Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.049
Filtrar
1.
Cell ; 170(1): 48-60.e11, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666122

RESUMEN

Type I CRISPR systems feature a sequential dsDNA target searching and degradation process, by crRNA-displaying Cascade and nuclease-helicase fusion enzyme Cas3, respectively. Here we present two cryo-EM snapshots of the Thermobifida fusca type I-E Cascade: (1) unwinding 11 bp of dsDNA at the seed-sequence region to scout for sequence complementarity, and (2) further unwinding of the entire protospacer to form a full R-loop. These structures provide the much-needed temporal and spatial resolution to resolve key mechanistic steps leading to Cas3 recruitment. In the early steps, PAM recognition causes severe DNA bending, leading to spontaneous DNA unwinding to form a seed-bubble. The full R-loop formation triggers conformational changes in Cascade, licensing Cas3 to bind. The same process also generates a bulge in the non-target DNA strand, enabling its handover to Cas3 for cleavage. The combination of both negative and positive checkpoints ensures stringent yet efficient target degradation in type I CRISPR-Cas systems.


Asunto(s)
Actinobacteria/genética , Actinobacteria/ultraestructura , Sistemas CRISPR-Cas , Hibridación de Ácido Nucleico , Actinobacteria/química , Actinobacteria/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Secuencia de Bases , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Microscopía por Crioelectrón , Modelos Moleculares , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo
2.
Cell ; 171(2): 414-426.e12, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985564

RESUMEN

Prokaryotic cells possess CRISPR-mediated adaptive immune systems that protect them from foreign genetic elements, such as invading viruses. A central element of this immune system is an RNA-guided surveillance complex capable of targeting non-self DNA or RNA for degradation in a sequence- and site-specific manner analogous to RNA interference. Although the complexes display considerable diversity in their composition and architecture, many basic mechanisms underlying target recognition and cleavage are highly conserved. Using cryoelectron microscopy (cryo-EM), we show that the binding of target double-stranded DNA (dsDNA) to a type I-F CRISPR system yersinia (Csy) surveillance complex leads to large quaternary and tertiary structural changes in the complex that are likely necessary in the pathway leading to target dsDNA degradation by a trans-acting helicase-nuclease. Comparison of the structure of the surveillance complex before and after dsDNA binding, or in complex with three virally encoded anti-CRISPR suppressors that inhibit dsDNA binding, reveals mechanistic details underlying target recognition and inhibition.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/inmunología , Bacteriófagos/genética , Bacteriófagos/inmunología , Proteínas Asociadas a CRISPR/inmunología , Proteínas Asociadas a CRISPR/ultraestructura , ADN Viral/química , Modelos Químicos , Modelos Moleculares , Complejos Multiproteicos/química , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/ultraestructura
3.
Cell ; 167(7): 1814-1828.e12, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27984729

RESUMEN

C2c1 is a newly identified guide RNA-mediated type V-B CRISPR-Cas endonuclease that site-specifically targets and cleaves both strands of target DNA. We have determined crystal structures of Alicyclobacillus acidoterrestris C2c1 (AacC2c1) bound to sgRNA as a binary complex and to target DNAs as ternary complexes, thereby capturing catalytically competent conformations of AacC2c1 with both target and non-target DNA strands independently positioned within a single RuvC catalytic pocket. Moreover, C2c1-mediated cleavage results in a staggered seven-nucleotide break of target DNA. crRNA adopts a pre-ordered five-nucleotide A-form seed sequence in the binary complex, with release of an inserted tryptophan, facilitating zippering up of 20-bp guide RNA:target DNA heteroduplex on ternary complex formation. Notably, the PAM-interacting cleft adopts a "locked" conformation on ternary complex formation. Structural comparison of C2c1 ternary complexes with their Cas9 and Cpf1 counterparts highlights the diverse mechanisms adopted by these distinct CRISPR-Cas systems, thereby broadening and enhancing their applicability as genome editing tools.


Asunto(s)
Alicyclobacillus/enzimología , Sistemas CRISPR-Cas , Endodesoxirribonucleasas/metabolismo , Alicyclobacillus/clasificación , Alicyclobacillus/genética , Alicyclobacillus/metabolismo , Cristalografía por Rayos X , Endodesoxirribonucleasas/genética , Edición Génica , Proteínas de Homeodominio/genética , Humanos , Modelos Moleculares , ARN no Traducido/metabolismo , Factores de Transcripción/genética
4.
Mol Cell ; 83(14): 2493-2508.e5, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37343553

RESUMEN

Type IV CRISPR-Cas systems, which are primarily found on plasmids and exhibit a strong plasmid-targeting preference, are the only one of the six known CRISPR-Cas types for which the mechanistic details of their function remain unknown. Here, we provide high-resolution functional snapshots of type IV-A Csf complexes before and after target dsDNA binding, either in the absence or presence of CasDinG, revealing the mechanisms underlying CsfcrRNA complex assembly, "DWN" PAM-dependent dsDNA targeting, R-loop formation, and CasDinG recruitment. Furthermore, we establish that CasDinG, a signature DinG family helicase, harbors ssDNA-stimulated ATPase activity and ATP-dependent 5'-3' DNA helicase activity. In addition, we show that CasDinG unwinds the non-target strand (NTS) and target strand (TS) of target dsDNA from the CsfcrRNA complex. These molecular details advance our mechanistic understanding of type IV-A CRISPR-Csf function and should enable Csf complexes to be harnessed as genome-engineering tools for biotechnological applications.


Asunto(s)
Proteínas Asociadas a CRISPR , ADN , ADN/genética , ADN de Cadena Simple/genética , Sistemas CRISPR-Cas , Proteínas Asociadas a CRISPR/metabolismo
5.
Mol Cell ; 83(11): 1827-1838.e6, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37267904

RESUMEN

CRISPR-associated transposons (CASTs) are natural RNA-directed transposition systems. We demonstrate that transposon protein TniQ plays a central role in promoting R-loop formation by RNA-guided DNA-targeting modules. TniQ residues, proximal to CRISPR RNA (crRNA), are required for recognizing different crRNA categories, revealing an unappreciated role of TniQ to direct transposition into different classes of crRNA targets. To investigate adaptations allowing CAST elements to utilize attachment sites inaccessible to CRISPR-Cas surveillance complexes, we compared and contrasted PAM sequence requirements in both I-F3b CAST and I-F1 CRISPR-Cas systems. We identify specific amino acids that enable a wider range of PAM sequences to be accommodated in I-F3b CAST elements compared with I-F1 CRISPR-Cas, enabling CAST elements to access attachment sites as sequences drift and evade host surveillance. Together, this evidence points to the central role of TniQ in facilitating the acquisition of CRISPR effector complexes for RNA-guided DNA transposition.


Asunto(s)
Proteínas Asociadas a CRISPR , ARN , ADN/genética , Sistemas CRISPR-Cas , Proteínas Asociadas a CRISPR/genética
6.
Mol Cell ; 82(6): 1210-1224.e6, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216669

RESUMEN

CRISPR-Cas biology and technologies have been largely shaped to date by the characterization and use of single-effector nucleases. By contrast, multi-subunit effectors dominate natural systems, represent emerging technologies, and were recently associated with RNA-guided DNA transposition. This disconnect stems from the challenge of working with multiple protein subunits in vitro and in vivo. Here, we apply cell-free transcription-translation (TXTL) systems to radically accelerate the characterization of multi-subunit CRISPR effectors and transposons. Numerous DNA constructs can be combined in one TXTL reaction, yielding defined biomolecular readouts in hours. Using TXTL, we mined phylogenetically diverse I-E effectors, interrogated extensively self-targeting I-C and I-F systems, and elucidated targeting rules for I-B and I-F CRISPR transposons using only DNA-binding components. We further recapitulated DNA transposition in TXTL, which helped reveal a distinct branch of I-B CRISPR transposons. These capabilities will facilitate the study and exploitation of the broad yet underexplored diversity of CRISPR-Cas systems and transposons.


Asunto(s)
Sistemas CRISPR-Cas , Endonucleasas , Sistema Libre de Células/metabolismo , ADN/genética , Endonucleasas/genética , ARN/metabolismo
7.
Mol Cell ; 82(21): 4160-4175.e6, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36272409

RESUMEN

CRISPR-Cas9-mediated genome editing depends on PAM recognition to initiate DNA unwinding. PAM mutations can abolish Cas9 binding and prohibit editing. Here, we identified a Cas9 from the thermophile Alicyclobacillus tengchongensis for which the PAM interaction can be robustly regulated by DNA topology. AtCas9 has a relaxed PAM of N4CNNN and N4RNNA (R = A/G) and is able to bind but not cleave targets with mutated PAMs. When PAM-mutated DNA was in underwound topology, AtCas9 exhibited enhanced binding affinity and high cleavage activity. Mechanistically, AtCas9 has a unique loop motif, which docked into the DNA major groove, and this interaction can be regulated by DNA topology. More importantly, AtCas9 showed near-PAMless editing of supercoiled plasmid in E. coli. In mammalian cells, AtCas9 exhibited broad PAM preference to edit plasmid with up to 72% efficiency and effective base editing at four endogenous loci, representing a potentially powerful tool for near-PAMless editing.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Edición Génica , ADN/genética , Plásmidos , Mamíferos/metabolismo
8.
Mol Cell ; 82(22): 4353-4367.e6, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36272411

RESUMEN

Adaptation in CRISPR-Cas systems immunizes bacteria and archaea against mobile genetic elements. In many DNA-targeting systems, the Cas4-Cas1-Cas2 complex is required for selection and processing of DNA segments containing PAM sequences prior to integration of these "prespacer" substrates as spacers in the CRISPR array. We determined cryo-EM structures of the Cas4-Cas1-Cas2 adaptation complex from the type I-C system that encodes standalone Cas1 and Cas4 proteins. The structures reveal how Cas4 specifically reads out bases within the PAM sequence and how interactions with both Cas1 and Cas2 activate Cas4 endonuclease activity. The Cas4-PAM interaction ensures tight binding between the adaptation complex and the prespacer, significantly enhancing integration of the non-PAM end into the CRISPR array and ensuring correct spacer orientation. Corroborated with our biochemical results, Cas4-Cas1-Cas2 structures with substrates representing various stages of CRISPR adaptation reveal a temporally resolved mechanism for maturation and integration of functional spacers into the CRISPR array.


Asunto(s)
Proteínas Asociadas a CRISPR , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN/metabolismo
9.
Mol Cell ; 77(1): 39-50.e10, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31735642

RESUMEN

CRISPR-Cas systems encode RNA-guided surveillance complexes to find and cleave invading DNA elements. While it is thought that invaders are neutralized minutes after cell entry, the mechanism and kinetics of target search and its impact on CRISPR protection levels have remained unknown. Here, we visualize individual Cascade complexes in a native type I CRISPR-Cas system. We uncover an exponential relation between Cascade copy number and CRISPR interference levels, pointing to a time-driven arms race between invader replication and target search, in which 20 Cascade complexes provide 50% protection. Driven by PAM-interacting subunit Cas8e, Cascade spends half its search time rapidly probing DNA (∼30 ms) in the nucleoid. We further demonstrate that target DNA transcription and CRISPR arrays affect the integrity of Cascade and affect CRISPR interference. Our work establishes the mechanism of cellular DNA surveillance by Cascade that allows the timely detection of invading DNA in a crowded, DNA-packed environment.


Asunto(s)
Bacterias/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , ADN/genética , ARN Guía de Kinetoplastida/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Replicación del ADN/genética , Dosificación de Gen/genética
10.
Mol Cell ; 76(6): 938-952.e5, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31668930

RESUMEN

High-resolution Cas9 structures have yet to reveal catalytic conformations due to HNH nuclease domain positioning away from the cleavage site. Nme1Cas9 and Nme2Cas9 are compact nucleases for in vivo genome editing. Here, we report structures of meningococcal Cas9 homologs in complex with sgRNA, dsDNA, or the AcrIIC3 anti-CRISPR protein. DNA-bound structures represent an early step of target recognition, a later HNH pre-catalytic state, the HNH catalytic state, and a cleaved-target-DNA-bound state. In the HNH catalytic state of Nme1Cas9, the active site is seen poised at the scissile phosphodiester linkage of the target strand, providing a high-resolution view of the active conformation. The HNH active conformation activates the RuvC domain. Our structures explain how Nme1Cas9 and Nme2Cas9 read distinct PAM sequences and how AcrIIC3 inhibits Nme1Cas9 activity. These structures provide insights into Cas9 domain rearrangements, guide-target engagement, cleavage mechanism, and anti-CRISPR inhibition, facilitating the optimization of these genome-editing platforms.


Asunto(s)
Bacteriófagos/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/metabolismo , Neisseria meningitidis/enzimología , Proteínas Virales/metabolismo , Bacteriófagos/genética , Sitios de Unión , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/ultraestructura , Catálisis , ADN/genética , ADN/ultraestructura , Escherichia coli/enzimología , Escherichia coli/genética , Neisseria meningitidis/genética , Unión Proteica , Dominios Proteicos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Relación Estructura-Actividad , Proteínas Virales/genética , Proteínas Virales/ultraestructura
11.
Mol Cell ; 73(4): 714-726.e4, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30581144

RESUMEN

CRISPR-Cas9 genome editing has transformed biotechnology and therapeutics. However, in vivo applications of some Cas9s are hindered by large size (limiting delivery by adeno-associated virus [AAV] vectors), off-target editing, or complex protospacer-adjacent motifs (PAMs) that restrict the density of recognition sequences in target DNA. Here, we exploited natural variation in the PAM-interacting domains (PIDs) of closely related Cas9s to identify a compact ortholog from Neisseria meningitidis-Nme2Cas9-that recognizes a simple dinucleotide PAM (N4CC) that provides for high target site density. All-in-one AAV delivery of Nme2Cas9 with a guide RNA targeting Pcsk9 in adult mouse liver produces efficient genome editing and reduced serum cholesterol with exceptionally high specificity. We further expand our single-AAV platform to pre-implanted zygotes for streamlined generation of genome-edited mice. Nme2Cas9 combines all-in-one AAV compatibility, exceptional editing accuracy within cells, and high target site density for in vivo genome editing applications.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/genética , Edición Génica/métodos , Hígado/enzimología , Neisseria meningitidis/enzimología , Proproteína Convertasa 9/genética , Animales , Proteína 9 Asociada a CRISPR/metabolismo , ADN/metabolismo , Dependovirus/genética , Transferencia de Embrión , Femenino , Vectores Genéticos , Células HEK293 , Humanos , Células K562 , Ratones Endogámicos C57BL , Motivos de Nucleótidos , Proproteína Convertasa 9/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Especificidad por Sustrato , Cigoto/metabolismo
12.
Mol Cell ; 73(3): 589-600.e4, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30639240

RESUMEN

CRISPR-Cas12a (Cpf1) is an RNA-guided DNA-cutting nuclease that has been repurposed for genome editing. Upon target DNA binding, Cas12a cleaves both the target DNA in cis and non-target single-stranded DNAs (ssDNAs) in trans. To elucidate the molecular basis for both DNase cleavage modes, we performed structural and biochemical studies on Francisella novicida Cas12a. We show that guide RNA-target strand DNA hybridization conformationally activates Cas12a, triggering its trans-acting, non-specific, single-stranded DNase activity. In turn, cis cleavage of double-stranded DNA targets is a result of protospacer adjacent motif (PAM)-dependent DNA duplex unwinding, electrostatic stabilization of the displaced non-target DNA strand, and ordered sequential cleavage of the non-target and target DNA strands. Cas12a releases the PAM-distal DNA cleavage product and remains bound to the PAM-proximal DNA cleavage product in a catalytically competent, trans-active state. Together, these results provide a revised model for the molecular mechanisms of both the cis- and the trans-acting DNase activities of Cas12a enzymes, enabling their further exploitation as genome editing tools.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN de Cadena Simple/metabolismo , Francisella/enzimología , Edición Génica/métodos , ARN Guía de Kinetoplastida/metabolismo , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Activación Enzimática , Francisella/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , Relación Estructura-Actividad , Especificidad por Sustrato
13.
Mol Cell ; 73(3): 601-610.e5, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595438

RESUMEN

CRISPR-Cas immune systems utilize RNA-guided nucleases to protect bacteria from bacteriophage infection. Bacteriophages have in turn evolved inhibitory "anti-CRISPR" (Acr) proteins, including six inhibitors (AcrIIA1-AcrIIA6) that can block DNA cutting and genome editing by type II-A CRISPR-Cas9 enzymes. We show here that AcrIIA2 and its more potent homolog, AcrIIA2b, prevent Cas9 binding to DNA by occluding protein residues required for DNA binding. Cryo-EM-determined structures of AcrIIA2 or AcrIIA2b bound to S. pyogenes Cas9 reveal a mode of competitive inhibition of DNA binding that is distinct from other known Acrs. Differences in the temperature dependence of Cas9 inhibition by AcrIIA2 and AcrIIA2b arise from differences in both inhibitor structure and the local inhibitor-binding environment on Cas9. These findings expand the natural toolbox for regulating CRISPR-Cas9 genome editing temporally, spatially, and conditionally.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN/metabolismo , Edición Génica/métodos , Fagos Pseudomonas/metabolismo , Pseudomonas aeruginosa/enzimología , ARN Guía de Kinetoplastida/metabolismo , Temperatura , Proteínas Virales/metabolismo , Unión Competitiva , Proteína 9 Asociada a CRISPR/antagonistas & inhibidores , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/ultraestructura , Microscopía por Crioelectrón , ADN/genética , ADN/ultraestructura , Escherichia coli/enzimología , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Fagos Pseudomonas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/virología , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/ultraestructura , Relación Estructura-Actividad , Proteínas Virales/genética , Proteínas Virales/ultraestructura
14.
Trends Biochem Sci ; 47(6): 464-476, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35236570

RESUMEN

Prokaryotes use clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (Cas) proteins as an adaptive immune system. CRISPR-Cas systems preserve molecular memories of infections by integrating short fragments of foreign nucleic acids as spacers into the host CRISPR array in a process termed 'adaptation'. Functional spacers ensure a robust immune response by Cas effectors, which neutralizes subsequent infection through RNA-guided interference pathways. In this review, we summarize recent discoveries that have advanced our understanding of adaptation, with a focus on how functional spacers are generated and incorporated through many widespread, but type-specific, mechanisms. Finally, we highlight future directions and outstanding questions for a more thorough understanding of CRISPR adaptation.


Asunto(s)
Proteínas Asociadas a CRISPR , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas
15.
Trends Biochem Sci ; 47(5): 433-450, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34920928

RESUMEN

The constantly expanding group of class II CRISPR-Cas (clustered regularly interspaced short palindromic repeats-associated) effectors and their engineered variants exhibit distinct editing modes and efficiency, fidelity, target range, and molecular size. Their enormous diversity of capabilities provides a formidable toolkit for a large array of technologies. We review the structural and biochemical mechanisms of versatile effector proteins from class II CRISPR-Cas systems to provide mechanistic insights into their target specificity, protospacer adjacent motif (PAM) restriction, and activity regulation, and discuss possible strategies to enhance genome-engineering tools in terms of accuracy, efficiency, applicability, and controllability.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética
16.
Development ; 150(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36683434

RESUMEN

Base editing by CRISPR crucially depends on the presence of a protospacer adjacent motif (PAM) at the correct distance from the editing site. Here, we present and validate an efficient one-shot approach termed 'inception' that expands the editing range. This is achieved by sequential, combinatorial base editing: de novo generated synonymous, non-synonymous or intronic PAM sites facilitate subsequent base editing at nucleotide positions that were initially inaccessible, further opening the targeting range of highly precise editing approaches. We demonstrate the applicability of the inception concept in medaka (Oryzias latipes) in three settings: loss of function, by introducing a pre-termination STOP codon in the open reading frame of oca2; locally confined multi-codon changes to generate allelic variants with different phenotypic severity in kcnh6a; and the removal of a splice acceptor site by targeting intronic sequences of rx3. Using sequentially acting base editors in the described combinatorial approach expands the number of accessible target sites by 65% on average. This allows the use of well-established tools with NGG PAM recognition for the establishment of thus far unreachable disease models, for hypomorphic allele studies and for efficient targeted mechanistic investigations in a precise and predictable manner.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Oryzias/genética
17.
Mol Cell ; 69(5): 906-914.e4, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29456189

RESUMEN

The microbial CRISPR systems enable adaptive defense against mobile elements and also provide formidable tools for genome engineering. The Cas9 proteins are type II CRISPR-associated, RNA-guided DNA endonucleases that identify double-stranded DNA targets by sequence complementarity and protospacer adjacent motif (PAM) recognition. Here we report that the type II-C CRISPR-Cas9 from Neisseria meningitidis (Nme) is capable of programmable, RNA-guided, site-specific cleavage and recognition of single-stranded RNA targets and that this ribonuclease activity is independent of the PAM sequence. We define the mechanistic feature and specificity constraint for RNA cleavage by NmeCas9 and also show that nuclease null dNmeCas9 binds to RNA target complementary to CRISPR RNA. Finally, we demonstrate that NmeCas9-catalyzed RNA cleavage can be blocked by three families of type II-C anti-CRISPR proteins. These results fundamentally expand the targeting capacities of CRISPR-Cas9 and highlight the potential utility of NmeCas9 as a single platform to target both RNA and DNA.


Asunto(s)
Sistemas CRISPR-Cas/fisiología , Neisseria meningitidis/metabolismo , Estabilidad del ARN/fisiología , ARN Bacteriano/metabolismo , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Neisseria meningitidis/genética , ARN Bacteriano/genética
18.
Mol Cell ; 69(1): 146-157.e3, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29304331

RESUMEN

CRISPR-Cas systems offer versatile technologies for genome engineering, yet their implementation has been outpaced by ongoing discoveries of new Cas nucleases and anti-CRISPR proteins. Here, we present the use of E. coli cell-free transcription-translation (TXTL) systems to vastly improve the speed and scalability of CRISPR characterization and validation. TXTL can express active CRISPR machinery from added plasmids and linear DNA, and TXTL can output quantitative dynamics of DNA cleavage and gene repression-all without protein purification or live cells. We used TXTL to measure the dynamics of DNA cleavage and gene repression for single- and multi-effector CRISPR nucleases, predict gene repression strength in E. coli, determine the specificities of 24 diverse anti-CRISPR proteins, and develop a fast and scalable screen for protospacer-adjacent motifs that was successfully applied to five uncharacterized Cpf1 nucleases. These examples underscore how TXTL can facilitate the characterization and application of CRISPR technologies across their many uses.


Asunto(s)
Sistemas CRISPR-Cas/genética , Sistema Libre de Células/metabolismo , Escherichia coli/genética , Ingeniería Genética/métodos , Biosíntesis de Proteínas/genética , Transcripción Genética/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Bacteriano/genética , Endonucleasas/metabolismo , Oryza/genética , ARN Guía de Kinetoplastida/genética
19.
Mol Cell ; 70(5): 814-824.e6, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29883605

RESUMEN

To achieve adaptive and heritable immunity against viruses and other mobile genetic elements, CRISPR-Cas systems must capture and store short DNA fragments (spacers) from these foreign elements into host genomic CRISPR arrays. This process is catalyzed by conserved Cas1/Cas2 integration complexes, but the specific roles of another highly conserved protein linked to spacer acquisition, the Cas4 nuclease, are just now emerging. Here, we show that two Cas4 nucleases (Cas4-1 and Cas4-2) play critical roles in CRISPR spacer acquisition in Pyrococcus furiosus. The nuclease activities of both Cas4 proteins are required to process protospacers to the correct size. Cas4-1 specifies the upstream PAM (protospacer adjacent motif), while Cas4-2 specifies the conserved downstream motif. Both Cas4 proteins ensure CRISPR spacer integration in a defined orientation leading to CRISPR immunity. Collectively, these findings provide in vivo evidence for critical roles of Cas4 nucleases in protospacer generation and functional spacer integration at CRISPR arrays.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/genética , ADN Intergénico/genética , Edición Génica , Motivos de Nucleótidos , Pyrococcus furiosus/genética , Inmunidad Adaptativa , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , ADN Bacteriano/química , ADN Bacteriano/inmunología , ADN Bacteriano/metabolismo , ADN Intergénico/química , ADN Intergénico/metabolismo , Regulación Bacteriana de la Expresión Génica , Conformación de Ácido Nucleico , Pyrococcus furiosus/enzimología , Pyrococcus furiosus/inmunología
20.
Mol Cell ; 71(4): 498-509.e4, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30033371

RESUMEN

Chromosomal rearrangements including large DNA-fragment inversions, deletions, and duplications by Cas9 with paired sgRNAs are important to investigate genome structural variations and developmental gene regulation, but little is known about the underlying mechanisms. Here, we report that disrupting CtIP or FANCD2, which have roles in alternative non-homologous end joining, enhances precise DNA-fragment deletion. By analyzing the inserted nucleotides at the junctions of DNA-fragment editing of deletions, inversions, and duplications and characterizing the cleaved products, we find that Cas9 endonucleolytically cleaves the noncomplementary strand with a flexible scissile profile upstream of the -3 position of the PAM site in vivo and in vitro, generating double-strand break ends with 5' overhangs of 1-3 nucleotides. Moreover, we find that engineered Cas9 nucleases have distinct cleavage profiles. Finally, Cas9-mediated nucleotide insertions are nonrandom and are equal to the combined sequences upstream of both PAM sites with predicted frequencies. Thus, precise and predictable DNA-fragment editing could be achieved by perturbing DNA repair genes and using appropriate PAM configurations.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Reparación del ADN por Unión de Extremidades , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética , Secuencia de Bases , Proteína 9 Asociada a CRISPR/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , ADN/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Duplicación de Gen , Genoma Humano , Células HEK293 , Humanos , Mutagénesis Insercional , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Eliminación de Secuencia , Inversión de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA