Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Dig Dis Sci ; 69(6): 2083-2095, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38637456

RESUMEN

PURPOSE: Colorectal cancer (CRC) is a very common malignancy of the digestive system. Despite a variety of treatments including surgery, chemotherapeutic and targeted drugs, the prognosis for patients with CRC is still unsatisfactory and the mortality remains high. Protein phosphorylation plays an essential role in tumorigenesis and progression and is also crucial for protein to act with proper functions. Ferroptosis is found widely involved in various diseases especially tumors as a newly identified programmed cell death. METHODS: In our study, we aimed at PPP2CA as a prospective target which may play a crucial role in CRC progression. In one hand, knockdown of PPP2CA significantly enhanced the malignant phenotype in HCT116. In the other hand, knockdown of PPP2CA significantly enhanced Erastin-induced ferroptosis as well. RESULTS: Specifically, knockdown of PPP2CA in HCT116 significantly increased the relative level of malondialdehyde (MDA), reactive oxygen species (ROS) and Fe2+, and decreased GSH/GSSG ratio after the treatment of certain concentration of Erastin. Besides, we found that the inhibition of PPP2CA further led to the suppression of SCD1 expression in CRC cells in a AMPK-dependent way. CONCLUSION: Ultimately, we conclude that PPP2CA may regulate Erastin-induced ferroptosis through AMPK/SCD1 signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Neoplasias Colorrectales , Ferroptosis , Proteína Fosfatasa 2 , Humanos , Ferroptosis/efectos de los fármacos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Células HCT116 , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Transducción de Señal , Piperazinas/farmacología , Especies Reactivas de Oxígeno/metabolismo
2.
Biol Proced Online ; 25(1): 6, 2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870954

RESUMEN

BACKGROUND: YTHDF2 is one of important readers of N6-methyladenosine (m6A) modification on RNA. Growing evidence implicates that YTHDF2 takes an indispensable part in the regulation of tumorigenesis and metastasis in different cancers, but its biological functions and underlying mechanisms remain elusive in gastric cancer (GC). AIM: To investigate the clinical relevance and biological function of YTHDF2 in GC. RESULTS: Compared with matched normal stomach tissues, YTHDF2 expression was markedly decreased in gastric cancer tissues. The expression level of YTHDF2 was inversely associated with gastric cancer patients' tumor size, AJCC classification and prognosis. Functionally, YTHDF2 reduction facilitated gastric cancer cell growth and migration in vitro and in vivo, whereas YTHDF2 overexpression exhibited opposite phenotypes. Mechanistically, YTHDF2 enhanced expression of PPP2CA, the catalytic subunit of PP2A (Protein phosphatase 2A), in an m6A-independent manner, and silencing of PPP2CA antagonized the anti-tumor effects caused by overexpression of YTHDF2 in GC cells. CONCLUSION: These findings demonstrate that YTHDF2 is down-regulated in GC and its down-regulation promotes GC progression via a possible mechanism involving PPP2CA expression, suggesting that YTHDF2 may be a hopeful biomarker for diagnosis and an unrevealed treatment target for GC.

3.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33079984

RESUMEN

OBJECTIVE: We aimed to identify key susceptibility gene targets in multiple datasets generated from postmortem brains and blood of Parkinson's disease (PD) patients and healthy controls (HC). METHODS: We performed a multitiered analysis to integrate the gene expression data using multiple-gene chips from 244 human postmortem tissues. We identified hub node genes in the highly PD-related consensus module by constructing protein-protein interaction (PPI) networks. Next, we validated the top four interacting genes in 238 subjects (90 sporadic PD, 125 HC and 23 Parkinson's Plus Syndrome (PPS)). Utilizing multinomial logistic regression analysis (MLRA) and receiver operating characteristic (ROC), we analyzed the risk factors and diagnostic power for discriminating PD from HC and PPS. RESULTS: We identified 1333 genes that were significantly different between PD and HCs based on seven microarray datasets. The identified MEturquoise module is related to synaptic vesicle trafficking (SVT) dysfunction in PD (P < 0.05), and PPI analysis revealed that SVT genes PPP2CA, SYNJ1, NSF and PPP3CB were the top four hub node genes in MEturquoise (P < 0.001). The levels of these four genes in PD postmortem brains were lower than those in HC brains. We found lower blood levels of PPP2CA, SYNJ1 and NSF in PD compared with HC, and lower SYNJ1 in PD compared with PPS (P < 0.05). SYNJ1, negatively correlated to PD severity, displayed an excellent power to discriminating PD from HC and PPS. CONCLUSIONS: This study highlights that SVT genes, especially SYNJ1, may be promising markers in discriminating PD from HCs and PPS.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Proteínas del Tejido Nervioso , Enfermedad de Parkinson , Mapas de Interacción de Proteínas , Vesículas Sinápticas , Autopsia , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo
4.
Am J Hum Genet ; 104(1): 139-156, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30595372

RESUMEN

Type 2A protein phosphatases (PP2As) are highly expressed in the brain and regulate neuronal signaling by catalyzing phospho-Ser/Thr dephosphorylations in diverse substrates. PP2A holoenzymes comprise catalytic C-, scaffolding A-, and regulatory B-type subunits, which determine substrate specificity and physiological function. Interestingly, de novo mutations in genes encoding A- and B-type subunits have recently been implicated in intellectual disability (ID) and developmental delay (DD). We now report 16 individuals with mild to profound ID and DD and a de novo mutation in PPP2CA, encoding the catalytic Cα subunit. Other frequently observed features were severe language delay (71%), hypotonia (69%), epilepsy (63%), and brain abnormalities such as ventriculomegaly and a small corpus callosum (67%). Behavioral problems, including autism spectrum disorders, were reported in 47% of individuals, and three individuals had a congenital heart defect. PPP2CA de novo mutations included a partial gene deletion, a frameshift, three nonsense mutations, a single amino acid duplication, a recurrent mutation, and eight non-recurrent missense mutations. Functional studies showed complete PP2A dysfunction in four individuals with seemingly milder ID, hinting at haploinsufficiency. Ten other individuals showed mutation-specific biochemical distortions, including poor expression, altered binding to the A subunit and specific B-type subunits, and impaired phosphatase activity and C-terminal methylation. Four were suspected to have a dominant-negative mechanism, which correlated with severe ID. Two missense variants affecting the same residue largely behaved as wild-type in our functional assays. Overall, we found that pathogenic PPP2CA variants impair PP2A-B56(δ) functionality, suggesting that PP2A-related neurodevelopmental disorders constitute functionally converging ID syndromes.


Asunto(s)
Discapacidad Intelectual/genética , Mutación , Proteína Fosfatasa 2/genética , Adolescente , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Células HEK293 , Haploinsuficiencia/genética , Humanos , Masculino , Unión Proteica/genética , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Síndrome
5.
Immunol Invest ; 51(4): 826-838, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33501869

RESUMEN

Kawasaki disease (KD)), also known as mucocutaneous lymph node syndrome (MCLS), is an autoimmune and systemic vasculitis syndrome. Its etiology and pathogenesis are still unclear. microRNAs (miRNA), a novel class of small non-coding RNAs, regulate the expression of multiple protein-encoding genes at the post-transcriptional level. We intend to study the change of miRNA-133a in the plasma of patients with KD, explore the role of miRNA-133a on HUVEC and define the pathogenesis of vascular dysfunction in KD. miRNA-133a expression and the mRNA and protein expression of protein phosphatase 2 catalytic subunit alpha (PPP2CA) were assessed by RT-qPCR and Western blot, respectively. The PPP2CA mRNA 3'UTR was predicted to be the potential target of miRNA-133a by using the miRNA databases and verified by the luciferase assay. The plasmids of miRNA-133a mimics and inhibitors were transfected into HUVEC cells. The plasma soluble vascular endothelial cadherin (sVE-cadherin, the excised extracellular part of VE-cadherin) levels were investigated by ELISA. The results suggested that miRNA-133a was increased by 3.8 times in the acute KD group and by 2.7 times in the convalescent KD group compared with the control group (both P = .000). PPP2CA is the target gene of miRNA-133a and its expression was inhibited by miRNA-133a acting on PPP2CA mRNA 3'UTR (P = .013). The plasma sVE-cadherin levels in the acute KD groups were increased compared with the control group (P = .024). The ROC curve analysis showed that the expression of miRNA-133a segregate acute KD patients from convalescent KD patients and healthy children. Our results suggest that miRNA-133a might be a new biomarker for KD.


Asunto(s)
MicroARNs , Síndrome Mucocutáneo Linfonodular , Regiones no Traducidas 3'/genética , Cadherinas/genética , Niño , Células Endoteliales de la Vena Umbilical Humana , Humanos , MicroARNs/genética , Síndrome Mucocutáneo Linfonodular/genética , ARN Mensajero
6.
RNA ; 22(1): 87-95, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26577378

RESUMEN

MicroRNAs (miRNAs) suppress targeting gene expression through blocking translation or triggering mRNA degradation and, in general, act in trans, through a partially complementary interaction with the 3' untranslated region (3' UTR) or coding regions of a target gene. Although it has been reported previously that some miRNAs suppress their target genes on the opposite strand with a fully complementary sequence (i.e., natural antisense miRNAs that act in cis), there is no report to systematically study such cis-antisense miRNAs in different animal species. Here we report that cis-antisense miRNAs do exist in different animal species: 48 in Caenorhabditis elegans, 17 in Drosophila, 36 in Mus musculus, and 52 in Homo sapiens using a systematical bioinformatics approach. We show that most of these cis-antisense miRNAs can efficiently reduce the expression levels of their target genes in human cells. We further investigate hsa-miR-3661, one of the predicted cis-antisense miRNAs, in detail and demonstrate that this miRNA directly targets the coding sequence of PPP2CA located on the opposite DNA strand and inhibits the PPP2CA expression. Taken together, these results indicate that cis-antisense miRNAs are conservative and functional in animal species including humans.


Asunto(s)
MicroARNs/metabolismo , Proteína Fosfatasa 2/metabolismo , ARN sin Sentido/metabolismo , Animales , Humanos , Fosforilación , Especificidad de la Especie
7.
Int J Mol Sci ; 17(5)2016 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-27213341

RESUMEN

The epidermis is an important tissue in Homo sapines and other animals, and an abnormal epidermis will cause many diseases. Phosphatase 2A (PP2A) is an important serine and threonine phosphatase. The α isoform of the PP2A catalytic subunit (Ppp2ca gene encoding PP2Acα) is critical for cell proliferation, growth, metabolism and tumorigenesis. However, to date, no study has revealed its roles in epidermis development. To specifically investigate the roles of PP2Acα in epidermis development, we first generated Ppp2ca(flox/flox) transgenic mice, and conditionally knocked out Ppp2ca in the epidermis driven by Krt14-Cre. Our study showed that Ppp2ca(flox/flox); Krt14-Cre mice had significant hair loss. In addition, histological analyses showed that the morphogenesis and hair regeneration cycle of hair follicles were disrupted in these mice. Moreover, Ppp2ca(flox/flox); Krt14-Cre mice had smaller size, melanin deposition and hyperproliferation at the base of the claws. Accordingly, our study demonstrates that PP2Acα plays important roles in both hair follicle and epidermis development. Additionally, the Ppp2ca(flox/flox) mice generated in this study can serve as a useful transgene model to study the roles of PP2Acα in other developmental processes and diseases.


Asunto(s)
Epidermis/crecimiento & desarrollo , Folículo Piloso/crecimiento & desarrollo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Alopecia/veterinaria , Animales , Epidermis/metabolismo , Folículo Piloso/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Animales , Morfogénesis
8.
J Ethnopharmacol ; 322: 117621, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38154524

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Angelica Sinensis Radix (ASR) is a commonly used Chinese medicine known for its effects on tonifying blood, promoting blood circulation, and alleviating pain associated with menstrual regulation. Additionally, it has been used in the treatment of vascular cognitive impairment (VCI). The primary pharmacodynamic agent within ASR is volatile oil of Angelica Sinensis Radix (VOASR), which has demonstrated efficacy in combating cognitive impairment, although its mechanism remains unclear. OBJECTIVE: This study aimed to elucidate the potential molecular mechanisms underlying VOASR's improvement of cognitive function in cerebral ischemic mice. METHODS: A model of cerebral ischemic mice was established through unilateral common carotid artery occlusion (UCCAO) surgery, followed by intervention with VOASR. Cognitive function was assessed using the Morris water maze (MWM) test, while RT-qPCR was utilized to measure the differential expression of miR-301a-3p in the hippocampus. To evaluate cognitive function and hippocampal protein differences, wild-type mice and miR-301a-3p knockout mice were subjected to the MWM test and iTRAQ protein profiling. The relationship between miR-301a-3p and potential target genes was validated through a Dual-Luciferase Reporter experiment. RT-qPCR and Western blot were employed to determine the differential expression of Ppp2ca and synaptic plasticity-related proteins in the mouse hippocampus. RESULTS: Intervention with VOASR significantly improved cognitive impairment in cerebral ischemic mice and reduced the expression of miR-301a-3p in the hippocampus. Our findings suggest that miR-301a-3p may regulate cognitive function by targeting Ppp2ca. Furthermore, VOASR intervention led to an increase in the expression of Ppp2ca and synaptic plasticity-related proteins. CONCLUSION: Our study indicates that VOASR may be involved in regulating cognitive function by inhibiting miR-301a-3p, consequently increasing the expression of Ppp2ca and synaptic plasticity proteins. These results provide a new target and direction for the treatment of cognitive dysfunction.


Asunto(s)
Angelica sinensis , Isquemia Encefálica , MicroARNs , Aceites Volátiles , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/genética , Cognición
9.
Biomed Pharmacother ; 160: 114350, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36804120

RESUMEN

Long-term use of low-toxic natural products holds the promise for eradicating cancer stem cells. In this study, we report that luteolin, a natural flavonoid, attenuates the stemness of ovarian cancer stem cells (OCSCs) by directly binding to KDM4C and epigenetic suppression of PPP2CA/YAP axis. Ovarian cancer stem like cells (OCSLCs) isolated by suspension culture and CD133 + ALDH+ cell sorting was employed as OCSCs model. The maximal non-toxic dose of luteolin suppressed stemness properties, including sphere-forming capacity, the expression of OCSCs markers, sphere-initiating and tumor-initiating capacities, as well as the percentage of CD133 + ALDH+ cells of OCSLCs. Mechanistic study showed that luteolin directly binds to KDM4C, blocks KDM4C-induced histone demethylation of PPP2CA promoter, inhibits PPP2CA transcription and PPP2CA-mediated YAP dephosphorylation, thereby attenuating YAP activity and the stemness of OCSLCs. Furthermore, luteolin sensitized OCSLCs to traditional chemotherapeutic drugs in vitro and in vivo. In summary, our work revealed the direct target of luteolin and the underlying mechanism of the inhibitory effect of luteolin on the stemness of OCSCs. This finding thus suggests a novel therapeutic strategy for eradicating human OCSCs driven by KDM4C.


Asunto(s)
Luteolina , Neoplasias Ováricas , Femenino , Humanos , Línea Celular Tumoral , Epigénesis Genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Luteolina/farmacología , Luteolina/uso terapéutico , Células Madre Neoplásicas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/farmacología , Proteína Fosfatasa 2/uso terapéutico , Proteínas Señalizadoras YAP/metabolismo
10.
Cell Chem Biol ; 30(2): 188-202.e6, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36720221

RESUMEN

Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is a fundamental process that controls protein function and intracellular signaling. Failure of phospho-control accounts for many human diseases. While a kinase phosphorylates multiple substrates, a substrate is often phosphorylated by multiple kinases. This renders phospho-control at the substrate level challenging, as it requires inhibition of multiple kinases, which would thus affect other kinase substrates. Here, we describe the development and application of the affinity-directed phosphatase (AdPhosphatase) system for targeted dephosphorylation of specific phospho-substrates. By deploying the Protein Phosphatase 1 or 2A catalytic subunits conjugated to an antigen-stabilized anti-GFP nanobody, we can promote the dephosphorylation of two independent phospho-proteins, FAM83D or ULK1, knocked in with GFP-tags using CRISPR-Cas9, with exquisite specificity. By redirecting protein phosphatases to neo-substrates through nanobody-mediated proximity, AdPhosphatase can alter the phospho-status and function of target proteins and thus, offers a new modality for potential drug discovery approaches.


Asunto(s)
Proteínas Quinasas , Proteína Fosfatasa 2 , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2/metabolismo , Especificidad por Sustrato , Monoéster Fosfórico Hidrolasas/metabolismo
11.
Genes (Basel) ; 14(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37761890

RESUMEN

Neurodevelopmental disorders (NDDs) are a group of high-incidence rare diseases with genetic heterogeneity. PPP2R1A, the regulatory subunit of protein phosphatase 2A, is a recently discovered gene associated with NDDs. Whole/clinical exome sequencing was performed in five patients with a family with NDDs. In vitro experiments were performed to evaluate the mutants' expression and interactions with the complex. The genotype-phenotype correlations of reported cases as well as our patients with PPP2R1A variants were reviewed. We reported five unrelated individuals with PPP2R1A variants, including two novel missense variants and one frameshift variant. The protein expression of the Arg498Leu variant was less than that of the wild-type protein, the frameshift variant Asn282Argfs*14 was not decreased but truncated, and these two variants impaired the interactions with endogenous PPP25RD and PPP2CA. Furthermore, we found that pathogenic variants clustered in HEAT repeats V, VI and VII, and patients with the Met180Val/Thr variants had macrocephaly, severe ID and hypotonia, but no epilepsy, whereas those with Arg258 amino acid changes had microcephaly, while a few had epilepsy or feeding problems. In this study, we reported five NDD patients with PPP2R1A gene variants and expanded PPP2R1A pathogenic variant spectrum. The genotype and phenotype association findings provide reminders regarding the prognostication and evidence for genetic counseling.


Asunto(s)
Discapacidades del Desarrollo , Mutación del Sistema de Lectura , Proteína Fosfatasa 2 , Humanos , Dominio Catalítico , Genotipo , Fenotipo , Proteína Fosfatasa 2/genética , Discapacidades del Desarrollo/genética
12.
Front Oncol ; 12: 744984, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814385

RESUMEN

Neuroblastoma (NB) is the most common extracranial solid tumor in childhood and has a poor prognosis in high-risk cases, requiring novel therapies. Pathways that depend on phospho-signaling maintain the aggressiveness of NB. Protein phosphatase 2 (PP2A) with its catalytic subunit PPP2CA is a major phosphatase in cancer cells, including NB. We show that reduction of PPP2CA by knock-down decreased growth of NB cells and that complete ablation of PPP2CA by knock-out was not tolerated. Thus, NB cells are addicted to PPP2CA, an addiction augmented by MYCN activation. SET, a crucial endogenous inhibitor of PP2A, was overexpressed in poor-prognosis NB. The SET inhibitor OP449 effectively decreased the viability of NB cells, independent of their molecular alterations and in line with a tumor suppressor function of PPP2CA. The contrasting concentration-dependent functions of PPP2CA as an essential survival gene at low expression levels and a tumor suppressor at high levels are reminiscent of other genes showing this so-called Goldilocks phenomenon. PP2A reactivated by OP449 decreased activating phosphorylation of serine/threonine residues in the AKT pathway. Conversely, induced activation of AKT led to partial rescue of OP449-mediated viability inhibition. Dasatinib, a kinase inhibitor used in relapsed/refractory NB, and OP449 synergized, decreasing activating AKT phosphorylations. In summary, concomitantly reactivating phosphatases and inhibiting kinases with a combination of OP449 and dasatinib are promising novel therapeutic approaches to NB.

13.
Front Cell Dev Biol ; 10: 1059938, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531959

RESUMEN

PP2A-related (neuro) developmental disorders are a family of genetic diseases caused by a heterozygous alteration in one of several genes encoding a subunit of type 2A protein phosphatases. Reported affected genes, so far, are PPP2R5D, encoding the PP2A regulatory B56δ subunit; PPP2R1A, encoding the scaffolding Aα subunit; and PPP2CA, encoding the catalytic Cα subunit-in that order of frequency. Patients with a pathogenic de novo mutation in one of these genes, in part, present with overlapping features, such as generalized hypotonia, intellectual and developmental delay, facial dysmorphologies, seizures, and autistic features, and, in part, with opposite features, e.g., smaller versus larger head sizes or normal versus absent corpus callosum. Molecular variant characterization has been consistent so far with loss-of-function or dominant-negative disease mechanisms for all three affected genes. Here, we present a case report of another PPP2CA-affected individual with a novel de novo missense variant, resulting in a one-amino acid substitution in the Cα subunit: p.Cys196Arg. Biochemical characterization of the variant revealed its pathogenicity, as it appeared severely catalytically impaired, showed mildly affected A subunit binding, and moderately decreased binding to B/B55, B"/PR72, and all B56 subunits, except B56γ1. Carboxy-terminal methylation appeared unaffected, as was binding to B"'/STRN3-all being consistent with a partial loss of function. Clinically, the girl presented with mild-to-moderate developmental delay, a full-scale IQ of 83, mild dysmorphic facial features, tonic-clonic seizures, and autistic behaviors. Brain MRI appeared normal. We conclude that this individual falls within the milder end of the clinical and molecular spectrum of previously reported PPP2CA cases.

14.
J Gastrointest Oncol ; 12(6): 3008-3021, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35070426

RESUMEN

BACKGROUND: To investigate the role of the PPP2CA gene in the prognosis of patients with hepatocellular carcinoma (HCC) and its molecular biological characteristics. METHODS: We performed comparison of the expression of PPP2CA in HCC and non-HCC tissues of HCC patients who underwent surgery for the first time in the Tumor Hospital of Guangxi Medical University from July 2017 to July 2019, and retrospectively analyzed the relevant clinical data and prognosis. The GSE76427 data set and bioinformatics and public databases were used to compare the expression of PPP2CA between HCC and non-cancer tissues. Gene Ontology (GO) analysis was performed of PPP2CA and its differential genes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. A protein-protein interaction (PPI) network of PPP2CA and its differentially expressed genes (DEGs) was constructed from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database and visualized by Cytoscape software. RESULTS: The immunohistochemistry (IHC) of tissue sections confirmed that PPP2CA was highly expressed in most HCC tissues; the high expression of PPP2CA was significantly correlated with microvascular invasion (MVI) and portal vein tumor thrombi (P<0.05). Participants in the PPP2CA high expression group had worse overall survival (OS; P=0.04) and recurrence-free survival (RFS; P=0.019). The PPP2CA gene and 71 DEGs were mainly enriched in the nuclear division, organelle fission, nuclear chromosome separation, and chromatid separation process, and KEGG analysis revealed enrichment in drug metabolism-cytochrome metabolism of xenobiotics by P450 and cytochrome P450. Finally, through the PPI network, CCNA2, AURKB, TOP2A, NCAPG, MCM2, CDC20, CCMB2, AURKA, and MGST1 were identified as the top 9 highly connected hub genes. CONCLUSIONS: The PPP2CA gene is highly expressed in HCC tissues. The high expression of PPP2CA is significantly associated with poor prognosis. Through the analysis of DEGs, GO and KEGG pathway analysis, it was found that PPP2CA may act on liver cancer through multiple targets and multiple pathways, and PPP2CA plays a promoting role in HCC.

15.
J Clin Transl Hepatol ; 9(5): 661-671, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34722181

RESUMEN

BACKGROUND AND AIMS: Protein phosphatase 2A (PP2A) is associated with many cancers. This study aimed to clarify whether PPP2CA, which encodes the alpha isoform of the catalytic subunit of PP2A, plays a role in hepatocellular carcinoma (HCC) and to identify the potential underlying molecular pathways. METHODS: Based on bioinformatics, public databases and our in-house RNA-Seq database, we analyzed the clinical value and molecular mechanism of PPP2CA in HCC. RESULTS: Data were analyzed from 2,545 patients with HCC and 1,993 controls without HCC indexed in The Cancer Genome Atlas database, the Gene Expression Omnibus database and our in-house RNA-Seq database. PPP2CA expression was significantly higher in HCC tissue than in non-cancerous tissues (standardized mean difference: 0.69, 95% confidence interval [CI]: 0.50-0.89). PPP2CA expression was able to differentiate HCC from non-HCC, with an area under the summary receiver operator characteristic curve of 0.79 (95% CI: 0.75-0.83). Immunohistochemistry of tissue sections confirmed that PPP2CA protein was up-regulated in HCC tissues. High PPP2CA expression in HCC patients was associated with shorter overall, progression-free and disease-free survival. Potential molecular pathways through which PPP2CA may be involved in HCC were determined using miRWalk 2.0 as well as analysis of Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes pathways, and protein-protein interaction networks. CONCLUSIONS: PPP2CA is up-regulated in HCC and higher expression correlates with worse prognosis. PPP2CA shows potential as a diagnostic marker for HCC. Future studies should examine whether PPP2CA contributes to HCC through the candidate microRNAs, pathways and hub genes identified in this study.

16.
Arch Osteoporos ; 16(1): 173, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34779956

RESUMEN

It has been reported that osteoporosis is a possible risk factor of benign paroxysmal positional vertigo (BPPV). PURPOSE: We analyzed the correlation between osteoporosis and BPPV and the possible mechanism by performing evidence-based medicine meta-analysis and bioinformatics analysis. METHODS: Initially, English articles related to osteoporosis and BPPV were obtained through PubMed and EMBASE databases. Stata12.0 software was used for meta-analysis to calculate the odd ratio (OR) and 95% confidence interval (CI) of outcome indicators, and the heterogeneity was evaluated by subgroup analysis, publication bias evaluation, and sensitivity analysis. In addition, microarray datasets related to BPPV and osteoporosis were obtained from gene expression omnibus (GEO) database to screen differentially expressed genes. At last, a mouse model of osteoporosis was established by bilateral oophorectomy for validation. RT-qPCR and Western blot analysis were performed to determine expression of related factors in mouse tissues. RESULTS: Osteoporosis was suggested as an important risk factor for BPPV through meta-analysis of these 12 articles. It was found that PPP2CA was upregulated in BPPV and low bone mineral density (BMD) samples. Moreover, PPP2CA induced dephosphorylation of BCL2, which may be involved in BPPV through regulation of BMD. Through this mechanism, silencing of PPP2CA could elevate the incidence of BPPV by promoting bone remodeling and reducing the density of otoconia around the macula. CONCLUSIONS: PPP2CA reduces BMD expression by inducing dephosphorylation of BCL2, which may be one of the mechanisms responsible for the onset of BPPV in osteoporosis.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoporosis , Animales , Vértigo Posicional Paroxístico Benigno/epidemiología , Vértigo Posicional Paroxístico Benigno/genética , Biología Computacional , Medicina Basada en la Evidencia , Humanos , Ratones , Osteoporosis/genética , Proteína Fosfatasa 2
17.
Endocrine ; 65(3): 582-594, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30927143

RESUMEN

PURPOSE: Aberrant expression of miRNAs is crucial in several tissues tumorigenesis including thyroid. Recent studies demonstrated that miR-650 plays different role depending on the cancer type. Herein, we investigated the role of miR-650 in thyroid carcinoma. METHODS: The expression of miR-650 was analyzed in human thyroid tissues by q-RT-PCR. Anaplastic (8505C, CAL62, SW1736) and papillary (TPC-1) thyroid cancer cell lines were used to dissect the role of miR-650 on malignant hallmarks of transformation. Label-free proteomic analysis was exploited to unravel the targets of miR-650, while luciferase reporter assay and functional experiments were performed to confirm a selected target. Spearman's rank correlation test was used to assess the association between miR-650 and its target in human thyroid cancer tissues. RESULTS: miR-650 is over-expressed in anaplastic (ATC) thyroid carcinoma where it enhances cell migration and invasion. Proteomic label-free and bioinformatics analysis revealed that the serine-threonine protein phosphatase 2 catalytic subunit alpha (PPP2CA) is a target of miR-650; these finding were confirmed by luciferase assay. Restoration of PPP2CA mRNA, deprived of its 3'UTR, is able to revert the malignant phenotype induced by miR-650 in HEK-293 cells. Importantly, PPP2CA is down-regulated in ATC tissues and is inversely correlated with miR-650. CONCLUSIONS: miR-650 displayed oncogenic activity in ATC cells through targeting PPP2CA phosphatase. These results suggest that miR-650/PPP2CA axis could be modulated to interfere with motile ability of thyroid carcinoma cells.


Asunto(s)
Carcinoma/patología , MicroARNs/biosíntesis , Proteína Fosfatasa 2/genética , Neoplasias de la Tiroides/patología , Regiones no Traducidas 3'/genética , Carcinoma Papilar/patología , Línea Celular Tumoral , Movimiento Celular/genética , Transformación Celular Neoplásica/genética , Humanos , MicroARNs/genética , Invasividad Neoplásica/genética , Plásmidos/genética , Proteómica
18.
Int J Surg ; 59: 80-89, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30296597

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers worldwide. The aim of this study is to identify candidate genes by bioinformatics and investigate its clinical pathological characters and prognostic significance. METHOD: First, we identify differentially expressed genes (DEGs) in CRC by analyzing gene expression datasets from Gene Expression Omnibus (GEO). Then we performed a bioinformatics analysis by using Oncomine, STRING and Oncolnc databases. Gene Set Enrichment Analysis (GSEA) was performed using TCGA data set. Then, the protein expression level of PPP2CA was detected by immunohistochemistry in 196 pairs of primary colorectal cancer and corresponding non-tumor tissues. RESULT: Total 81 differential expressed genes were identified in the overlap of datasets. PPI network show the hub genes were CCND1, PPP2CA and YAP1. We investigated Oncomine databases and found that PPP2CA mRNA expression was lower in CRC tissues compared with normal tissues. Bioinformatics analysis indicated that PPP2CA expression was associated with epithelial-mesenchymal transition signaling pathway. Low expression of PPP2CA was associated with T stage, N stage, and M stage. Low expression of PPP2CA was associated with worse overall survival for CRC, and retained significance as an independent prognostic factor for CRC. CONCLUSION: PPP2CA may act as an oncogene in the progression of colorectal cancer. Moreover, PPP2CA has potential to be used as prognostic markers or therapeutic targets in CRC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/metabolismo , Proteína Fosfatasa 2/metabolismo , Anciano , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Biología Computacional/métodos , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia
19.
J Mol Neurosci ; 66(1): 146-154, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30121817

RESUMEN

This study aimed to identify key genes (microRNA and messenger RNA (mRNA)) and associated signaling-regulated pathways in a drug-induced epilepsy model in mice by microarray profiling. The related microarray dataset of seizures was obtained from the NCBI Gene Expression Omnibus database (GEO), and differentially expressed genes (DEGs) between two control samples or multi-treated samples and samples were analyzed using the statistical software R. To identify the expected function of DEGs, Gene Set Enrichment Analysis (GSEA) was utilized to conduct Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The interaction relationship between microRNAs (miRNAs) and mRNAs in normal and epilepsy mouse models was identified using Cytoscape software. TargetScan7.1 was applied to determine the binding sites of DEGs. The dual-luciferase assay was used to verify the target relationship between miRNA and mRNA. Four miRNAs were identified as differentially expressed genes in both 24-h and 28-day status epilepticus (SE)-treated samples. Ppp2ca expression in the mitogen-activated protein kinase (MAPK) signaling pathway was downregulated in the pilocarpine-induced SE mouse model. The expression of Ppp2ca was also downregulated in the kinase-induced SE model group compared with that in the untreated group and MAP kinase (MEK) inhibitor-treated group of mice. KEGG pathway analysis indicated that the MAPK signaling pathway was upregulated in the kinase-induced SE model group compared with that in both the untreated group and the MEK inhibitor-treated group of mice. miR-203 had a targeted relationship with Ppp2ca in both humans and mice. The miR-203-3p target Ppp2ca aggravates the seizures of the SE model in mice.


Asunto(s)
MicroARNs/genética , Proteína Fosfatasa 2/genética , Estado Epiléptico/genética , Animales , Sistema de Señalización de MAP Quinasas , Ratones , Proteína Fosfatasa 2/metabolismo , Estado Epiléptico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA