Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 510
Filtrar
1.
FASEB J ; 38(13): e23748, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38940767

RESUMEN

12,13-dihydroxy-9z-octadecenoic acid (12,13-DiHOME) is a linoleic acid diol derived from cytochrome P-450 (CYP) epoxygenase and epoxide hydrolase (EH) metabolism. 12,13-DiHOME is associated with inflammation and mitochondrial damage in the innate immune response, but how 12,13-DiHOME contributes to these effects is unclear. We hypothesized that 12,13-DiHOME enhances macrophage inflammation through effects on NOD-like receptor protein 3 (NLRP3) inflammasome activation. To test this hypothesis, we utilized human monocytic THP1 cells differentiated into macrophage-like cells with phorbol myristate acetate (PMA). 12,13-DiHOME present during lipopolysaccharide (LPS)-priming of THP1 macrophages exacerbated nigericin-induced NLRP3 inflammasome activation. Using high-resolution respirometry, we observed that priming with LPS+12,13-DiHOME altered mitochondrial respiratory function. Mitophagy, measured using mito-Keima, was also modulated by 12,13-DiHOME present during priming. These mitochondrial effects were associated with increased sensitivity to nigericin-induced mitochondrial depolarization and reactive oxygen species production in LPS+12,13-DiHOME-primed macrophages. Nigericin-induced mitochondrial damage and NLRP3 inflammasome activation in LPS+12,13-DiHOME-primed macrophages were ablated by the mitochondrial calcium uniporter (MCU) inhibitor, Ru265. 12,13-DiHOME present during LPS-priming also enhanced nigericin-induced NLRP3 inflammasome activation in primary murine bone marrow-derived macrophages. In summary, these data demonstrate a pro-inflammatory role for 12,13-DiHOME by enhancing NLRP3 inflammasome activation in macrophages.


Asunto(s)
Inflamasomas , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Inflamasomas/metabolismo , Animales , Humanos , Ratones , Células THP-1 , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ácido Linoleico/farmacología , Especies Reactivas de Oxígeno/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 44(4): e131-e144, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38357817

RESUMEN

BACKGROUND: Aortic valve stenosis (AVS) is the most common valvular disease in the developed world. AVS involves the progressive fibrocalcific remodeling of the aortic valve (AV), which impairs function and can ultimately lead to heart failure. Due to gaps in our understanding of the underlying mechanisms of AVS, there are no pharmacological treatments or dietary interventions known to slow AVS progression. Recent studies have begun to suggest oxylipins-a class of bioactive lipids-may be dysregulated in the valves of patients with AVS. METHODS: We utilized high-performance liquid chromatography-tandem mass spectrometry to conduct a targeted oxylipin analysis on human AV tissue and plasma from a cohort of 110 patients undergoing AV surgery. RESULTS: We identified 36 oxylipins in human AV tissue with all showing significant increase in patients with severe AVS. A multivariate model including patient characteristics and valvular oxylipins identified the arachidonic acid-COX (cyclooxygenase) pathway-derived prostanoids to be the most associated with AVS severity. Plasma oxylipin levels were measured in a subset of AV surgery patients and compared with a control group of healthy participants, showing distinct oxylipin profiles between control and disease. CONCLUSIONS: Our comprehensive analysis of oxylipins in the human AV identified the inflammatory and osteogenic regulating prostanoids to be positively correlated with AVS severity. This elucidation of prostanoid dysregulation warrants further research into COX inhibition to mitigate AVS.


Asunto(s)
Estenosis de la Válvula Aórtica , Oxilipinas , Humanos , Prostaglandinas , Estenosis de la Válvula Aórtica/cirugía , Válvula Aórtica/cirugía
3.
Pflugers Arch ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38637408

RESUMEN

Human arachidonate 15-lipoxygenase type B is a lipoxygenase that catalyzes the peroxidation of arachidonic acid at carbon-15. The corresponding murine ortholog however has 8-lipoxygenase activity. Both enzymes oxygenate polyunsaturated fatty acids in S-chirality with singular reaction specificity, although they generate a different product pattern. Furthermore, while both enzymes utilize both esterified fatty acids and fatty acid hydro(pero)xides as substrates, they differ with respect to the orientation of the fatty acid in their substrate-binding pocket. While ALOX15B accepts the fatty acid "tail-first," Alox8 oxygenates the free fatty acid with its "head-first." These differences in substrate orientation and thus in regio- and stereospecificity are thought to be determined by distinct amino acid residues. Towards their biological function, both enzymes share a commonality in regulating cholesterol homeostasis in macrophages, and Alox8 knockdown is associated with reduced atherosclerosis in mice. Additional roles have been linked to lung inflammation along with tumor suppressor activity. This review focuses on the current knowledge of the enzymatic activity of human ALOX15B and murine Alox8, along with their association with diseases.

4.
Biochem Biophys Res Commun ; 700: 149585, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38290177

RESUMEN

Endothelial microvascular dysfunction affects multi-organ pathologic processes that contribute to increased vascular tone and is at the base of impaired metabolic and cardiovascular diseases. The vascular dilation impaired by nitric oxide (NO) deficiency in such dysfunctional endothelium is often balanced by endothelial-derived hyperpolarizing factors (EDHFs), which play a critical role in managing vascular tone. Our latest research has uncovered a new group of lactone oxylipins produced in the polyunsaturated fatty acids (PUFAs) CYP450 epoxygenase pathway, significantly affecting vascular dilation. The lactone oxylipin, derived from arachidonic acid (5,6-diHET lactone, AA-L), has been previously shown to facilitate vasodilation dependent on the endothelium in isolated human microvessels. The administration of the lactone oxylipin derived from eicosapentaenoic acid (5,6-diHETE lactone, EPA-L) to hypertensive rats demonstrated a significant decrease in blood pressure and improvement in the relaxation of microvessels. However, the molecular signaling processes that underlie these observations were not fully understood. The current study delineates the molecular pathways through which EPA-L promotes endothelium-dependent vascular dilation. In microvessels from hypertensive individuals, it was found that EPA-L mediates endothelium-dependent vasodilation while the signaling pathway was not dependent on NO. In vitro studies on human endothelial cells showed that the hyperpolarization mediated by EPA-L relies on G-protein-coupled receptor (GPR)-phospholipase C (PLC)-IP3 signaling that further activates calcium-dependent potassium flux. The pathway was confirmed using a range of inhibitors and cells overexpressing GPR40, where a specific antagonist reduced the calcium levels and outward currents induced by EPA-L. The downstream AKT and endothelial NO synthase (eNOS) phosphorylations were non-significant. These findings show that the GPR-PLC-IP3 pathway is a key mediator in the EPA-L-triggered vasodilation of arterioles. Therefore, EPA-L is identified as a significant lactone-based PUFA metabolite that contributes to endothelial and vascular health.


Asunto(s)
Células Endoteliales , Hipertensión , Humanos , Ratas , Animales , Células Endoteliales/metabolismo , Fosfolipasas de Tipo C/metabolismo , Calcio/metabolismo , Dilatación , Oxilipinas/metabolismo , Endotelio Vascular/metabolismo , Vasodilatación , Hipertensión/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal
5.
New Phytol ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38725409

RESUMEN

In angiosperms, wound-derived signals travel through the vasculature to systemically activate defence responses throughout the plant. In Arabidopsis thaliana, activity of vasculature-specific Clade 3 glutamate receptor-like (GLR) channels is required for the transmission of electrical signals and cytosolic Ca2+ ([Ca2+]cyt) waves from wounded leaves to distal tissues, triggering activation of oxylipin-dependent defences. Whether nonvascular plants mount systemic responses upon wounding remains unknown. To explore the evolution of systemic defence responses, we investigated electrical and calcium signalling in the nonvascular plant Marchantia polymorpha. We found that electrical signals and [Ca2+]cyt waves are generated in response to mechanical wounding and propagated to nondamaged distal tissues in M. polymorpha. Functional analysis of MpGLR, the only GLR encoded in the genome of M. polymorpha, indicates that its activity is necessary for the systemic transmission of wound-induced electrical signals and [Ca2+]cyt waves, similar to vascular plants. However, spread of these signals is neither coupled to systemic accumulation of oxylipins nor to a transcriptional defence response in the distal tissues of wounded M. polymorpha plants. Our results suggest that lack of vasculature prevents translocation of additional signalling factors that, together with electrical signals and [Ca2+]cyt waves, contribute to systemic activation of defences in tracheophytes.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38648876

RESUMEN

OBJECTIVE: To examine associations between serum oxylipins, which regulate tissue repair and pain signalling, and knee pain/radiographic osteoarthritis (OA) at baseline and knee pain at 3 year follow-up. METHOD: Baseline, and 3 year follow-up, knee pain phenotypes were assessed from 154 participants in the Knee Pain in the Community (KPIC) cohort study. Serum and radiographic Kellgren and Lawrence (KL) and Nottingham line drawing atlas OA scores were collected at baseline. Oxylipin levels were quantified using liquid chromatography coupled with mass spectrometry. Associations were measured by linear regression and receiver operating characteristics (ROC). RESULTS: Serum levels of 8,9-epoxyeicosatrienoic acid (EET) (ß(95% confidence intervals (CI)) = 1.809 (-0.71 to 2.91)), 14,15-dihydroxyeicosatrienoic acid (DHET) (ß(95%CI) = 0.827 (0.34-1.31)), and 12-hydroxyeicosatetraenoic acid (HETE) (ß(95%CI) = 4.090 (1.92-6.26)) and anandamide (ß(95%CI) = 3.060 (1.35-4.77)) were cross-sectionally associated with current self-reported knee pain scores (numerical rating scale (NRS) item 3, average pain). Serum levels of 9- (ß(95%CI) = 0.467 (0.18-0.75)) and 15-HETE (ß(95%CI) = 0.759 (0.29-1.22)), 14-hydroxydocosahexaenoic acid (ß(95%CI) = 0.483(0.24-0.73)), and the ratio of 8,9-EET:DHET (ß(95%CI) = 0.510(0.19-0.82)) were cross-sectionally associated with KL scores. Baseline serum concentrations of 8,9-EET (ß(95%CI) = 2.166 (0.89-3.44)), 5,6-DHET (ß(95%CI) = 152.179 (69.39-234.97)), and 5-HETE (ß(95%CI) = 1.724 (0.677-2.77) showed positive longitudinal associations with follow-up knee pain scores (NRS item 3, average pain). Combined serum 8,9-EET and 5-HETE concentration showed the strongest longitudinal association (ß(95%CI) = 1.156 (0.54-1.77) with pain scores at 3 years, and ROC curves distinguished between participants with no pain and high pain scores at follow-up (area under curve (95%CI) = 0.71 (0.61-0.82)). CONCLUSIONS: Serum levels of a combination of hydroxylated metabolites of arachidonic acid may have prognostic utility for knee pain, providing a potential novel approach to identify people who are more likely to have debilitating pain in the future.

7.
Plant Cell Environ ; 47(7): 2336-2350, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38500380

RESUMEN

Chloroplast function is essential for growth, development, and plant adaptation to stress. Organelle stress and plant defence responses were examined here using noxy8 (nonresponding to oxylipins 8) from a series of Arabidopsis mutants. The noxy8 mutation was located at the CLPC2 gene, encoding a chloroplast chaperone of the protease complex CLP. Although its CLPC1 paralogue is considered to generate redundancy, our data reveal significant differences distinguishing CLPC2 and CLPC1 functions. As such, clpc1 mutants displayed a major defect in housekeeping chloroplast proteostasis, leading to a pronounced reduction in growth and pigment levels, enhanced accumulation of chloroplast and cytosol chaperones, and resistance to fosmidomycin. Conversely, clpc2 mutants showed severe susceptibility to lincomycin inhibition of chloroplast translation and resistance to Antimycin A inhibition of mitochondrial respiration. In the response to Pseudomonas syringae pv. tomato, clpc2 but not clpc1 mutants were resistant to bacterial infection, showing higher salicylic acid levels, defence gene expression and 9-LOX pathway activation. Our findings suggest CLPC2 and CLPC1 functional specificity, with a preferential involvement of CLPC1 in housekeeping processes and of CLPC2 in stress responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Mutación , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Pseudomonas syringae/fisiología , Lincomicina/farmacología , Enfermedades de las Plantas/microbiología , Ácido Salicílico/metabolismo , Proteínas de Cloroplastos/metabolismo , Proteínas de Cloroplastos/genética
8.
Prostaglandins Other Lipid Mediat ; 171: 106806, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185280

RESUMEN

Bacterial endophthalmitis is a blinding infectious disease typically acquired during ocular surgery. We previously reported significant alterations in retinal metabolism during Staphylococcus (S) aureus endophthalmitis. However, the changes in retinal lipid composition during endophthalmitis are unknown. Here, using a mouse model of S. aureus endophthalmitis and an untargeted lipidomic approach, we comprehensively analyzed temporal alterations in total lipids and oxylipin in retina. Our data showed a time-dependent increase in the levels of lipid classes, sphingolipids, glycerolipids, sterols, and non-esterified fatty acids, whereas levels of phospholipids decreased. Among lipid subclasses, phosphatidylcholine decreased over time. The oxylipin analysis revealed increased prostaglandin-E2, hydroxyeicosatetraenoic acids, docosahexaenoic acid, eicosapentaenoic acid, and α-linolenic acid. In-vitro studies using mouse bone marrow-derived macrophages showed increased lipid droplets and lipid-peroxide formation in response to S. aureus infection. Collectively, these findings suggest that S. aureus-infection alters the retinal lipid profile, which may contribute to the pathogenesis of bacterial endophthalmitis.


Asunto(s)
Endoftalmitis , Staphylococcus aureus , Humanos , Staphylococcus aureus/fisiología , Lipidómica , Oxilipinas , Endoftalmitis/microbiología , Endoftalmitis/patología , Retina/patología
9.
Prostaglandins Other Lipid Mediat ; 171: 106814, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38280540

RESUMEN

Uncontrolled or dysregulated inflammation has adverse effects on the reproduction, production and health of animals, and is a major pathological cause of increased incidence and severity of infectious and metabolic diseases. To achieve successful transition from a non-lactation pregnant state to a non-pregnant lactation state, drastic metabolic and endocrine alteration have taken place in dairy cows during the periparturient period. These physiological changes, coupled with decreased dry matter intake near calving and sudden change of diet composition after calving, have the potential to disrupt the delicate balance between pro- and anti-inflammation, resulting in a disordered or excessive inflammatory response. In addition to cytokines and other immunoregulatory factors, most oxylipins formed from polyunsaturated fatty acids (PUFAs) via enzymatic and nonenzymatic oxygenation pathways have pro- or anti-inflammatory properties and play a pivotal role in the onset, development and resolution of inflammation. However, little attention has been paid to the possibility that oxylipins could function as endogenous immunomodulating agents. This review will provide a detailed overview of the main oxylipins derived from different PUFAs and discuss the regulatory role that oxylipins play in the postpartum inflammatory response in dairy cows. Based on the current research, much remains to be illuminated in this emerging field. Understanding the role that oxylipins play in the control of postpartum inflammation and inflammatory-based disease may improve our ability to prevent transition disorders via Management, pharmacological, genetic selection and dietary intervention strategies.


Asunto(s)
Metabolismo Energético , Oxilipinas , Femenino , Humanos , Embarazo , Bovinos , Animales , Oxilipinas/metabolismo , Periodo Posparto , Lactancia/metabolismo , Inflamación/metabolismo , Dieta/veterinaria , Ácidos Grasos Insaturados/metabolismo , Antiinflamatorios , Leche/metabolismo
10.
Prostaglandins Other Lipid Mediat ; 171: 106788, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37866654

RESUMEN

Derivatives of polyunsaturated fatty acids (PUFAs), also known as oxylipins, are key participants in regulating inflammation. Neuroinflammation is involved in many neurodegenerative diseases, including Parkinson's disease. The development of ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) facilitated the study of oxylipins on a system level, i.e., the analysis of oxylipin profiles. We analyzed oxylipin profiles in the blood plasma of 36 healthy volunteers (HC) and 73 patients with Parkinson's disease (PD), divided into early (L\M, 29 patients) or advanced (H, 44 patients) stages based on the Hoehn and Yahr scale. Among the 40 oxylipins detected, we observed a decrease in the concentration of arachidonic acid (AA) and AA derivatives, including anandamide (AEA) and Leukotriene E4 (LTE4), and an increase in the concentration of hydroxyeicosatetraenoic acids 19-HETE and 12-HETE (PD vs HC). Correlation analysis of gender, age of PD onset, and disease stages revealed 20 compounds the concentration of which changed depending on disease stage. Comparison of the acquired oxylipin profiles to openly available PD patient brain transcriptome datasets showed that plasma oxylipins do not appear to directly reflect changes in brain metabolism at different disease stages. However, both the L\M and H stages are characterized by their own oxylipin profiles - in patients with the H stage oxylipin synthesis is increased, while in patients with L\M stages oxylipin synthesis decreases compared to HC. This suggests that different therapeutic approaches may be more effective for patients at early versus late stages of PD.


Asunto(s)
Oxilipinas , Enfermedad de Parkinson , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Ácidos Grasos Insaturados/metabolismo , Ácido Araquidónico
11.
Bioorg Med Chem Lett ; 109: 129857, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38909706

RESUMEN

We have synthesized 10 analogs of oxylipins, which are nitrogen signaling factors (NSFs) that mediate cell-to-cell communication in the fission yeast Schizosaccharomyces pombe, and evaluated their structure-activity relationships with the aim of developing molecular probes for NSFs. We found that the OH or OAc group at C10 could be replaced with a compact amide (17) or carbamate (19). Introducing an alkyne as a detection tag at C10 led to decreased, though still sufficient, activity. Introducing an alkyne at the C18 position showed a similar trend, suggesting tolerance is relatively low even for compact functional groups such as alkynes. Although introduction of a diazirine moiety as a photoreactive group at the C5 position decreased the activity, we found that introducing diazirine at the C13 position was acceptable, and compound 38 exhibited potent NSF activity. These findings will be helpful in the development of molecular probes for NSFs.


Asunto(s)
Schizosaccharomyces , Relación Estructura-Actividad , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/metabolismo , Nitrógeno/química , Oxilipinas/química , Oxilipinas/metabolismo , Oxilipinas/farmacología , Oxilipinas/síntesis química , Estructura Molecular , Transducción de Señal/efectos de los fármacos
12.
J Endocrinol Invest ; 47(7): 1645-1656, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38172418

RESUMEN

PURPOSE: Vitamin D deficiency is related to metabolic disturbances. Indeed, a poor vitamin D status has been usually detected in patients with cardiovascular disease (CVD). However, the relationship between vitamin D and CVD risk factors in young adults remains controversial at present. This study aimed to examine the association between circulating 25-hydroxivitamin D (25(OH)D) and CVD risk factors in young adults. METHODS: The present cross-sectional study included a cohort of 177 young adults aged 18-25 years old (65% women). 25(OH)D serum concentrations were assessed using a competitive chemiluminescence immunoassay. Fasting CVD risk factors (i.e., body composition, blood pressure, glucose metabolism, lipid profile, liver, and inflammatory markers) were determined by routine methods. A panel of 63 oxylipins and endocannabinoids (eCBs) was also analyzed by targeted metabolomics. RESULTS: Circulating 25(OH)D concentrations were inversely associated with a wide range of CVD risk factors including anthropometrical (all P ≤ 0.005), body composition (all P ≤ 0.038), glucose metabolism (all P ≤ 0.029), lipid profile (all P < 0.035), liver (all P ≤ 0.011), and pro-inflammatory biomarkers (all P ≤ 0.030). No associations of serum 25(OH)D concentrations were found with pro-inflammatory markers (all P ≥ 0.104), omega-6 and omega-3 oxylipins, nor eCBs concentrations or their analogs (all P ≥ 0.05). CONCLUSION: The present findings support the idea that 25(OH)D could be a useful predictor of CVD risk in young individuals.


Asunto(s)
Enfermedades Cardiovasculares , Deficiencia de Vitamina D , Vitamina D , Humanos , Femenino , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/epidemiología , Masculino , Adulto Joven , Estudios Transversales , Adulto , Vitamina D/sangre , Vitamina D/análogos & derivados , Adolescente , Deficiencia de Vitamina D/sangre , Deficiencia de Vitamina D/epidemiología , Deficiencia de Vitamina D/complicaciones , Factores de Riesgo , Biomarcadores/sangre , Factores de Riesgo de Enfermedad Cardiaca
13.
Mar Drugs ; 22(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38786618

RESUMEN

Ecophysiological stress and the grazing of diatoms are known to elicit the production of chemical defense compounds called oxylipins, which are toxic to a wide range of marine organisms. Here we show that (1) the viral infection and lysis of diatoms resulted in oxylipin production; (2) the suite of compounds produced depended on the diatom host and the infecting virus; and (3) the virus-mediated oxylipidome was distinct, in both magnitude and diversity, from oxylipins produced due to stress associated with the growth phase. We used high-resolution accurate-mass mass spectrometry to observe changes in the dissolved lipidome of diatom cells infected with viruses over 3 to 4 days, compared to diatom cells in exponential, stationary, and decline phases of growth. Three host virus pairs were used as model systems: Chaetoceros tenuissimus infected with CtenDNAV; C. tenuissimus infected with CtenRNAV; and Chaetoceros socialis infected with CsfrRNAV. Several of the compounds that were significantly overproduced during viral infection are known to decrease the reproductive success of copepods and interfere with microzooplankton grazing. Specifically, oxylipins associated with allelopathy towards zooplankton from the 6-, 9-, 11-, and 15-lipogenase (LOX) pathways were significantly more abundant during viral lysis. 9-hydroperoxy hexadecatetraenoic acid was identified as the strongest biomarker for the infection of Chaetoceros diatoms. C. tenuissimus produced longer, more oxidized oxylipins when lysed by CtenRNAV compared to CtenDNAV. However, CtenDNAV caused a more statistically significant response in the lipidome, producing more oxylipins from known diatom LOX pathways than CtenRNAV. A smaller set of compounds was significantly more abundant in stationary and declining C. tenuissimus and C. socialis controls. Two allelopathic oxylipins in the 15-LOX pathway and essential fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were more abundant in the stationary phase than during the lysis of C. socialis. The host-virus pair comparisons underscore the species-level differences in oxylipin production and the value of screening more host-virus systems. We propose that the viral infection of diatoms elicits chemical defense via oxylipins which deters grazing with downstream trophic and biogeochemical effects.


Asunto(s)
Alelopatía , Diatomeas , Oxilipinas , Oxilipinas/metabolismo , Animales , Organismos Acuáticos , Zooplancton
14.
J Dairy Sci ; 107(7): 5070-5089, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38246537

RESUMEN

The early period of mammary gland involution is a critical juncture in the lactation cycle that can have significant effects on milk production and mammary gland health. Pegbovigrastim (PEG) administered 1 wk prior and on the day of parturition can enhance immune function and reduce the incidence of mastitis in the early postpartum period. Oxylipids are potent metabolites of polyunsaturated fatty acids (PUFA) and are important mediators of inflammation. The objective of this study was to evaluate effects of PEG given 1 wk before and at the day of dry-off (D0) on concentrations of oxylipids in plasma and milk from 7 d before D0 to 14 d after, as well as the effects during the first 14 d of the subsequent lactation. We hypothesized that both pro- and anti-inflammatory oxylipids would vary based on initiation of mammary gland involution and that pegbovigrastim would affect oxylipid concentrations, particularly those related to leukocytes. A complete randomized blocked design was used to enroll cows into either a PEG treatment group (n = 10) or control group (n = 10; CON). Blood samples were collected -7, -2, -1, 0, 1, 2, 4, 7, and 14 d relative to dry-off and 5, 10, and 14 d postcalving. Samples were analyzed for PUFA and oxylipids in milk and plasma by ultra-performance mass spectrometry and liquid chromatography tandem quadrupole mass spectrometry, respectively. Overall, 30 lipid mediators were measured in both milk and plasma. Repeated measures analyses revealed a significant interaction of treatment by time for milk 8-iso-keto-15-prostaglandin E2, prostaglandin F2α, plasma 8,12-iso-prostaglandin Fα-VI, 11-hydroxyeicosatetraenoic acid, and 12-hydroxyheptadecatienoic acid. The majority of milk PUFA and oxylipids differed significantly during early mammary gland involution and into the early postpartum period. This study demonstrated changes in oxylipids in milk secretions and plasma during early involution, and further investigation may illuminate multiple complex processes and reveal targets for optimization of mammary gland involution.


Asunto(s)
Lactancia , Glándulas Mamarias Animales , Leche , Oxilipinas , Periodo Posparto , Animales , Femenino , Leche/química , Bovinos , Oxilipinas/sangre
15.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732139

RESUMEN

The plant-derived α-linolenic acid (ALA) is an essential n-3 acid highly susceptible to oxidation, present in oils of flaxseeds, walnuts, canola, perilla, soy, and chia. After ingestion, it can be incorporated in to body lipid pools (particularly triglycerides and phospholipid membranes), and then endogenously metabolized through desaturation, elongation, and peroxisome oxidation to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), with a very limited efficiency (particularly for DHA), beta-oxidized as an energy source, or directly metabolized to C18-oxilipins. At this moment, data in the literature about the effects of ALA supplementation on metabolic syndrome (MetS) in humans are inconsistent, indicating no effects or some positive effects on all MetS components (abdominal obesity, dyslipidemia, impaired insulin sensitivity and glucoregulation, blood pressure, and liver steatosis). The major effects of ALA on MetS seem to be through its conversion to more potent EPA and DHA, the impact on the n-3/n-6 ratio, and the consecutive effects on the formation of oxylipins and endocannabinoids, inflammation, insulin sensitivity, and insulin secretion, as well as adipocyte and hepatocytes function. It is important to distinguish the direct effects of ALA from the effects of EPA and DHA metabolites. This review summarizes the most recent findings on this topic and discusses the possible mechanisms.


Asunto(s)
Síndrome Metabólico , Ácido alfa-Linolénico , Síndrome Metabólico/metabolismo , Humanos , Ácido alfa-Linolénico/metabolismo , Ácido alfa-Linolénico/administración & dosificación , Animales , Ácidos Grasos Insaturados/metabolismo , Suplementos Dietéticos , Resistencia a la Insulina
16.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791399

RESUMEN

Oxylipins, the metabolites of polyunsaturated fatty acids, are vital in regulating cell proliferation and inflammation. Among these oxylipins, specialized pro-resolving mediators notably contribute to inflammation resolution. Previously, we showed that the specialized pro-resolving mediators isomer 11,17dihydroxy docosapentaenoic acid (11,17diHDoPE) can be synthesized in bacterial cells and exhibits anti-inflammatory effects in mammalian cells. This study investigates the in vivo impact of 11,17diHDoPE in mice exposed to particulate matter 10 (PM10). Our results indicate that 11,17diHDoPE significantly mitigates PM10-induced lung inflammation in mice, as evidenced by reduced pro-inflammatory cytokines and pulmonary inflammation-related gene expression. Metabolomic analysis reveals that 11,17diHDoPE modulates inflammation-related metabolites such as threonine, 2-keto gluconic acid, butanoic acid, and methyl oleate in lung tissues. In addition, 11,17diHDoPE upregulates the LA-derived oxylipin pathway and downregulates arachidonic acid- and docosahexaenoic acid-derived oxylipin pathways in serum. Correlation analyses between gene expression and metabolite changes suggest that 11,17diHDoPE alleviates inflammation by interfering with macrophage differentiation. These findings underscore the in vivo role of 11,17diHDoPE in reducing pulmonary inflammation, highlighting its potential as a therapeutic agent for respiratory diseases.


Asunto(s)
Antiinflamatorios , Ácidos Grasos Insaturados , Metaboloma , Material Particulado , Neumonía , Animales , Ratones , Metaboloma/efectos de los fármacos , Neumonía/metabolismo , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Material Particulado/toxicidad , Antiinflamatorios/farmacología , Ácidos Grasos Insaturados/metabolismo , Masculino , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Ratones Endogámicos C57BL , Oxilipinas/metabolismo , Metabolómica/métodos , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos
17.
Molecules ; 29(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675565

RESUMEN

The understanding of the role of LXR in the regulation of macrophages during inflammation is emerging. Here, we show that LXR agonist T09 specifically increases 15-LOX abundance in primary human M2 macrophages. In time- and dose-dependent incubations with T09, an increase of 3-fold for ALOX15 and up to 15-fold for 15-LOX-derived oxylipins was observed. In addition, LXR activation has no or moderate effects on the abundance of macrophage marker proteins such as TLR2, TLR4, PPARγ, and IL-1RII, as well as surface markers (CD14, CD86, and CD163). Stimulation of M2-like macrophages with FXR and RXR agonists leads to moderate ALOX15 induction, probably due to side activity on LXR. Finally, desmosterol, 24(S),25-Ep cholesterol and 22(R)-OH cholesterol were identified as potent endogenous LXR ligands leading to an ALOX15 induction. LXR-mediated ALOX15 regulation is a new link between the two lipid mediator classes sterols, and oxylipins, possibly being an important tool in inflammatory regulation through anti-inflammatory oxylipins.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Receptores X del Hígado , Macrófagos , Oxilipinas , Humanos , Antiinflamatorios/farmacología , Araquidonato 15-Lipooxigenasa/metabolismo , Receptores X del Hígado/metabolismo , Receptores X del Hígado/agonistas , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Oxilipinas/metabolismo , Esteroles/farmacología , Esteroles/metabolismo
18.
J Lipid Res ; 64(5): 100353, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36907552

RESUMEN

Oxylipins are produced enzymatically from polyunsaturated fatty acids, are abundant in triglyceride-rich lipoproteins (TGRLs), and mediate inflammatory processes. Inflammation elevates TGRL concentrations, but it is unknown if the fatty acid and oxylipin compositions change. In this study, we investigated the effect of prescription ω-3 acid ethyl esters (P-OM3; 3.4 g/d EPA + DHA) on the lipid response to an endotoxin challenge (lipopolysaccharide; 0.6 ng/kg body weight). Healthy young men (N = 17) were assigned 8-12 weeks of P-OM3 and olive oil control in a randomized order crossover study. Following each treatment period, subjects received endotoxin challenge, and the time-dependent TGRL composition was observed. Postchallenge, arachidonic acid was 16% [95% CI: 4%, 28%] lower than baseline at 8 h with control. P-OM3 increased TGRL ω-3 fatty acids (EPA 24% [15%, 34%]; DHA 14% [5%, 24%]). The timing of ω-6 oxylipin responses differed by class; arachidonic acid-derived alcohols peaked at 2 h, while linoleic acid-derived alcohols peaked at 4 h (pint = 0.006). P-OM3 increased EPA alcohols by 161% [68%, 305%] and DHA epoxides by 178% [47%, 427%] at 4 h compared to control. In conclusion, this study shows that TGRL fatty acid and oxylipin composition changes following endotoxin challenge. P-OM3 alters the TGRL response to endotoxin challenge by increasing availability of ω-3 oxylipins for resolution of the inflammatory response.


Asunto(s)
Ácidos Grasos Omega-3 , Oxilipinas , Masculino , Humanos , Ésteres/farmacología , Endotoxinas , Estudios Cruzados , Ácidos Grasos Omega-3/farmacología , Ácido Eicosapentaenoico/farmacología , Lipoproteínas , Triglicéridos , Ácidos Grasos , Ácido Araquidónico , Alcoholes , Ácidos Docosahexaenoicos/farmacología
19.
J Biol Chem ; 298(11): 102507, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36122804

RESUMEN

1-Octen-3-ol is a volatile oxylipin found ubiquitously in Basidiomycota and Ascomycota. The biosynthetic pathway forming 1-octen-3-ol from linoleic acid via the linoleic acid 10(S)-hydroperoxide was characterized 40 years ago in mushrooms, yet the enzymes involved are not identified. The dioxygenase 1 and 2 genes (Ccdox1 and Ccdox2) in the mushroom Coprinopsis cinerea contain an N-terminal cyclooxygenase-like heme peroxidase domain and a C-terminal cytochrome P450-related domain. Herein, we show that recombinant CcDOX1 is responsible for dioxygenation of linoleic acid to form the 10(S)-hydroperoxide, the first step in 1-octen-3-ol synthesis, whereas CcDOX2 conceivably forms linoleic acid 8-hydroperoxide. We demonstrate that KO of the Ccdox1 gene suppressed 1-octen-3-ol synthesis, although added linoleic acid 10(S)-hydroperoxide was still efficiently converted. The P450-related domain of CcDOX1 lacks the characteristic Cys heme ligand and the evidence indicates that a second uncharacterized enzyme converts the 10(S)-hydroperoxide to 1-octen-3-ol. Additionally, we determined the gene KO strain (ΔCcdox1) was less attractive to fruit fly larvae, while the feeding behavior of fungus gnats on ΔCcdox1 mycelia showed little difference from that on the mycelia of the WT strain. The proliferation of fungivorous nematodes on ΔCcdox1 mycelia was similar to or slightly worse than that on WT mycelia. Thus, 1-octen-3-ol seems to be an attractive compound involved in emitter-receiver ecological communication in mushrooms.


Asunto(s)
Agaricales , Dioxigenasas , Oxigenasas/metabolismo , Ácido Linoleico , Peróxido de Hidrógeno , Dioxigenasas/genética , Octanoles/metabolismo , Agaricales/genética , Agaricales/metabolismo , Etanol , Hemo
20.
J Neuroinflammation ; 20(1): 149, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355700

RESUMEN

BACKGROUND: Chemotherapy-induced neuropathic pain (CIPN) describes a pathological pain state that occurs dose-dependently as a side effect and can limit or even impede an effective cancer therapy. Unfortunately, current treatment possibilities for CIPN are remarkably confined and mostly inadequate as CIPN therapeutics themselves consist of low effectiveness and may induce severe side effects, pointing out CIPN as pathological entity with an emerging need for novel treatment targets. Here, we investigated whether the novel and highly specific FKBP51 inhibitor SAFit2 reduces paclitaxel-induced neuropathic pain. METHODS: In this study, we used a well-established multiple low-dose paclitaxel model to investigate analgesic and anti-inflammatory properties of SAFit2. For this purpose, the behavior of the mice was recorded over 14 days and the mouse tissue was then analyzed using biochemical methods. RESULTS: Here, we show that SAFit2 is capable to reduce paclitaxel-induced mechanical hypersensitivity in mice. In addition, we detected that SAFit2 shifts lipid levels in nervous tissue toward an anti-inflammatory and pro-resolving lipid profile that counteracts peripheral sensitization after paclitaxel treatment. Furthermore, SAFit2 reduced the activation of astrocytes and microglia in the spinal cord as well as the levels of pain-mediating chemokines. Its treatment also increased anti-inflammatory cytokines levels in neuronal tissues, ultimately leading to a resolution of neuroinflammation. CONCLUSIONS: In summary, SAFit2 shows antihyperalgesic properties as it ameliorates paclitaxel-induced neuropathic pain by reducing peripheral sensitization and resolving neuroinflammation. Therefore, we consider SAFit2 as a potential novel drug candidate for the treatment of paclitaxel-induced neuropathic pain.


Asunto(s)
Neuralgia , Paclitaxel , Ratones , Animales , Paclitaxel/toxicidad , Enfermedades Neuroinflamatorias , Gliosis/inducido químicamente , Gliosis/tratamiento farmacológico , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/prevención & control , Lípidos/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA