Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 623
Filtrar
1.
J Neurosci ; 43(41): 6930-6949, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37643861

RESUMEN

A significant proportion of temporal lobe epilepsy (TLE) patients experience drug-resistant seizures associated with mesial temporal sclerosis, in which there is extensive cell loss in the hippocampal CA1 and CA3 subfields, with a relative sparing of dentate gyrus granule cells and CA2 pyramidal neurons (PNs). A role for CA2 in seizure generation was suggested based on findings of a reduction in CA2 synaptic inhibition (Williamson and Spencer, 1994) and the presence of interictal-like spike activity in CA2 in resected hippocampal tissue from TLE patients (Wittner et al., 2009). We recently found that in the pilocarpine-induced status epilepticus (PILO-SE) mouse model of TLE there was an increase in CA2 intrinsic excitability associated with a loss of CA2 synaptic inhibition. Furthermore, chemogenetic silencing of CA2 significantly reduced seizure frequency, consistent with a role of CA2 in promoting seizure generation and/or propagation (Whitebirch et al., 2022). In the present study, we explored the cellular basis of this inhibitory deficit using immunohistochemical and electrophysiological approaches in PILO-SE male and female mice. We report a widespread decrease in the density of pro-cholecystokinin-immunopositive (CCK+) interneurons and a functional impairment of CCK+ interneuron-mediated inhibition of CA2 PNs. We also found a disruption in the perisomatic perineuronal net in the CA2 stratum pyramidale. Such pathologic alterations may contribute to an enhanced excitation of CA2 PNs and CA2-dependent seizure activity in the PILO-SE mouse model.SIGNIFICANCE STATEMENT Impaired synaptic inhibition in hippocampal circuits has been identified as a key feature that contributes to the emergence and propagation of seizure activity in human patients and animal models of temporal lobe epilepsy (TLE). Among the hippocampal subfields, the CA2 region is particularly resilient to seizure-associated neurodegeneration and has been suggested to play a key role in seizure activity in TLE. Here we report that perisomatic inhibition of CA2 pyramidal neurons mediated by cholecystokinin-expressing interneurons is selectively reduced in acute hippocampal slices from epileptic mice. Parvalbumin-expressing interneurons, in contrast, appear relatively conserved in epileptic mice. These findings advance our understanding of the cellular mechanisms underlying inhibitory disruption in hippocampal circuits in a mouse model of spontaneous recurring seizures.


Asunto(s)
Epilepsia del Lóbulo Temporal , Estado Epiléptico , Humanos , Masculino , Femenino , Ratones , Animales , Región CA2 Hipocampal , Colecistoquinina , Hipocampo/fisiología , Interneuronas/fisiología , Convulsiones , Pilocarpina/toxicidad , Modelos Animales de Enfermedad
2.
Hippocampus ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949057

RESUMEN

Olfactory oscillations may enhance cognitive processing through coupling with beta (ß, 15-30 Hz) and gamma (γ, 30-160 Hz) activity in the hippocampus (HPC). We hypothesize that coupling between olfactory bulb (OB) and HPC oscillations is increased by cholinergic activation in control rats and is reduced in kainic-acid-treated epileptic rats, a model of temporal lobe epilepsy. OB γ2 (63-100 Hz) power was higher during walking and immobility-awake (IMM) compared to sleep, while γ1 (30-57 Hz) power was higher during grooming than other behavioral states. Muscarinic cholinergic agonist pilocarpine (25 mg/kg ip) with peripheral muscarinic blockade increased OB power and OB-HPC coherence at ß and γ1 frequency bands. A similar effect was found after physostigmine (0.5 mg/kg ip) but not scopolamine (10 mg/kg ip). Pilocarpine increased bicoherence and cross-frequency coherence (CFC) between OB slow waves (SW, 1-5 Hz) and hippocampal ß, γ1 and γ2 waves, with stronger coherence at CA1 alveus and CA3c than CA1 stratum radiatum. Bicoherence further revealed a nonlinear interaction of ß waves in OB with ß waves at the CA1-alveus. Beta and γ1 waves in OB or HPC were segregated at one phase of the OB-SW, opposite to the phase of γ2 and γ3 (100-160 Hz) waves, suggesting independent temporal processing of ß/γ1 versus γ2/γ3 waves. At CA1 radiatum, kainic-acid-treated epileptic rats compared to control rats showed decreased theta power, theta-ß and theta-γ2 CFC during baseline walking, decreased CFC of HPC SW with γ2 and γ3 waves during baseline IMM, and decreased coupling of OB SW with ß and γ2 waves at CA1 alveus after pilocarpine. It is concluded that ß and γ waves in the OB and HPC are modulated by a slow respiratory rhythm, in a cholinergic and behavior-dependent manner, and OB-HPC functional connectivity at ß and γ frequencies may enhance cognitive functions.

3.
Cell Tissue Res ; 396(3): 371-397, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38499882

RESUMEN

Status epilepticus (SE), the most severe form of epilepsy, leads to brain damage. Uncertainty persists about the mechanisms that lead to the pathophysiology of epilepsy and the death of neurons. Overloading of intracellular iron ions has recently been identified as the cause of a newly recognized form of controlled cell death called ferroptosis. Inhibiting ferroptosis has shown promise as a treatment for epilepsy, according to recent studies. So, the current study aimed to assess the possible antiepileptic impact of CoQ10 either alone or with the standard antiepileptic drug sodium valproate (SVP) and to evaluate the targeted effect of COQ10 on hippocampal oxidative stress and ferroptosis in a SE rat model. Using a lithium-pilocarpine rat model of epilepsy, we evaluated the effect of SVP, CoQ10, or both on seizure severity, histological, and immunohistochemical of the hippocampus. Furthermore, due to the essential role of oxidative stress and lipid peroxidation in inducing ferroptosis, we evaluated malonaldehyde (MDA), reduced glutathione (GSH), glutathione peroxidase 4 (GPX4), and ferritin in tissue homogenate. Our work illustrated that ferroptosis occurs in murine models of lithium-pilocarpine-induced seizures (epileptic group). Nissl staining revealed significant neurodegeneration. A significant increase in the number of astrocytes stained with an astrocyte-specific marker was observed in the hippocampus. Effective seizure relief can be achieved in the seizure model by administering CoQ10 alone compared to SVP. This was accomplished by lowering ferritin levels and increasing GPX4, reducing MDA, and increasing GSH in the hippocampus tissue homogenate. In addition, the benefits of SVP therapy for regulating iron stores, GPX4, and oxidative stress markers were amplified by incorporating CoQ10 as compared to SVP alone. It was concluded that CoQ10 alone has a more beneficial effect than SVP alone in restoring histological structures and has a targeted effect on hippocampal oxidative stress and ferroptosis. In addition, COQ10 could be useful as an adjuvant to SVP in protecting against oxidative damage and ferroptosis-related damage that result from epileptic seizures.


Asunto(s)
Modelos Animales de Enfermedad , Ferroptosis , Hipocampo , Estado Epiléptico , Ubiquinona , Animales , Ferroptosis/efectos de los fármacos , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/patología , Estado Epiléptico/inducido químicamente , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/uso terapéutico , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/metabolismo , Ratas , Masculino , Estrés Oxidativo/efectos de los fármacos , Pilocarpina , Ratas Sprague-Dawley , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico , Peroxidación de Lípido/efectos de los fármacos
4.
Neurochem Res ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935224

RESUMEN

A ketogenic diet (KD) is a high-fat, low-carbohydrate, and low-protein diet that exerts antiepileptic effects by attenuating spontaneous recurrent seizures, ameliorating learning and memory impairments, and modulating the gut microbiota composition. However, the role of the gut microbiome in the antiepileptic effects of a KD on temporal lobe epilepsy (TLE) induced by lithium-pilocarpine in adult rats is still unknown. Our study provides evidence demonstrating that a KD effectively mitigates seizure behavior and reduces acute-phase epileptic brain activity and that KD treatment alleviates hippocampal neuronal damage and improves cognitive impairment induced by TLE. We also observed that the beneficial effects of a KD are compromised when the gut microbiota is disrupted through antibiotic administration. Analysis of gut microbiota components via 16S rRNA gene sequencing in fecal samples collected from TLE rats fed either a KD or a normal diet. The Chao1 and ACE indices showed decreased species variety in KD-fed rats compared to TLE rats fed a normal diet. A KD increased the levels of Actinobacteriota, Verrucomicrobiota and Proteobacteria and decreased the level of Bacteroidetes. Interestingly, the abundances of Actinobacteriota and Verrucomicrobiota were positively correlated with learning and memory ability, and the abundance of Proteobacteria was positively correlated with seizure susceptibility. In conclusion, our study revealed the significant antiepileptic and neuroprotective effects of a KD on pilocarpine-induced epilepsy in rats, primarily mediated through the modulation of the gut microbiota. However, whether the gut microbiota mediates the antiseizure effects of a KD still needs to be better elucidated.

5.
Epilepsy Behav ; 156: 109832, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761450

RESUMEN

Crack cocaine is a highly addictive and potent stimulant drug. Animal studies have shown that the cholinergic system plays a role in neurotoxicity induced by cocaine or its active metabolites inhalation. Behavioral alterations associated with crack cocaine use include hyperactivity, depressed mood, and decreased seizure threshold. Here we evaluate the acetylcholinesterase (AChE) and reactive oxygen species (ROS) activity, behavioral profile, and the threshold for epileptic seizures in rats that received intrahippocampal pilocarpine (H-PILO) followed by exposure to crack cocaine (H-PILO + CRACK). Animals exposed to H-PILO + CRACK demonstrated increased severity and frequency of limbic seizures. The AChE activity was reduced in the groups exposed to crack cocaine alone (CRACK) and H-PILO + CRACK, whereas levels of ROS remained unchanged. In addition, crack cocaine exposure increased vertical locomotor activity, without changing water and sucrose intake. Short-term memory consolidation remained unchanged after H-PILO, H-PILO + CRACK, and CRACK administration. Overall, our data suggest that crack cocaine inhalation reduced the threshold for epileptic seizures in rats submitted to low doses of pilocarpine through the inhibition of AChE. Taken together, our findings can be useful in the development of effective strategies for preventing and treating the harmful effects of cocaine and crack cocaine on the central nervous system.


Asunto(s)
Acetilcolinesterasa , Cocaína Crack , Pilocarpina , Ratas Wistar , Convulsiones , Animales , Masculino , Acetilcolinesterasa/metabolismo , Ratas , Pilocarpina/toxicidad , Convulsiones/inducido químicamente , Administración por Inhalación , Modelos Animales de Enfermedad , Especies Reactivas de Oxígeno/metabolismo , Actividad Motora/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo
6.
Epilepsy Behav ; 157: 109848, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38823073

RESUMEN

OSA is known to increase the risk for SUDEP in persons with epilepsy, but the relationship between these two factors is not clear. Also, there is no study showing the acute responses to obstructive apnea in a chronic epilepsy model. Therefore, this study aimed to characterize cardiorespiratory responses to obstructive apnea and chemoreceptor stimulation in rats. In addition, we analyzed respiratory centers in the brain stem by immunohistochemistry. Epilepsy was induced with pilocarpine. About 30-60 days after the first spontaneous seizure, tracheal and thoracic balloons, and electrodes for recording the electroencephalogram, electromyogram, and electrocardiogram were implanted. Intermittent apneas were made by inflation of the tracheal balloon during wakefulness, NREM sleep, and REM sleep. During apnea, respiratory effort increased, and heart rate fell, especially with apneas made during wakefulness, both in control rats and rats with epilepsy. Latency to awake from apnea was longer with apneas made during REM than NREM, but rats with epilepsy awoke more rapidly than controls with apneas made during REM sleep. Rats with epilepsy also had less REM sleep. Cardiorespiratory responses to stimulation of carotid chemoreceptors with cyanide were similar in rats with epilepsy and controls. Immunohistochemical analysis of Phox2b, tryptophan hydroxylase, and NK1 in brain stem nuclei involved in breathing and sleep (retrotrapezoid nucleus, pre-Bötzinger complex, Bötzinger complex, and caudal raphe nuclei) revealed no differences between control rats and rats with epilepsy. In conclusion, our study showed that rats with epilepsy had a decrease in the latency to awaken from apneas during REM sleep, which may be related to neuroplasticity in some other brain regions related to respiratory control, awakening mechanisms, and autonomic modulation.

7.
Epilepsy Behav ; 158: 109923, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944026

RESUMEN

Status epilepticus (SE) is a medical and neurologic emergency that may lead to permanent brain damage, morbidity, or death. Animal models of SE are particularly important to study the pathophysiology of SE and mechanisms of SE resistance to antiseizure medications with the aim to develop new, more effective treatments. In addition to rodents (rats or mice), larger mammalian species such as dogs, pigs, and nonhuman primates are used. This short review describes and discusses the value and limitations of the most frequently used mammalian models of SE. Issues that are discussed include (1) differences between chemical and electrical SE models; (2) the role of genetic background and environment on SE in rodents; (3) the use of rodent models (a) to study the pathophysiology of SE and mechanisms of SE resistance; (b) to study developmental aspects of SE; (c) to study the efficacy of new treatments, including drug combinations, for refractory SE; (d) to study the long-term consequences of SE and identify biomarkers; (e) to develop treatments that prevent or modify epilepsy; (e) to study the pharmacology of spontaneous seizures; (4) the limitations of animal models of induced SE; and (5) the advantages (and limitations) of naturally (spontaneously) occurring SE in epileptic dogs and nonhuman primates. Overall, mammalian models of SE have significantly increased our understanding of the pathophysiology and drug resistance of SE and identified potential targets for new, more effective treatments. This paper was presented at the 9th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in April 2024.

8.
Int J Med Sci ; 21(3): 492-495, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250604

RESUMEN

Purpose: Our aim was to evaluate the effect of prophylactic pilocarpine on acute salivary symptoms after radioactive iodine (RAI) therapy in patients with differentiated thyroid cancer. Methods: We enrolled 88 patients (76 women and 12 men; mean age: 47 years; range: 20-74 years) with differentiated thyroid cancer who received RAI. Patients were divided into pilocarpine (51 patients) and control (37 patients) groups. Pilocarpine was given orally, at a dose of 5 mg three times a day, from 2 days before and 12 days after RAI therapy. Symptoms and signs of acute sialadenitis within 3 months of RAI therapy were recorded. Results: During the 3 months after RAI therapy, 13 of the 88 patients (14.7%) developed acute symptomatic sialadenitis (swelling or pain of salivary glands). Acute salivary symptoms were reported by 4 (7.8%) and 9 (24.3%) patients in the pilocarpine and control groups, respectively. Acute salivary symptoms were less frequent in the pilocarpine than control group (p = 0.04), but did not differ by age, sex, or RAI dose (p = 0.3357, p = 0.428, and p = 0.2792). Conclusions: Pilocarpine reduced the likelihood of acute sialadenitis after RAI therapy in patients with differentiated thyroid cancer.


Asunto(s)
Adenocarcinoma , Sialadenitis , Neoplasias de la Tiroides , Masculino , Humanos , Femenino , Persona de Mediana Edad , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/radioterapia , Radioisótopos de Yodo/efectos adversos , Pilocarpina/efectos adversos , Sialadenitis/etiología , Sialadenitis/prevención & control , Enfermedad Aguda
9.
Oral Dis ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409744

RESUMEN

AIMS: To assess long-term efficacy and side effects of pilocarpine on irradiated head and neck cancer (HNC) patients in both for prevention and treatment of radiation-induced xerostomia (RIX). METHODS: Retrospective observational study was conducted. Eligibility criteria included irradiated HNC patients who received pilocarpine at least 12 weeks either for prevention (group A) or for treatment (group B) of RIX. We collected the documented Late Effect Normal Tissue Task Force-Subjective, Objective, Management, Analytics subjective/objective grades of RIX before (only group B) and the latest visit for pilocarpine prescription, dosage, side effects, duration of treatment, and the cause of discontinuation. RESULTS: Between December 2007 and June 2022, 182 patients were enrolled including 95 patients (52%) in group A and 87 patients (48%) in group B. Group A patients reported grades 1, 2, 3, and 4 objective RIX in 0%, 7%, 93%, and 0%. Grade 1, 2, and 3 subjective RIX were 57%, 28%, and 15%. All patients in group B had grade 3 both objective/subjective RIX. The overall improvement of objective/subjective RIX was found in 40%/83%. Discontinuation was found in 51% of patients due to tolerable symptoms or deterioration of the patient's status. CONCLUSIONS: Based on this retrospective analysis, long-term use of pilocarpine in irradiated HNC appears feasible for both prevention and treatment of RIX.

10.
Biomed Chromatogr ; 38(4): e5820, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38154955

RESUMEN

Temporal lobe epilepsy (TLE) is a common form of refractory epilepsy in adulthood. The metabolic profile of epileptogenesis is still poorly investigated. Elucidation of such a metabolic profile using animal models of epilepsy could help identify new metabolites and pathways involved in the mechanisms of epileptogenesis process. In this study, we evaluated the metabolic profile during the epileptogenesis periods. Using a pilocarpine model of epilepsy, we analyzed the global metabolic profile of hippocampal extracts by untargeted metabolomics based on ultra-performance liquid chromatography-high-resolution mass spectrometry, at three time points (3 h, 1 week, and 2 weeks) after status epilepticus (SE) induction. We demonstrated that epileptogenesis periods presented different hippocampal metabolic profiles, including alterations of metabolic pathways of amino acids and lipid metabolism. Six putative metabolites (tryptophan, N-acetylornithine, N-acetyl-L-aspartate, glutamine, adenosine, and cholesterol) showed significant different levels during epileptogenesis compared to their respective controls. These putative metabolites could be associated with the imbalance of neurotransmitters, mitochondrial dysfunction, and cell loss observed during both epileptogenesis and epilepsy. With these findings, we provided an overview of hippocampal metabolic profiles during different stages of epileptogenesis that could help investigate pathways and respective metabolites as predictive tools in epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Animales , Epilepsia/inducido químicamente , Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Metaboloma , Pilocarpina/metabolismo
11.
Eur Arch Otorhinolaryngol ; 281(7): 3727-3733, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38573515

RESUMEN

PURPOSE: This study aims to investigate the efficacy of lower dose pilocarpine in alleviating late dry mouth symptoms in head and neck cancer patients received radiotherapy. METHODS: Eighteen head and neck cancer patients experiencing persistent dry mouth were enrolled in this study. All participants started pilocarpine treatment a median of 6 months post-radiotherapy. Initially, patients received pilocarpine at 5 mg/day, with a gradual increase to the recommended dose of 15 mg/day. A Patient-Reported Outcome Measurement (PROMs) questionnaire assessed symptoms' severity related to hyposalivation. RESULTS: All patients reported symptomatic dry mouth above grade 2 before starting the medication. Pilocarpine treatment continued based on patients' self-assessment, with a median duration of 12 months (range, 3-36 months). The median daily maintenance dose was 10 mg (range, 5 to 20 mg). Total PROMs scores significantly decreased following medication, from 13 points (range 7-18 points) to 7 points (range 4-13 points) (p = 0.001). Significant improvements were observed in questions related to dry mouth (p < 0.001), water intake during eating (p = 0.01), carrying water (p = 0.01), taste (p < 0.001), and water intake during speech (p < 0.001). Initial and maintenance doses of pilocarpine were lower, and the duration of pilocarpine usage was shorter in patients treated with intensity-modulated radiation therapy compared to conformal radiotherapy (12 months vs. 25 months, p = 0.04). CONCLUSION: Pilocarpine may be considered at doses lower for late-term dry mouth. With modern radiotherapy techniques effectively preserving the parotid gland, short-term use may be recommended in these patients. Future studies may enhance the development of a more robust patient selection criteria model.


Asunto(s)
Neoplasias de Cabeza y Cuello , Agonistas Muscarínicos , Medición de Resultados Informados por el Paciente , Pilocarpina , Traumatismos por Radiación , Xerostomía , Humanos , Xerostomía/etiología , Pilocarpina/administración & dosificación , Masculino , Femenino , Persona de Mediana Edad , Neoplasias de Cabeza y Cuello/radioterapia , Anciano , Agonistas Muscarínicos/uso terapéutico , Agonistas Muscarínicos/administración & dosificación , Adulto , Resultado del Tratamiento
12.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338969

RESUMEN

In humans and animal models, temporal lobe epilepsy (TLE) is associated with reorganization of hippocampal neuronal networks, gliosis, neuroinflammation, and loss of integrity of the blood-brain barrier (BBB). More than 30% of epilepsies remain intractable, and characterization of the molecular mechanisms involved in BBB dysfunction is essential to the identification of new therapeutic strategies. In this work, we induced status epilepticus in rats through injection of the proconvulsant drug pilocarpine, which leads to TLE. Using RT-qPCR, double immunohistochemistry, and confocal imaging, we studied the regulation of reactive glia and vascular markers at different time points of epileptogenesis (latent phase-3, 7, and 14 days; chronic phase-1 and 3 months). In the hippocampus, increased expression of mRNA encoding the glial proteins GFAP and Iba1 confirmed neuroinflammatory status. We report for the first time the concomitant induction of the specific proteins CD31, PDGFRß, and ColIV-which peak at the same time points as inflammation-in the endothelial cells, pericytes, and basement membrane of the BBB. The altered expression of these proteins occurs early in TLE, during the latent phase, suggesting that they could be associated with the early rupture and pathogenicity of the BBB that will contribute to the chronic phase of epilepsy.


Asunto(s)
Barrera Hematoencefálica , Epilepsia del Lóbulo Temporal , Epilepsia , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Estado Epiléptico , Animales , Humanos , Ratas , Barrera Hematoencefálica/metabolismo , Colágeno/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Epilepsia/metabolismo , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Neuroglía/metabolismo , Pericitos/metabolismo , Pilocarpina/efectos adversos , Ratas Sprague-Dawley , Estado Epiléptico/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/genética , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo
13.
Neuroophthalmology ; 48(3): 193-197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756336

RESUMEN

Ma Huang (Ephedra), a traditional herbal remedy, which contains pseudoephedrine and ephedrine, has sympathomimetic characteristics. Despite being banned by the Federal Drug Administration in 2004, it is still used for weight loss and energy boosting in some countries. A previous healthy 42-year-old woman experienced sudden blurred vision in both eyes. Her pupils were dilated to 6 mm each, showing diminished light reflex responses, and were not responsive to both 0.1% and 1% pilocarpine. The day before the onset of her symptoms she had taken a herbal supplement. The woman's herbal medicine was believed to contain ephedrine, a component found in Ma Huang. The sympathomimetic effects of this substance could potentially induce mydriasis. After discontinuing the medication, her symptoms improved over 4 days, leading to a suspicion of drug-induced bilateral mydriasis. Herbal products prescribed for weight loss, which may contain potential elements such as Ma Huang, could lead to unforeseen side effects like bilateral mydriasis, and should be appropriately highlighted.

14.
Neurobiol Dis ; 178: 106014, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36702319

RESUMEN

Status epilepticus (SE) is a life-threatening medical emergency with significant morbidity and mortality. SE is associated with a robust and sustained increase in serum glucocorticoids, reaching concentrations sufficient to activate the dense population of glucocorticoid receptors (GRs) expressed among hippocampal excitatory neurons. Glucocorticoid exposure can increase hippocampal neuron excitability; however, whether activation of hippocampal GRs during SE exacerbates seizure severity remains unknown. To test this, a viral strategy was used to delete GRs from a subset of hippocampal excitatory neurons in adult male and female mice, producing hippocampal GR knockdown mice. Two weeks after GR knockdown, mice were challenged with the convulsant drug pilocarpine to induce SE. GR knockdown had opposing effects on early vs late seizure behaviors, with sex influencing responses. For both male and female mice, the onset of mild behavioral seizures was accelerated by GR knockdown. In contrast, GR knockdown delayed the onset of more severe convulsive seizures and death in male mice. Concordantly, GR knockdown also blunted the SE-induced rise in serum corticosterone in male mice. GR knockdown did not alter survival times or serum corticosterone in females. To assess whether loss of GR affected susceptibility to SE-induced cell death, within-animal analyses were conducted comparing local GR knockdown rates to local cell loss. GR knockdown did not affect the degree of localized neuronal loss, suggesting cell-intrinsic GR signaling neither protects nor sensitizes neurons to acute SE-induced death. Overall, the findings reveal that hippocampal GRs exert an anti-convulsant role in both males and females in the early stages of SE, followed by a switch to a pro-convulsive role for males only. Findings reveal an unexpected complexity in the interaction between hippocampal GR activation and the progression of SE.


Asunto(s)
Receptores de Glucocorticoides , Estado Epiléptico , Ratones , Masculino , Femenino , Animales , Receptores de Glucocorticoides/metabolismo , Corticosterona , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Hipocampo/metabolismo , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Glucocorticoides/metabolismo , Pilocarpina/toxicidad , Convulsivantes
15.
Epilepsia ; 64(5): 1390-1402, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36808593

RESUMEN

OBJECTIVE: Initiation and development of early seizures by chemical stimuli is associated with brain cell swelling resulting in edema of seizure-vulnerable brain regions. We previously reported that pretreatment with a nonconvulsive dose of glutamine (Gln) synthetase inhibitor methionine sulfoximine (MSO) mitigates the intensity of initial pilocarpine (Pilo)-induced seizures in juvenile rats. We hypothesized that MSO exerts its protective effect by preventing the seizure-initiating and seizure-propagating increase of cell volume. Taurine (Tau) is an osmosensitive amino acid, whose release reflects increased cell volume. Therefore, we tested whether the poststimulus rise of amplitude of Pilo-induced electrographic seizures and their attenuation by MSO are correlated with the release of Tau from seizure-affected hippocampus. METHODS: Lithium-pretreated animals were administered MSO (75 mg/kg ip) 2.5 h before the induction of convulsions by Pilo (40 mg/kg ip). Electroencephalographic (EEG) power was analyzed during 60 min post-Pilo, at 5-min intervals. Extracellular accumulation of Tau (eTau) served as a marker of cell swelling. eTau, extracellular Gln (eGln), and extracellular glutamate (eGlu) were assayed in the microdialysates of the ventral hippocampal CA1 region collected at 15-min intervals during the whole 3.5-h observation period. RESULTS: The first EEG signal became apparent at ~10 min post-Pilo. The EEG amplitude across most frequency bands peaked at ~40 min post-Pilo, and showed strong (r ~ .72-.96) temporal correlation with eTau, but no correlation with eGln or eGlu. MSO pretreatment delayed the first EEG signal in Pilo-treated rats by ~10 min, and depressed the EEG amplitude across most frequency bands, to values that remained strongly correlated with eTau (r > .92) and moderately correlated (r ~ -.59) with eGln, but not with eGlu. SIGNIFICANCE: Strong correlation between attenuation of Pilo-induced seizures and Tau release indicates that the beneficial effect of MSO is due to the prevention of cell volume increase concurrent with the onset of seizures.


Asunto(s)
Metionina Sulfoximina , Pilocarpina , Ratas , Animales , Pilocarpina/toxicidad , Metionina Sulfoximina/farmacología , Metionina Sulfoximina/metabolismo , Taurina/farmacología , Convulsiones/inducido químicamente , Convulsiones/prevención & control , Convulsiones/tratamiento farmacológico , Hipocampo/metabolismo
16.
Pharmacol Res ; 195: 106881, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37541638

RESUMEN

Microglia are the resident immune cells of the central nervous system, undertaking surveillance role and reacting to brain homeostasis and neurological diseases. Recent studies indicate that microglia modulate epilepsy-induced neuronal activities, however, the mechanisms underlying microglia-neuron communication in epilepsy are still unclear. Here we report that epileptic neuronal hyperexcitability activates microglia and drives microglial ATP/ADP hydrolyzing ectoenzyme CD39 (encoded by Entpd1) expression via recruiting the cAMP responsive element binding protein (CREB)-regulated transcription coactivator-1 (CRTC1) from cytoplasm to the nucleus and binding to CREB. Activated microglia in turn suppress epileptic neuronal hyperexcitability in a CD39 dependent manner. Disrupting microglial CREB/CRTC1 signaling, however, decreases CD39 expression and diminishes the inhibitory effect of microglia on epileptic neuronal hyperexcitability. Overall, our findings reveal CD39-dependent control of epileptic neuronal hyperexcitability by microglia is through an excitation-transcription coupling mechanism.


Asunto(s)
Epilepsia , Microglía , Humanos , Encéfalo/metabolismo , Transducción de Señal , Epilepsia/metabolismo
17.
Pharmacol Res ; 189: 106698, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796465

RESUMEN

Despite recent advances in understanding the causes of epilepsy, especially the genetic, comprehending the biological mechanisms that lead to the epileptic phenotype remains difficult. A paradigmatic case is constituted by the epilepsies caused by altered neuronal nicotinic acetylcholine receptors (nAChRs), which exert complex physiological functions in mature as well as developing brain. The ascending cholinergic projections exert potent control of forebrain excitability, and wide evidence implicates nAChR dysregulation as both cause and effect of epileptiform activity. First, tonic-clonic seizures are triggered by administration of high doses of nicotinic agonists, whereas non-convulsive doses have kindling effects. Second, sleep-related epilepsy can be caused by mutations on genes encoding nAChR subunits widely expressed in the forebrain (CHRNA4, CHRNB2, CHRNA2). Third, in animal models of acquired epilepsy, complex time-dependent alterations in cholinergic innervation are observed following repeated seizures. Heteromeric nAChRs are central players in epileptogenesis. Evidence is wide for autosomal dominant sleep-related hypermotor epilepsy (ADSHE). Studies of ADSHE-linked nAChR subunits in expression systems suggest that the epileptogenic process is promoted by overactive receptors. Investigation in animal models of ADSHE indicates that expression of mutant nAChRs can lead to lifelong hyperexcitability by altering i) the function of GABAergic populations in the mature neocortex and thalamus, ii) synaptic architecture during synaptogenesis. Understanding the balance of the epileptogenic effects in adult and developing networks is essential to plan rational therapy at different ages. Combining this knowledge with a deeper understanding of the functional and pharmacological properties of individual mutations will advance precision and personalized medicine in nAChR-dependent epilepsy.


Asunto(s)
Epilepsia , Receptores Nicotínicos , Animales , Receptores Nicotínicos/genética , Agonistas Nicotínicos/farmacología , Convulsiones , Fenotipo
18.
Epilepsy Behav ; 147: 109391, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37619464

RESUMEN

Temporal lobe epilepsy (TLE) often causes cognitive impairment, especially a decline in spatial memory. Reductions in spatial memory and learning are also common in rodent models of TLE. The Morris water maze and the Barnes maze are the standard methods for evaluating spatial learning and memory in rodents. However, animals with TLE may exhibit agitation, distress, and fail to follow the paradigmatic context of these tests, making the interpretation of experimental data difficult. This study optimized the procedure of the Morris water maze and the Barnes maze to evaluate spatial learning and memory in rats with the lithium-pilocarpine TLE model (LPM rats). It was demonstrated that LPM rats required a mandatory and prolonged habituation stage for both tests. Therefore, the experimental rats performed relatively well on these tests. Nevertheless, LPM rats exhibited a slower learning process compared to the control rats. LPM rats also showed a reduction in spatial memory formation. This was more pronounced in the Barnes maze. Also, LPM rats utilized a sequential strategy for searching in the Barnes maze and were incapable of developing a more efficient spatial search strategy that is common in control animals. The Barnes maze may be a better choice for assessing search strategies, learning deficits, and spatial memory in rats with TLE when choosing between the two tests. This is because of the risk of unexpected seizure occurrence during the Morris water maze tests, and the potential risks for animal welfare.


Asunto(s)
Disfunción Cognitiva , Epilepsia del Lóbulo Temporal , Epilepsia , Ratas , Animales , Pilocarpina/toxicidad , Litio , Prueba del Laberinto Acuático de Morris , Ratas Wistar , Aprendizaje Espacial , Cognición , Aprendizaje por Laberinto , Modelos Animales de Enfermedad
19.
Cereb Cortex ; 32(24): 5530-5543, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-35258078

RESUMEN

Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) has been widely used as an effective treatment for refractory temporal lobe epilepsy. Despite its promising clinical outcome, the exact mechanism of how ANT-DBS alleviates seizure severity has not been fully understood, especially at the cellular level. To assess effects of DBS, the present study examined electroencephalography (EEG) signals and locomotor behavior changes and conducted immunohistochemical analyses to examine changes in neuronal activity, number of neurons, and neurogenesis of inhibitory neurons in different hippocampal subregions. ANT-DBS alleviated seizure activity, abnormal locomotor behaviors, reduced theta-band, increased gamma-band EEG power in the interictal state, and increased the number of neurons in the dentate gyrus (DG). The number of parvalbumin- and somatostatin-expressing inhibitory neurons was recovered to the level in DG and CA1 of naïve mice. Notably, BrdU-positive inhibitory neurons were increased. In conclusion, ANT-DBS not only could reduce the number of seizures, but also could induce neuronal changes in the hippocampus, which is a key region involved in chronic epileptogenesis. Importantly, our results suggest that ANT-DBS may lead to hippocampal subregion-specific cellular recovery of GABAergic inhibitory neurons.


Asunto(s)
Núcleos Talámicos Anteriores , Estimulación Encefálica Profunda , Epilepsia , Ratones , Animales , Pilocarpina/toxicidad , Estimulación Encefálica Profunda/métodos , Núcleos Talámicos Anteriores/fisiología , Convulsiones/inducido químicamente , Convulsiones/terapia , Hipocampo/fisiología
20.
Biochemistry (Mosc) ; 88(3): 353-363, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37076282

RESUMEN

Status epilepticus (SE) triggers many not yet fully understood pathological changes in the nervous system that can lead to the development of epilepsy. In this work, we studied the effects of SE on the properties of excitatory glutamatergic transmission in the hippocampus in the lithium-pilocarpine model of temporal lobe epilepsy in rats. The studies were performed 1 day (acute phase), 3 and 7 days (latent phase), and 30 to 80 days (chronic phase) after SE. According to RT-qPCR data, expression of the genes coding for the AMPA receptor subunits GluA1 and GluA2 was downregulated in the latent phase, which may lead to the increased proportion of calcium-permeable AMPA receptors that play an essential role in the pathogenesis of many CNS diseases. The efficiency of excitatory synaptic neurotransmission in acute brain slices was decreased in all phases of the model, as determined by recording field responses in the CA1 region of the hippocampus in response to the stimulation of Schaffer collaterals by electric current of different strengths. However, the frequency of spontaneous excitatory postsynaptic potentials increased in the chronic phase, indicating an increased background activity of the glutamatergic system in epilepsy. This was also evidenced by a decrease in the threshold current causing hindlimb extension in the maximal electroshock seizure threshold test in rats with temporal lobe epilepsy compared to the control animals. The results suggest a series of functional changes in the properties of glutamatergic system associated with the epilepsy development and can be used to develop the antiepileptogenic therapy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Estado Epiléptico , Ratas , Animales , Pilocarpina/toxicidad , Pilocarpina/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Litio/farmacología , Litio/metabolismo , Hipocampo/metabolismo , Epilepsia/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA