Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.342
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Microbiol ; 76: 661-680, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35709500

RESUMEN

Mycobacterium tuberculosis is a globally distributed, lethal pathogen of humans. The virulence armamentarium of M. tuberculosis appears to have been developed on a scaffold of antiphagocytic defenses found among diverse, mostly free-living species of Mycobacterium. Pathoadaptation was further aided by the modularity, flexibility, and interactivity characterizing mycobacterial effectors and their regulators. During emergence of M. tuberculosis, novel genetic material was acquired, created, and integrated with existing tools. The major mutational mechanisms underlying these adaptations are discussed in this review, with examples. During its evolution, M. tuberculosis lost the ability and/or opportunity to engage in lateral gene transfer, but despite this it has retained the adaptability that characterizes mycobacteria. M. tuberculosis exemplifies the evolutionary genomic mechanisms underlying adoption of the pathogenic niche, and studies of its evolution have uncovered a rich array of discoveries about how new pathogens are made.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Evolución Molecular , Transferencia de Gen Horizontal , Humanos , Mycobacterium tuberculosis/genética , Tuberculosis/microbiología , Virulencia/genética , Factores de Virulencia/genética
2.
Proc Natl Acad Sci U S A ; 121(17): e2403206121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38630725

RESUMEN

Mycobacterium abscessus is increasingly recognized as the causative agent of chronic pulmonary infections in humans. One of the genes found to be under strong evolutionary pressure during adaptation of M. abscessus to the human lung is embC which encodes an arabinosyltransferase required for the biosynthesis of the cell envelope lipoglycan, lipoarabinomannan (LAM). To assess the impact of patient-derived embC mutations on the physiology and virulence of M. abscessus, mutations were introduced in the isogenic background of M. abscessus ATCC 19977 and the resulting strains probed for phenotypic changes in a variety of in vitro and host cell-based assays relevant to infection. We show that patient-derived mutational variations in EmbC result in an unexpectedly large number of changes in the physiology of M. abscessus, and its interactions with innate immune cells. Not only did the mutants produce previously unknown forms of LAM with a truncated arabinan domain and 3-linked oligomannoside chains, they also displayed significantly altered cording, sliding motility, and biofilm-forming capacities. The mutants further differed from wild-type M. abscessus in their ability to replicate and induce inflammatory responses in human monocyte-derived macrophages and epithelial cells. The fact that different embC mutations were associated with distinct physiologic and pathogenic outcomes indicates that structural alterations in LAM caused by nonsynonymous nucleotide polymorphisms in embC may be a rapid, one-step, way for M. abscessus to generate broad-spectrum diversity beneficial to survival within the heterogeneous and constantly evolving environment of the infected human airway.


Asunto(s)
Mycobacterium abscessus , Humanos , Proteínas Bacterianas/genética , Lipopolisacáridos/química , Mutación
3.
Proc Natl Acad Sci U S A ; 121(2): e2314101120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165935

RESUMEN

Mycobacterium abscessus (Mab), a nontuberculous mycobacterial (NTM) species, is an emerging pathogen with high intrinsic drug resistance. Current standard-of-care therapy results in poor outcomes, demonstrating the urgent need to develop effective antimycobacterial regimens. Through synthetic modification of spectinomycin (SPC), we have identified a distinct structural subclass of N-ethylene linked aminomethyl SPCs (eAmSPCs) that are up to 64-fold more potent against Mab over the parent SPC. Mechanism of action and crystallography studies demonstrate that the eAmSPCs display a mode of ribosomal inhibition consistent with SPC. However, they exert their increased antimicrobial activity through enhanced accumulation, largely by circumventing efflux mechanisms. The N-ethylene linkage within this series plays a critical role in avoiding TetV-mediated efflux, as lead eAmSPC 2593 displays a mere fourfold susceptibility improvement against Mab ΔtetV, in contrast to the 64-fold increase for SPC. Even a minor shortening of the linkage by a single carbon, akin to 1st generation AmSPC 1950, results in a substantial increase in MICs and a 16-fold rise in susceptibility against Mab ΔtetV. These shifts suggest that longer linkages might modify the kinetics of drug expulsion by TetV, ultimately shifting the equilibrium towards heightened intracellular concentrations and enhanced antimicrobial efficacy. Furthermore, lead eAmSPCs were also shown to synergize with various classes of anti-Mab antibiotics and retain activity against clinical isolates and other mycobacterial strains. Encouraging pharmacokinetic profiles coupled with robust efficacy in Mab murine infection models suggest that eAmSPCs hold the potential to be developed into treatments for Mab and other NTM infections.


Asunto(s)
Antiinfecciosos , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Humanos , Animales , Ratones , Espectinomicina/farmacología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Antibacterianos/farmacología , Micobacterias no Tuberculosas , Antiinfecciosos/farmacología , Etilenos/farmacología , Pruebas de Sensibilidad Microbiana
4.
Am J Respir Crit Care Med ; 209(4): 374-389, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38016030

RESUMEN

Rationale: Non-cystic fibrosis bronchiectasis (NCFB) may originate in bronchiolar regions of the lung. Accordingly, there is a need to characterize the morphology and molecular characteristics of NCFB bronchioles. Objectives: Test the hypothesis that NCFB exhibits a major component of bronchiolar disease manifest by mucus plugging and ectasia. Methods: Morphologic criteria and region-specific epithelial gene expression, measured histologically and by RNA in situ hybridization and immunohistochemistry, identified proximal and distal bronchioles in excised NCFB lungs. RNA in situ hybridization and immunohistochemistry assessed bronchiolar mucus accumulation and mucin gene expression. CRISPR-Cas9-mediated IL-1R1 knockout in human bronchial epithelial cultures tested IL-1α and IL-1ß contributions to mucin production. Spatial transcriptional profiling characterized NCFB distal bronchiolar gene expression. Measurements and Main Results: Bronchiolar perimeters and lumen areas per section area were increased in proximal, but not distal, bronchioles in NCFB versus control lungs, suggesting proximal bronchiolectasis. In NCFB, mucus plugging was observed in ectatic proximal bronchioles and associated nonectatic distal bronchioles in sections with disease. MUC5AC and MUC5B mucins were upregulated in NCFB proximal bronchioles, whereas MUC5B was selectively upregulated in distal bronchioles. Bronchiolar mucus plugs were populated by IL-1ß-expressing macrophages. NCFB sterile sputum supernatants induced human bronchial epithelial MUC5B and MUC5AC expression that was >80% blocked by IL-1R1 ablation. Spatial transcriptional profiling identified upregulation of genes associated with secretory cells, hypoxia, interleukin pathways, and IL-1ß-producing macrophages in mucus plugs and downregulation of epithelial ciliogenesis genes. Conclusions: NCFB exhibits distinctive proximal and distal bronchiolar disease. Both bronchiolar regions exhibit bronchiolar secretory cell features and mucus plugging but differ in mucin gene regulation and ectasia.


Asunto(s)
Bronquiectasia , Fibrosis Quística , Humanos , Bronquiolos , Dilatación Patológica , Bronquiectasia/genética , Mucinas/metabolismo , Interleucina-1beta , Fibrosis , ARN , Mucina 5AC/genética
5.
Immunol Rev ; 301(1): 62-83, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33565103

RESUMEN

Upon infection, mycobacteria, such as Mycobacterium tuberculosis (Mtb) and nontuberculous mycobacteria (NTM), are recognized by host innate immune cells, triggering a series of intracellular processes that promote mycobacterial killing. Mycobacteria, however, have developed multiple counter-strategies to persist and survive inside host cells. By manipulating host effector mechanisms, including phagosome maturation, vacuolar escape, autophagy, antigen presentation, and metabolic pathways, pathogenic mycobacteria are able to establish long-lasting infection. Counteracting these mycobacteria-induced host modifying mechanisms can be accomplished by host-directed therapeutic (HDT) strategies. HDTs offer several major advantages compared to conventional antibiotics: (a) HDTs can be effective against both drug-resistant and drug-susceptible bacteria, as well as potentially dormant mycobacteria; (b) HDTs are less likely to induce bacterial drug resistance; and (c) HDTs could synergize with, or shorten antibiotic treatment by targeting different pathways. In this review, we will explore host-pathogen interactions that have been identified for Mtb for which potential HDTs impacting both innate and adaptive immunity are available, and outline those worthy of future research. We will also discuss possibilities to target NTM infection by HDT, although current knowledge regarding host-pathogen interactions for NTM is limited compared to Mtb. Finally, we speculate that combinatorial HDT strategies can potentially synergize to achieve optimal mycobacterial host immune control.


Asunto(s)
Mycobacterium tuberculosis , Micobacterias no Tuberculosas , Antibacterianos/uso terapéutico , Autofagia , Interacciones Huésped-Patógeno
6.
Clin Infect Dis ; 78(6): 1690-1697, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38563246

RESUMEN

BACKGROUND: Improving health-related quality of life (HRQOL) has emerged as a priority in the management of nontuberculous mycobacterial pulmonary disease (NTM-PD). We aimed to evaluate HRQOL and its changes after 6 months' treatment in patients with NTM-PD. METHODS: The NTM-KOREA is a nationwide prospective cohort enrolling patients initiating treatment for NTM-PD in 8 institutions across South Korea. We conducted the Quality of Life-Bronchiectasis (QOL-B) at 6-month intervals and evaluated baseline scores (higher scores indicate better quality of life) and changes after 6 months' treatment. Multivariate logistic regression was performed to identify factors associated with improvement in the QOL-B physical functioning and respiratory symptoms domains. RESULTS: Between February 2022 and August 2023, 411 patients were included in the analysis. Baseline scores (95% confidence interval [CI]) for physical functioning and respiratory symptoms were 66.7 (46.7-86.7) and 81.5 (70.4-92.6), respectively. Among 228 patients who completed the QOL-B after 6 months' treatment, improvements in physical functioning and respiratory symptoms were observed in 61 (26.8%) and 71 (31.1%) patients, respectively. A lower score (adjusted odds ratio; 95% CI) for physical functioning (0.93; 0.91-0.96) and respiratory symptoms (0.92; 0.89-0.95) at treatment initiation was associated with a greater likelihood of physical functioning and respiratory symptom improvement, respectively; achieving culture conversion was not associated with improvement in physical functioning (0.62; 0.28-1.39) or respiratory symptoms (1.30; 0.62-2.74). CONCLUSIONS: After 6 months of antibiotic treatment for NTM-PD, HRQOL improved in almost one-third, especially in patients with severe initial symptoms, regardless of culture conversion. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov identifier: NCT03934034.


Asunto(s)
Antibacterianos , Infecciones por Mycobacterium no Tuberculosas , Calidad de Vida , Humanos , Masculino , Femenino , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , República de Corea , Antibacterianos/uso terapéutico , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Micobacterias no Tuberculosas/efectos de los fármacos , Resultado del Tratamiento
7.
BMC Genomics ; 25(1): 376, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632539

RESUMEN

BACKGROUND: Mycobacterium avium complex (MAC), including Mycobacterium intracellulare is a member of slow-growing mycobacteria and contributes to a substantial proportion of nontuberculous mycobacterial lung disease in humans affecting immunocompromised and elderly populations. Adaptation of pathogens in hostile environments is crucial in establishing infection and persistence within the host. However, the sophisticated cellular and molecular mechanisms of stress response in M. intracellulare still need to be fully explored. We aimed to elucidate the transcriptional response of M. intracellulare under acidic and oxidative stress conditions. RESULTS: At the transcriptome level, 80 genes were shown [FC] ≥ 2.0 and p < 0.05 under oxidative stress with 10 mM hydrogen peroxide. Specifically, 77 genes were upregulated, while 3 genes were downregulated. In functional analysis, oxidative stress conditions activate DNA replication, nucleotide excision repair, mismatch repair, homologous recombination, and tuberculosis pathways. Additionally, our results demonstrate that DNA replication and repair system genes, such as dnaB, dinG, urvB, uvrD2, and recA, are indispensable for resistance to oxidative stress. On the contrary, 878 genes were shown [FC] ≥ 2.0 and p < 0.05 under acidic stress with pH 4.5. Among these genes, 339 were upregulated, while 539 were downregulated. Functional analysis highlighted nitrogen and sulfur metabolism pathways as the primary responses to acidic stress. Our findings provide evidence of the critical role played by nitrogen and sulfur metabolism genes in the response to acidic stress, including narGHIJ, nirBD, narU, narK3, cysND, cysC, cysH, ferredoxin 1 and 2, and formate dehydrogenase. CONCLUSION: Our results suggest the activation of several pathways potentially critical for the survival of M. intracellulare under a hostile microenvironment within the host. This study indicates the importance of stress responses in M. intracellulare infection and identifies promising therapeutic targets.


Asunto(s)
Complejo Mycobacterium avium , Infección por Mycobacterium avium-intracellulare , Humanos , Anciano , Complejo Mycobacterium avium/genética , Transcriptoma , Infección por Mycobacterium avium-intracellulare/microbiología , Perfilación de la Expresión Génica , Estrés Oxidativo , Nitrógeno , Azufre
8.
Emerg Infect Dis ; 30(3): 548-554, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38407146

RESUMEN

Because epidemiologic and environmental risk factors for nontuberculous mycobacteria (NTM) have been reported only infrequently, little information exists about those factors. The state of Virginia, USA, requires certain ecologic features to be included in reports to the Virginia Department of Health, presenting a unique opportunity to study those variables. We analyzed laboratory reports of Mycobacterium avium complex (MAC) and M. abscessus infections in Virginia during 2021-2023. MAC/M. abscessus was isolated from 6.19/100,000 persons, and 2.37/100,000 persons had MAC/M. abscessus lung disease. M. abscessus accounted for 17.4% and MAC for 82.6% of cases. Saturated vapor pressure was associated with MAC/M. abscessus prevalence (prevalence ratio 1.414, 95% CI 1.011-1.980; p = 0.043). Self-supplied water use was a protective factor (incidence rate ratio 0.304, 95% CI 0.098-0.950; p = 0.041). Our findings suggest that a better understanding of geographic clustering and environmental water exposures could help develop future targeted prevention and control efforts.


Asunto(s)
Carbamatos , Mycobacterium abscessus , Micobacterias no Tuberculosas , Pirazinas , Piridinas , Virginia/epidemiología , Complejo Mycobacterium avium , Agua
9.
Antimicrob Agents Chemother ; 68(3): e0115723, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38259101

RESUMEN

Mycobacterium avium complex pulmonary disease is treated with an azithromycin, ethambutol, and rifampicin regimen, with limited efficacy. The role of rifampicin is controversial due to inactivity, adverse effects, and drug interactions. Here, we evaluated the efficacy of clofazimine as a substitute for rifampicin in an intracellular hollow-fiber infection model. THP-1 cells, which are monocytes isolated from peripheral blood from an acute monocytic leukemia patient, were infected with M. avium ATCC 700898 and exposed to a regimen of azithromycin and ethambutol with either rifampicin or clofazimine. Intrapulmonary pharmacokinetic profiles of azithromycin, ethambutol, and rifampicin were simulated. For clofazimine, a steady-state average concentration was targeted. Drug concentrations and bacterial densities were monitored over 21 days. Exposures to azithromycin and ethambutol were 20%-40% lower than targeted but within clinically observed ranges. Clofazimine exposures were 1.7 times higher than targeted. Until day 7, both regimens were able to maintain stasis. Thereafter, regrowth was observed for the rifampicin-containing regimen, while the clofazimine-containing regimen yielded a 2 Log10 colony forming unit (CFU) per mL decrease in bacterial load. The clofazimine regimen also successfully suppressed the emergence of macrolide tolerance. In summary, substitution of rifampicin with clofazimine in the hollow-fiber model improved the antimycobacterial activity of the regimen. Clofazimine-containing regimens merit investigation in clinical trials.


Asunto(s)
Enfermedades Pulmonares , Infección por Mycobacterium avium-intracellulare , Humanos , Rifampin/farmacología , Rifampin/uso terapéutico , Clofazimina/farmacología , Clofazimina/uso terapéutico , Etambutol/farmacología , Etambutol/uso terapéutico , Azitromicina/farmacología , Mycobacterium avium , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológico , Quimioterapia Combinada , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Complejo Mycobacterium avium , Enfermedades Pulmonares/microbiología
10.
Antimicrob Agents Chemother ; : e0168423, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656138

RESUMEN

Novel antimicrobials are needed to treat rising nontuberculous mycobacteria (NTM) infections. Using standard broth microdilution methods, 68 NTM isolates were tested against gepotidacin, a new, first-in-class, oral triazaacenaphthylene bacterial topoisomerase inhibitor. MICs varied (0.25 to >64 µg/mL) with the lowest being M. fortuitum complex (0.25-8 µg/mL), M. mucogenicum complex (1-2 µg/mL), M. kansasii (0.25-8 µg/mL), and M. marinum (4-16 µg/mL). Testing greater numbers of some species is suggested to better understand gepotidacin activity against NTM.

11.
Biochem Biophys Res Commun ; 690: 149249, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000294

RESUMEN

The anti-tuberculosis therapeutic bedaquiline (BDQ) is used against Mycobacterium abscessus. In M. abscessus BDQ is only bacteriostatic and less potent compared to M. tuberculosis or M. smegmatis. Here we demonstrate its reduced ATP synthesis inhibition against M. abscessus inside-out vesicles, including the F1FO-ATP synthase. Molecular dynamics simulations and binding free energy calculations highlight the differences in drug-binding of the M. abscessus and M. smegmatis FO-domain at the lagging site, where the drug deploys its mechanistic action, inhibiting ATP synthesis. These data pave the way for improved anti-M. abscessus BDQ analogs.


Asunto(s)
Mycobacterium abscessus , Mycobacterium tuberculosis , Antituberculosos/farmacología , Diarilquinolinas/farmacología , Diarilquinolinas/metabolismo , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico Sintasa/metabolismo , Adenosina Trifosfato/metabolismo , Pruebas de Sensibilidad Microbiana
12.
J Clin Microbiol ; 62(6): e0014924, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38690881

RESUMEN

We identified 23 cases of Mycobacterium immunogenum respiratory acquisition linked to a colonized plumbing system at a new hospital addition. We conducted a genomic and epidemiologic investigation to assess for clonal acquisition of M. immunogenum from hospital water sources and improve understanding of genetic distances between M. immunogenum isolates. We performed whole-genome sequencing on 28 M. immunogenum isolates obtained from August 2013 to July 2021 from patients and water sources on four intensive care and intermediate units at an academic hospital. Study hospital isolates were recovered from 23 patients who experienced de novo respiratory isolation of M. immunogenum and from biofilms obtained from five tap water outlets. We also analyzed 10 M. immunogenum genomes from previously sequenced clinical (n = 7) and environmental (n = 3) external control isolates. The 38-isolate cohort clustered into three clades with pairwise single-nucleotide polymorphism (SNP) distances ranging from 0 to 106,697 SNPs. We identified two clusters of study hospital isolates in Clade 1 and one cluster in Clade 2 for which clinical and environmental isolates differed by fewer than 10 SNPs and had less than 0.5% accessory genome variation. A less restrictive combined threshold of 40 SNPs and 5% accessory genes reliably captured additional isolates that met clinical criteria for hospital acquisition, but 12 (4%) of 310 epidemiologically unrelated isolate pairs also met this threshold. Core and accessory genome analyses confirmed respiratory acquisition of multiple clones of M. immunogenum from hospital water sources to patients. When combined with epidemiologic investigation, genomic thresholds accurately distinguished hospital acquisition.


Asunto(s)
Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Humanos , Genoma Bacteriano , Hospitales , Agua Potable/microbiología , Mycobacterium/genética , Mycobacterium/clasificación , Mycobacterium/aislamiento & purificación , Masculino , Microbiología del Agua , Genómica , Femenino , Persona de Mediana Edad , Anciano , Infección Hospitalaria/microbiología , Infección Hospitalaria/epidemiología , Infecciones por Mycobacterium no Tuberculosas/epidemiología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Adulto
13.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35211720

RESUMEN

Whole genome sequencing (WGS) can provide insight into drug-resistance, transmission chains and the identification of outbreaks, but data analysis remains an obstacle to its routine clinical use. Although several drug-resistance prediction tools have appeared, until now no website integrates drug-resistance prediction with strain genetic relationships and species identification of nontuberculous mycobacteria (NTM). We have established a free, function-rich, user-friendly online platform for MTB WGS data analysis (SAM-TB, http://samtb.szmbzx.com) that integrates drug-resistance prediction for 17 antituberculosis drugs, detection of variants, analysis of genetic relationships and NTM species identification. The accuracy of SAM-TB in predicting drug-resistance was assessed using 3177 sequenced clinical isolates with results of phenotypic drug-susceptibility tests (pDST). Compared to pDST, the sensitivity of SAM-TB for detecting multidrug-resistant tuberculosis was 93.9% [95% confidence interval (CI) 92.6-95.1%] with specificity of 96.2% (95% CI 95.2-97.1%). SAM-TB also analyzes the genetic relationships between multiple strains by reconstructing phylogenetic trees and calculating pairwise single nucleotide polymorphism (SNP) distances to identify genomic clusters. The incorporated mlstverse software identifies NTM species with an accuracy of 98.2% and Kraken2 software can detect mixed MTB and NTM samples. SAM-TB also has the capacity to share both sequence data and analysis between users. SAM-TB is a multifunctional integrated website that uses WGS raw data to accurately predict antituberculosis drug-resistance profiles, analyze genetic relationships between multiple strains and identify NTM species and mixed samples containing both NTM and MTB. SAM-TB is a useful tool for guiding both treatment and epidemiological investigation.


Asunto(s)
Mycobacterium tuberculosis , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Análisis de Datos , Resistencia a Medicamentos , Filogenia , Secuenciación Completa del Genoma/métodos
14.
Int J Med Microbiol ; 314: 151603, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246090

RESUMEN

Mycobacteroides abscessus is one of the most resistant bacteria so far known and causes severe and hard to treat lung infections in predisposed patients such as those with Cystic Fibrosis (CF). Further, it causes nosocomial infections by forming biofilms on medical devices or water reservoirs. An eye-catching feature of M. abscessus is the growth in two colony morphotypes. Depending on the presence or absence of glycopeptidolipids on the cell surface, it forms smooth or rough colonies. In this study, a porous glass bead biofilm model was used to compare biofilm formation, biofilm organization and biofilm matrix composition in addition to the antimicrobial susceptibility of M. abscessus biofilms versus suspensions of isogenic (smooth and rough) patient isolates. Both morphotypes reached the same cell densities in biofilms. The biofilm architecture, however, was dramatically different with evenly distributed oligo-layered biofilms in smooth isolates, compared to tightly packed, voluminous biofilm clusters in rough morphotypes. Biofilms of both morphotypes contained more total biomass of the matrix components protein, lipid plus DNA than was seen in corresponding suspensions. The biofilm mode of growth of M. abscessus substantially increased resistance to the antibiotics amikacin and tigecycline. Tolerance to the disinfectant peracetic acid of both morphotypes was increased when grown as biofilm, while tolerance to glutaraldehyde was significantly increased in biofilm of smooth isolates only. Overall, smooth colony morphotypes had more pronounced antimicrobial resistance benefit when growing as biofilm than M. abscessus showing rough colony morphotypes.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Humanos , Antibacterianos/farmacología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Farmacorresistencia Bacteriana , Biopelículas
15.
Appl Environ Microbiol ; 90(2): e0165823, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38236032

RESUMEN

In this study, we compared conventional vacuum filtration of small volumes through disc membranes (effective sample volumes for potable water: 0.3-1.0 L) with filtration of high volumes using ultrafiltration (UF) modules (effective sample volumes for potable water: 10.6-84.5 L) for collecting bacterial biomass from raw, finished, and tap water at seven drinking water systems. Total bacteria, Legionella spp., Legionella pneumophila, Mycobacterium spp., and Mycobacterium avium complex in these samples were enumerated using both conventional quantitative PCR (qPCR) and viability qPCR (using propidium monoazide). In addition, PCR-amplified gene fragments were sequenced for microbial community analysis. The frequency of detection (FOD) of Legionella spp. in finished and tap water samples was much greater using UF modules (83% and 77%, respectively) than disc filters (24% and 33%, respectively). The FODs for Mycobacterium spp. in raw, finished, and tap water samples were also consistently greater using UF modules than disc filters. Furthermore, the number of observed operational taxonomic units and diversity index values for finished and tap water samples were often substantially greater when using UF modules as compared to disc filters. Conventional and viability qPCR yielded similar results, suggesting that membrane-compromised cells represented a minor fraction of total bacterial biomass. In conclusion, our research demonstrates that large-volume filtration using UF modules improved the detection of opportunistic pathogens at the low concentrations typically found in public drinking water systems and that the majority of bacteria in these systems appear to be viable in spite of disinfection with free chlorine and/or chloramine.IMPORTANCEOpportunistic pathogens, such as Legionella pneumophila, are a growing public health concern. In this study, we compared sample collection and enumeration methods on raw, finished, and tap water at seven water systems throughout the State of Minnesota, USA. The results showed that on-site filtration of large water volumes (i.e., 500-1,000 L) using ultrafiltration membrane modules improved the frequency of detection of relatively rare organisms, including opportunistic pathogens, compared to the common approach of filtering about 1 L using disc membranes. Furthermore, results from viability quantitative PCR (qPCR) with propidium monoazide were similar to conventional qPCR, suggesting that membrane-compromised cells represent an insignificant fraction of microorganisms. Results from these ultrafiltration membrane modules should lead to a better understanding of the microbial ecology of drinking water distribution systems and their potential to inoculate premise plumbing systems with opportunistic pathogens where conditions are more favorable for their growth.


Asunto(s)
Azidas , Agua Potable , Legionella pneumophila , Legionella , Mycobacterium , Propidio/análogos & derivados , Agua Potable/microbiología , Mycobacterium/genética , Microbiología del Agua , Abastecimiento de Agua , Legionella/genética
16.
BMC Microbiol ; 24(1): 172, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760693

RESUMEN

BACKGROUND: We evaluated whether the sputum bacterial microbiome differs between nontuberculous mycobacteria pulmonary disease (NTM-PD) patients with stable disease not requiring antibiotic treatment and those requiring antibiotics. METHODS: We collected sputum samples from 21 clinically stable NTM-PD patients (stable group) and 14 NTM-PD patients needing antibiotic treatment (treatment group). We also obtained 13 follow-up samples from the stable group. We analyzed the 48 samples using 16S rRNA gene sequencing (V3-V4 region) and compared the groups. RESULTS: In the linear discriminant analysis effect size (LEfSe) analysis, the species Porphyromonas pasteri, Haemophilus parahaemolyticus, Prevotella nanceiensis, and Gemella haemolysans were significantly more prevalent in the sputum of the stable group compared to the treatment group. No taxa showed significant differences in alpha-/beta-diversity or LEfSe between the 21 baseline and 13 follow-up sputum samples in the stable group. In the stable group, the genus Bergeyella and species Prevotella oris were less common in patients who achieved spontaneous culture conversion (n = 9) compared to those with persistent NTM positivity (n = 12) (effect size 3.04, p = 0.039 for Bergeyella; effect size 3.64, p = 0.033 for P. oris). In the treatment group, H. parainfluenzae was more common in patients with treatment success (n = 7) than in treatment-refractory patients (n = 7) (effect size 4.74, p = 0.013). CONCLUSIONS: Our study identified distinct bacterial taxa in the sputum of NTM-PD patients based on disease status. These results suggest the presence of a microbial environment that helps maintain disease stability.


Asunto(s)
Microbiota , Infecciones por Mycobacterium no Tuberculosas , ARN Ribosómico 16S , Esputo , Humanos , Esputo/microbiología , Masculino , Femenino , Microbiota/genética , Microbiota/efectos de los fármacos , Anciano , Infecciones por Mycobacterium no Tuberculosas/microbiología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , ARN Ribosómico 16S/genética , Persona de Mediana Edad , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Micobacterias no Tuberculosas/aislamiento & purificación , Micobacterias no Tuberculosas/genética , Micobacterias no Tuberculosas/clasificación , Micobacterias no Tuberculosas/efectos de los fármacos , ADN Bacteriano/genética , Enfermedades Pulmonares/microbiología , Enfermedades Pulmonares/tratamiento farmacológico
17.
Eur J Clin Microbiol Infect Dis ; 43(6): 1091-1098, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38607578

RESUMEN

PURPOSE: Rapid, reliable identification of mycobacteria from positive cultures is essential for patient management, particularly for the differential diagnosis of Mycobacterium tuberculosis complex (MTBC) and nontuberculous mycobacteria (NTM) species. The aim of the present study was to evaluate a new "In-Vitro-Diagnostic"-certified PCR kit, FluoroType®-Mycobacteria VER 1.0 (Hain Lifescience GmbH) for NTM and MTBC identification from cultures. METHODS: Mycobacteria identification isolated from positive cultures during routine practice at the Lyon university hospital mycobacteria laboratory obtained by hsp65 amplification/sequencing were compared retrospectively and prospectively to those obtained by and the FluoroType®-Mycobacteria VER 1.0 kit. RESULTS: The overall agreement between hsp65 amplification/sequencing and the FluoroType®-Mycobacteria VER 1.0 kit was 88.4% (84/95); 91.2% (52/57) for the retrospective period and 84.2% (32/38) for the prospective period. There were 9 (9.5%) minor discrepancies (species in the FluoroType®-Mycobacteria VER 1.0 database and identified at genus level): 4 during the retrospective period, 5 during the prospective period; and 2 (2.1%) major discrepancies (species in the FluoroType®-Mycobacteria VER 1.0 database and identified incorrectly to species level): 1 during the retrospective period (M. kumamotonense identified as M. abscessus subsp massiliense by the kit) and 1 during the prospective period (M. chimaera identified as M. smegmatis by the kit). Including concordant results at genus level and minor discrepancies, 17.9% (17/95) of strains were identified as Mycobacterium sp. by the FluoroType®-Mycobacteria-VER 1.0 kit. CONCLUSION: The good performance of the FluoroType®-Mycobacteria-VER 1.0 kit with few major discrepancies could enable its use for first-line identification of positive mycobacteria cultures. However, an alternative identification method at least for reference laboratories is needed owing to the non-negligible proportion of NTM strains were identified at genus level.


Asunto(s)
Micobacterias no Tuberculosas , Humanos , Estudios Retrospectivos , Estudios Prospectivos , Micobacterias no Tuberculosas/aislamiento & purificación , Micobacterias no Tuberculosas/clasificación , Micobacterias no Tuberculosas/genética , Francia , Proteínas Bacterianas/genética , Mycobacterium/aislamiento & purificación , Mycobacterium/genética , Mycobacterium/clasificación , Reacción en Cadena de la Polimerasa/métodos , Infecciones por Mycobacterium no Tuberculosas/microbiología , Infecciones por Mycobacterium no Tuberculosas/diagnóstico , Chaperonina 60/genética , Técnicas de Diagnóstico Molecular/métodos , Sensibilidad y Especificidad
18.
BMC Infect Dis ; 24(1): 118, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38262940

RESUMEN

OBJECTIVES: This study aimed to measure the prevalence of resistance to antimicrobial agents, and explore the risk factors associated with drug resistance by using nontuberculous Mycobacteria (NTM) isolates from China. METHODS: A total of 335 NTM isolates were included in our analysis. Broth dilution method was used to determine in vitro drug susceptibility of NTM isolates. RESULTS: Clarithromycin (CLA) was the most potent drug for Mycobacterium intracellulare (MI). The resistance rate of 244 MI isolates to CLA was 21%, yielding a minimum inhibitory concentrations (MIC)50 and MIC90 of 8 and 64 mg/L, respectively. 51% of 244 MI isolates exhibited resistance to amikacin (AMK). For 91 Mycobacterium abscessus complex (MABC) isolates, 6 (7%) and 49 (54%) isolates were categorized as resistant to CLA at day 3 and 14, respectively. The resistance rate to CLA for Mycobacterium abscessus subspecies abscessus (MAA) was dramatically higher than that for Mycobacterium abscessus subspecies massiliense (MAM). Additionally, the percentage of patients presenting fever in the CLA-susceptible group was significantly higher than that in the CLA-resistant group. CONCLUSIONS: Our data demonstrate that approximate one fifth of MI isolates are resistant to CLA. We have identified a higher proportion of CLA-resistant MAA isolates than MAM. The patients caused by CLA-resistant MI are at low risk for presenting with fever relative to CLA-susceptible group.


Asunto(s)
Mycobacterium abscessus , Micobacterias no Tuberculosas , Humanos , Complejo Mycobacterium avium , China , Amicacina , Claritromicina , Fiebre
19.
BMC Infect Dis ; 24(1): 604, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898397

RESUMEN

BACKGROUND: Although the Mini Nutritional Assessment (MNA) is recognized as a useful tool for evaluating nutritional status in patients with various diseases, its applicability in patients with nontuberculous mycobacterial pulmonary disease (NTM-PD) remains undetermined. METHODS: We designed a prospective cross-sectional study to investigate whether the MNA Short-Form (MNA-SF) score can serve as a screening tool to assess the nutritional status of patients with NTM-PD. The MNA-SF was conducted upon patient enrollment, and correlation analyses were performed to compare MNA-SF scores with other nutritional measurements and disease severity. Multivariable logistic regression analyses were conducted to evaluate the association between MNA-SF scores and NTM-PD severity. RESULTS: The 194 patients with NTM-PD included in the analysis had a median age of 65.0 (59.0-69.0) years; 59.3% (n = 115) had low MNA-SF scores (< 12). The low MNA-SF group exhibited a lower body mass index (19.7 vs. 22.4 kg/m2, p < 0.001) and fat-free mass index (14.7 vs. 15.6 kg/m2, p < 0.001) than the normal MNA-SF group, as well as higher incidences of sarcopenia (20.0% vs. 6.3%, p = 0.008) and adipopenia (35.7% vs. 5.1%, p < 0.001). However, no significant differences in calorie and protein intakes were observed between the two groups. Low MNA-SF scores were associated with radiographic severity (adjusted odds ratio 2.72, 95% confidence interval 1.38-5.36) but not with forced vital capacity. CONCLUSIONS: The MNA-SF can effectively assess the nutritional status of patients with NTM-PD and can serve as an important clinical indicator in NTM-PD where treatment timing is determined by clinical judgment.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Evaluación Nutricional , Estado Nutricional , Humanos , Estudios Transversales , Masculino , Femenino , Anciano , Persona de Mediana Edad , Estudios Prospectivos , Micobacterias no Tuberculosas/aislamiento & purificación , Enfermedades Pulmonares/microbiología
20.
BMC Infect Dis ; 24(1): 288, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448840

RESUMEN

BACKGROUND: Nontuberculous mycobacteria (NTM) are environmental bacteria which may cause chronic lung disease. The prevalence of NTM pulmonary infection and disease has been increasing in the United States and globally. The predominant clinically relevant species of NTM in the United States are Mycobacterium avium complex (MAC) species and Mycobacterium abscessus. With the development of rapid species identification methods for NTM (e.g. PCR probes), more testing for NTM is being conducted through commercial labs, such as Laboratory Corporation of America (Labcorp), which provides deidentified real-time testing data to the Centers for Disease Control (CDC) pursuant to a data sharing agreement. Because NTM lung infections are not reportable in most states, other data sources are key to understanding NTM testing patterns, positivity rates, and species distributions to track infection trends and identify clinical care needs. METHODS: We obtained national Labcorp data for the period January 2019 through mid-April 2022. We subset the data to only respiratory samples sent for Acid Fast Bacilli (AFB) cultures. NTM positive results were defined as those which identified an NTM species and are not Mycobacterium tuberculosis, Mycobacterium bovis, or Mycobacterium gordonae. RESULTS: Overall, 112,528 respiratory samples were sent for AFB testing during the study period; 26.3% were from the Southeast U.S., identified as HSS Region IV in the Labcorp dataset, and 23.0% were from the Pacific and South Pacific region (Region IX). The culture positive prevalence ranged from 20.2% in the Southeast to 9.2% in the East North Central region (Region V). In the Southeast US, M. abscessus prevalence was 4.0%. For MAC, the highest prevalence was observed in the Mountain region (Region VII) (13.5%) and the lowest proportion was in the East South Central region (7.3%, Region III). Among positive tests, the proportion which was MAC varied from 61.8% to 88.9% and was highest in the Northeast U.S. The proportion of positive samples which were M. abscessus ranged from 3.8% to 19.7% and was highest in the Southeast. CONCLUSIONS: The Southeastern region of the U.S. has the highest rate of culture positivity in Labcorp tests for total NTM and, of all positive tests, the highest proportion of M. abscessus. These estimates may underrepresent the true number of M. abscessus infections because M. absesscus-specific probes are not commercially available and not all NTM testing in the United States is done by Labcorp. Analysis of real-time testing data from commercial laboratories may provide insights into risk factors for NTM culture positivity in 'hotspot' areas.


Asunto(s)
Mycobacterium abscessus , Mycobacterium bovis , Infecciones Oportunistas , Estados Unidos/epidemiología , Humanos , Micobacterias no Tuberculosas , Complejo Mycobacterium avium , Laboratorios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA