive framework, which prevents the agglomeration and facilitates the electron transfer during the OER process.

5.
Nanomaterials (Basel) ; 11(12)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34947778

RESUMEN

Non-platinum carbon-based catalysts have attracted much more attention in recent years because of their low cost and outstanding performance, and are regarded as one of the most promising alternatives to precious metal catalysts. Activated carbon (AC), which has a large specific surface area (SSA), can be used as a carrier or carbon source at the same time. In this work, stable pine peel bio-based materials were used to prepare large-surface-area activated carbon and then compound with cobalt phthalocyanine (CoPc) to obtain a high-performance cobalt/nitrogen/carbon (Co-N-C) catalyst. High catalytic activity is related to increasing the number of Co particles on the large-specific-area activated carbon, which are related with the immersing effect of CoPc into the AC and the rational decomposed temperature of the CoPc ring. The synergy with N promoting the exposure of CoNx active sites is also important. The Eonset of the catalyst treated with a composite proportion of AC and CoPc of 1 to 2 at 800 °C (AC@CoPc-800-1-2) is 1.006 V, higher than the Pt/C (20 wt%) catalyst. Apart from this, compared with other AC/CoPc series catalysts and Pt/C (20 wt%) catalyst, the stability of AC/CoPc-800-1-2 is 87.8% in 0.1 M KOH after 20,000 s testing. Considering the performance and price of the catalyst in a practical application, these composite catalysts combining biomass carbon materials with phthalocyanine series could be widely used in the area of catalysts and energy storage.

6.
ACS Appl Mater Interfaces ; 12(11): 12686-12695, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32102541

RESUMEN

Development of highly efficient nonprecious metal (NPM) catalysts for oxygen reduction reaction (ORR) in acidic media is challenging but of great significance. Herein, an effective ORR catalyst based on Fe nanoparticles encapsulated by S,N-codoped few-layer defective carbon (Fe@S,N-DC) was synthesized via a microwave-assisted strategy. The obtained Fe@S,N-DC nanocomposite showed a remarkable electrocatalytic activity toward ORR in acidic media, with a half-wave potential (E1/2) of +0.785 V versus reversible hydrogen electrode, which was 80 mV more positive than that of the sulfur-free counterpart (Fe@N-DC). Furthermore, due to the protection by the S,N-codoped carbon shell, the Fe@S,N-DC nanocomposite displayed apparent stability with only a 13 mV negative shift of E1/2 after 10,000 cycles and excellent tolerance to methanol. X-ray absorption near-edge spectroscopy measurements confirmed the formation of multiple defective sites on the S,N-codoped carbon surface and strong interfacial electron transfer from the Fe core to the outer carbon surface, as compared to the sulfur-free counterpart. The enriched electron density on the defective carbon surface of Fe@S,N-DC, induced by the interfacial electron transfer, facilitated the reduction of O2 to OOH*, leading to enhanced ORR performance. These results shed light on the significance of S doping in Fe-N-C catalysts in the design of high-performance NPM catalysts for ORR in acidic media.

7.
J Colloid Interface Sci ; 558: 182-189, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31586738

RESUMEN

Non-precious metal doped carbonaceous materials are currently the most promising alternative towards oxygen reduction reaction (ORR) electrocatalysts in terms of cost, accessibility, efficiency and durability. In this work, a simple one-step pyrolysis process was used for the synthesis of copper doped graphitic carbon nitride (Cu-g-C3N4) as electrocatalyst. The as-synthesized Cu-g-C3N4 material is displaying excellent electrocatalytic response towards ORR in alkaline medium. In comparison to commercial Pt/C catalyst, Cu-g-C3N4 exhibits high methanol tolerance, long term stability, without compromising (4e-) electron transfer pathway process and attaining less than 4% H2O2 formation. The enhanced electrocatalytic behaviour may be ascribed to the formation of active sites strongly coupled into the nitrogen-rich carbon matrix. Such a low-cost, extremely durable and stable electrocatalyst can therefore be regarded as an efficient cathodic material, which can be utilized for several renewable energy conversion technologies such as fuel cell, biofuel cell and metal-air battery.

8.
ACS Appl Mater Interfaces ; 12(15): 17481-17491, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32216330

RESUMEN

This study reports a high-performing nonprecious metal catalyst for the oxygen reduction reaction that is composed of highly dispersed Fe centered active sites on bamboolike carbon nanotubes. NH2-MIL-88B is used as the iron source and ZIF-8 as the carbon source. The precursors are uniformly mixed by ball milling, which destroys their crystal structures. A bamboolike carbon nanotube network results from the pyrolysis of the mixed precursors. The morphology is controlled by the proportion of the precursors and the pyrolysis temperature. The catalyst shows excellent oxygen reduction activity in both half-cell and full-cell tests. The onset potential and half-wave potential are 0.96 and 0.78 V vs RHE, respectively. In the fuel cell test, the current density reaches 0.85 A cm-2 at 0.7 V and 1.24 A cm-2 at 0.6 V (iR-corrected). The novel synthesis approach of the highly dispersed catalyst provides new strategy in the design of high effective nonprecious metal catalysts for fuel cell.

9.
Adv Mater ; 30(41): e1800406, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29682822

RESUMEN

One of the most important chemical reactions for renewable energy technologies such as fuel cells and metal-air batteries today is oxygen reduction. Due to the relatively sluggish reaction kinetics, catalysts are necessary to generate high power output. The most common catalyst for this reaction is platinum, but its scarcity and derived high price have raised the search for abundant nonprecious metal catalysts. Inspired from enzymatic processes which are known to catalyze oxygen reduction reaction efficiently, employing transition metal complexes as their catalytic centers, many are working on the development of bioinspired and biomimetic catalysts of this class. This research news article gives a glimpse of the recent progress on the development of bioinspired molecular catalyst for oxygen reduction, highlighting the importance of the molecular structure of the catalysts, from advancements in porphyrins and phthalocyanines to the most recent work on corroles, and 3D networks such as metal-organic frameworks and polymeric networks, all with nonpyrolyzed, well-defined molecular catalysts for oxygen reduction reaction.


Asunto(s)
Materiales Biomiméticos/química , Suministros de Energía Eléctrica , Catálisis , Oxidación-Reducción
10.
ACS Appl Mater Interfaces ; 10(30): 25337-25349, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30036030

RESUMEN

The synthesis, characterization, and electrocatalytic properties of mesoporous carbon materials doped with nitrogen atoms and iron are reported and compared for the catalyzed reduction of oxygen gas at fuel cell cathodes. Mixtures of common and inexpensive organic precursors, melamine, and formaldehyde were pyrolyzed in the presence of transition-metal salts (e.g., nitrates) within a mesoporous silica template to yield mesoporous carbon materials with greater extents of graphitization than those of others prepared from small-molecule precursors. In particular, Fe,N-doped carbon materials possessed high surface areas (∼800 m2/g) and high electrical conductivities (∼19 S/cm), which make them attractive for electrocatalyst applications. The surface compositions of the mesoporous Fe,N-doped carbon materials were postsynthetically modified by acid washing and followed by high-temperature thermal treatments, which were shown by X-ray photoelectron spectroscopy to favor the formation of graphitic and pyridinic nitrogen moieties. Such surface-modified materials exhibited high electrocatalytic oxygen reduction activities under alkaline conditions, as established by their high onset and half-wave potentials (1.04 and 0.87 V, respectively vs reversible hydrogen electrode) and low Tafel slope (53 mV/decade). These values are superior to many similar transition-metal- and N-doped carbon materials and compare favorably with commercially available precious-metal catalysts, e.g., 20 wt % Pt supported on activated carbon. The analyses indicate that inexpensive mesoporous Fe,N-doped carbon materials are promising alternatives to precious metal-containing catalysts for electrochemical reduction of oxygen in polymer electrolyte fuel cells.

11.
ACS Appl Mater Interfaces ; 9(42): 36944-36954, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28982005

RESUMEN

Exploring inexpensive and high-performance nonprecious metal catalysts (NPMCs) to replace the rare and expensive Pt-based catalyst for the oxygen reduction reaction (ORR) is crucial for future low-temperature fuel cell devices. Herein, we developed a new type of highly efficient 3D porous Fe/N/C electrocatalyst through a simple pyrolysis approach. Our systematic study revealed that the pyrolysis temperature, the surface area, and the Fe content in the catalysts largely affect the ORR performance of the Fe/N/C catalysts, and the optimized parameters have been identified. The optimized Fe/N/C catalyst, with an interconnected hollow and open structure, exhibits one of the highest ORR activity, stability and selectivity in both alkaline and acidic conditions. In 0.1 M KOH, compared to the commercial Pt/C catalyst, the 3D porous Fe/N/C catalyst exhibits ∼6 times better activity (e.g., 1.91 mA cm-2 for Fe/N/C vs 0.32 mA cm-2 for Pt/C, at 0.9 V) and excellent stability (e.g., no any decay for Fe/N/C vs 35 mV negative half-wave potential shift for Pt/C, after 10000 cycles test). In 0.5 M H2SO4, this catalyst also exhibits comparable activity and better stability comparing to Pt/C catalyst. More importantly, in both alkaline and acidic media (RRDE environment), the as-synthesized Fe/N/C catalyst shows much better stability and methanol tolerance than those of the state-of-the-art commercial Pt/C catalyst. All these make the 3D porous Fe/N/C nanostructure an excellent candidate for non-precious-metal ORR catalyst in metal-air batteries and fuel cells.

12.
ACS Appl Mater Interfaces ; 9(26): 21747-21755, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28488436

RESUMEN

Herein, we develop a novel method to synthesize evenly dispersed fine Co nanoparticles (CoNPs) (particle size of ∼42 nm) encapsulated in a N-doped porous carbon matrix (NPCM) with superficial N-doped porous carbon nanofibers (NPCNF) (denoted as Co@NPCM/CNF-850) as an oxygen reduction reaction (ORR) electrocatalyst. Such an electrocatalyst is the direct pyrolysis product of the novel pine needle-like ZIF-67-based metal-organic framework nanowire array (MOFNWA) prepared using an inorganic cobalt carbonate hydroxide (Co(CO3)0.5(OH)·0.11H2O) nanowire array as a linear sacrificial template, which is totally different from the traditional method, that is, using inorganic salts to synthesize MOF particles. Because of the high dispersibility of the effective fine N-doped carbon-wrapped CoNPs (rather than the overlarge CoNP aggregates); the unique linear MOF-derived assemblies, which are beneficial to electronic transmission; the high degree of graphitization, which is attributed to the superficial NPCNF and carbon layers wrapping the CoNPs; as well as the high porosity, our catalyst showed remarkable ORR activity (Eonset of 1.033 V vs the reversible hydrogen electrode) in alkaline solution. Besides, our catalyst revealed excellent stability and tolerance of methanol. Furthermore, on the basis of the X-ray absorption near-edge structure, extended X-ray absorption fine structure, and linear sweep voltammetry data, we first provided proof that a catalyst devoid of obvious Co-Nx can have superior ORR activity.

13.
ACS Appl Mater Interfaces ; 9(30): 25184-25193, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28653526

RESUMEN

In this work, we present a comprehensive study on the role of metal species in MOF-based Me-N-C (mono- and bimetallic) catalysts for the hydrogen evolution reaction (HER). The catalysts are investigated with respect to HER activity and stability in alkaline electrolyte. On the basis of the structural analysis by X-ray diffraction, X-ray-induced photoelectron spectroscopy, and transmission electron microscopy, it is concluded that MeN4 sites seem to dominate the HER activity of these catalysts. There is a strong relation between the amount of MeN4 sites that are formed and the energy of formation related to these sites integrated at the edge of a graphene layer, as obtained from density functional theory (DFT) calculations. Our results show, for the first time, that the combination of two metals (Co and Mo) in a bimetallic (Co,Mo)-N-C catalyst allows hydrogen production with a significantly improved overpotential in comparison to its monometallic counterparts and other Me-N-C catalysts. By the combination of experimental results with DFT calculations, we show that the origin of the enhanced performance of our (Co,Mo)-N-C catalyst seems to be provided by an improved hydrogen binding energy on one MeN4 site because of the presence of a second MeN4 site in its close vicinity, as investigated in detail for our most active (Co,Mo)-N-C catalyst. The outstanding stability and good activity make especially the bimetallic Me-N-C catalysts interesting candidates for solar fuel applications.

14.
ACS Appl Mater Interfaces ; 8(26): 16649-55, 2016 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-27300690

RESUMEN

The preparation of a low-cost, high-efficient, and stable electrocatalyst as an alternative to platinum for the oxygen reduction reaction (ORR) is especially important to various energy storage components, such as fuel cells and metal-air batteries. Here, we report a new type of bonded double-doped graphene nanoribbon-based nonprecious metal catalysts in which Fe3C nanoparticles embedded in Fe-N-doped graphene nanoribbon (GNRs) frameworks through a simple pyrolysis. The as-obtained catalyst possesses several desirable merits for the ORR, such as diverse high-efficiency catalytic sites, a high specific surface area, an ideal hierarchical cellular structure, and a highly conductive N-doped GNR network. Accordingly, the prepared catalyst shows a superior ORR activity (an onset potential of 0.02 V and a half-wave potential of -0.148 V versus an Ag/AgCl electrode) in alkaline media, close to the commercial Pt/C catalyst. Moreover, it also displays good ORR behavior in an acidic solution.

15.
ACS Appl Mater Interfaces ; 8(10): 6464-71, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26902179

RESUMEN

Tuna is one of the most rapid and distant swimmers. Its unique gill structure with the porous lamellae promotes fast oxygen exchange that guarantees tuna's high metabolic and athletic demands. Inspired by this specific structure, we designed and fabricated microporous graphene nanoplatelets (GNPs)-based Fe/N/C electrocatalysts for oxygen reduction reaction (ORR). Careful control of GNP structure leads to the increment of microporosity, which influences the O2 adsorption positively and desorption oppositely, resulting in enhanced O2 diffusion, while experiencing reduced ORR kinetics. Working in the cathode of proton-exchange membrane fuel cells, the GNP catalysts require a compromise between adsorption/desorption for effective O2 exchange, and as a result, appropriate microporosity is needed. In this work, the highest power density, 521 mW·cm(-2), at zero back pressure is achieved.


Asunto(s)
Carbono/química , Hierro/química , Nitrógeno/química , Oxígeno/química , Catálisis , Oxidación-Reducción
16.
ACS Nano ; 9(2): 1977-84, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25605063

RESUMEN

Cost-effective electrocatalysts based on nonprecious metals for efficient water splitting are crucial for various technological applications represented by fuel cell. Here, 3d transition metal layered double hydroxides (LDHs) with varied contents of Ni and Fe were successfully synthesized through a homogeneous precipitation. The exfoliated Ni-Fe LDH nanosheets were heteroassembled with graphene oxide (GO) as well as reduced graphene oxide (rGO) into superlattice-like hybrids, in which two kinds of oppositely charged nanosheets are stacked face-to-face in alternating sequence. Heterostructured composites of Ni2/3Fe1/3 LDH nanosheets and GO (Ni2/3Fe1/3-GO) exhibited an excellent oxygen evolution reaction (OER) efficiency with a small overpotential of about 0.23 V and Tafel slope of 42 mV/decade. The activity was further improved via the combination of Ni2/3Fe1/3 LDH nanosheets with more conductive rGO (Ni2/3Fe1/3-rGO) to achieve an overpotential as low as 0.21 V and Tafel plot of 40 mV/decade. The catalytic activity was enhanced with an increased Fe content in the bimetallic Ni-Fe system. Moreover, the composite catalysts were found to be effective for hydrogen evolution reaction. An electrolyzer cell powered by a single AA battery of 1.5 V was demonstrated by using the bifunctional catalysts.

17.
J Phys Chem Lett ; 5(21): 3750-6, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26278745

RESUMEN

The applicability of analyzing by Mößbauer spectroscopy the structural changes of Fe-N-C catalysts that have been tested at the cathode of membrane electrode assemblies in proton exchange membrane (PEM) fuel cells is demonstrated. The Mößbauer characterization of powders of the same catalysts was recently described in our previous publication. A possible change of the iron species upon testing in fuel cell was investigated here by Mößbauer spectroscopy, energy-dispersive X-ray cross-sectional imaging, and neutron activation analysis. Our results show that the absorption probability of γ rays by the iron nuclei in Fe-N-C is strongly affected by the presence of Nafion and water content. A detailed investigation of the effect of an oxidizing treatment (1.2 V) of the non-noble cathode in PEM fuel cell indicates that the observed activity decay is mainly attributable to carbon oxidation causing a leaching of active iron sites hosted in the carbon matrix.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA