Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.087
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(15): 2678-2689, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35839759

RESUMEN

Metabolic anomalies contribute to tissue dysfunction. Current metabolism research spans from organelles to populations, and new technologies can accommodate investigation across these scales. Here, we review recent advancements in metabolic analysis, including small-scale metabolomics techniques amenable to organelles and rare cell types, functional screening to explore how cells respond to metabolic stress, and imaging approaches to non-invasively assess metabolic perturbations in diseases. We discuss how metabolomics provides an informative phenotypic dimension that complements genomic analysis in Mendelian and non-Mendelian disorders. We also outline pressing challenges and how addressing them may further clarify the biochemical basis of human disease.


Asunto(s)
Genómica , Metabolómica , Diagnóstico por Imagen , Humanos , Metabolómica/métodos
2.
Cell ; 181(6): 1364-1379.e14, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32470395

RESUMEN

Small molecule neurotensin receptor 1 (NTSR1) agonists have been pursued for more than 40 years as potential therapeutics for psychiatric disorders, including drug addiction. Clinical development of NTSR1 agonists has, however, been precluded by their severe side effects. NTSR1, a G protein-coupled receptor (GPCR), signals through the canonical activation of G proteins and engages ß-arrestins to mediate distinct cellular signaling events. Here, we characterize the allosteric NTSR1 modulator SBI-553. This small molecule not only acts as a ß-arrestin-biased agonist but also extends profound ß-arrestin bias to the endogenous ligand by selectively antagonizing G protein signaling. SBI-553 shows efficacy in animal models of psychostimulant abuse, including cocaine self-administration, without the side effects characteristic of balanced NTSR1 agonism. These findings indicate that NTSR1 G protein and ß-arrestin activation produce discrete and separable physiological effects, thus providing a strategy to develop safer GPCR-targeting therapeutics with more directed pharmacological action.


Asunto(s)
Conducta Adictiva/metabolismo , Receptores de Neurotensina/metabolismo , beta-Arrestinas/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Conducta Adictiva/tratamiento farmacológico , Línea Celular , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Bibliotecas de Moléculas Pequeñas/farmacología
3.
CA Cancer J Clin ; 73(3): 255-274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36622841

RESUMEN

A quintessential setting for precision medicine, theranostics refers to a rapidly evolving field of medicine in which disease is diagnosed followed by treatment of disease-positive patients using tools for the therapy identical or similar to those used for the diagnosis. Against the backdrop of only-treat-when-visualized, the goal is a high therapeutic index with efficacy markedly surpassing toxicity. Oncology leads the way in theranostics innovation, where the approach has become possible with the identification of unique proteins and other factors selectively expressed in cancer versus healthy tissue, advances in imaging technology able to report these tissue factors, and major understanding of targeting chemicals and nanodevices together with methods to attach labels or warheads for imaging and therapy. Radiotheranostics-using radiopharmaceuticals-is becoming routine in patients with prostate cancer and neuroendocrine tumors who express the proteins PSMA (prostate-specific membrane antigen) and SSTR2 (somatostatin receptor 2), respectively, on their cancer. The palpable excitement in the field stems from the finding that a proportion of patients with large metastatic burden show complete and partial responses, and this outcome is catalyzing the search for more radiotheranostics approaches. Not every patient will benefit from radiotheranostics; but, for those who cross the target-detected line, the likelihood of response is very high.


Asunto(s)
Tumores Neuroendocrinos , Neoplasias de la Próstata , Masculino , Humanos , Medicina de Precisión , Radiofármacos/uso terapéutico , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Oncología Médica
4.
CA Cancer J Clin ; 72(4): 333-352, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34902160

RESUMEN

The authors define molecular imaging, according to the Society of Nuclear Medicine and Molecular Imaging, as the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in humans and other living systems. Although practiced for many years clinically in nuclear medicine, expansion to other imaging modalities began roughly 25 years ago and has accelerated since. That acceleration derives from the continual appearance of new and highly relevant animal models of human disease, increasingly sensitive imaging devices, high-throughput methods to discover and optimize affinity agents to key cellular targets, new ways to manipulate genetic material, and expanded use of cloud computing. Greater interest by scientists in allied fields, such as chemistry, biomedical engineering, and immunology, as well as increased attention by the pharmaceutical industry, have likewise contributed to the boom in activity in recent years. Whereas researchers and clinicians have applied molecular imaging to a variety of physiologic processes and disease states, here, the authors focus on oncology, arguably where it has made its greatest impact. The main purpose of imaging in oncology is early detection to enable interception if not prevention of full-blown disease, such as the appearance of metastases. Because biochemical changes occur before changes in anatomy, molecular imaging-particularly when combined with liquid biopsy for screening purposes-promises especially early localization of disease for optimum management. Here, the authors introduce the ways and indications in which molecular imaging can be undertaken, the tools used and under development, and near-term challenges and opportunities in oncology.


Asunto(s)
Oncología Médica , Imagen Molecular , Animales , Humanos , Imagen por Resonancia Magnética , Imagen Molecular/métodos , Tomografía de Emisión de Positrones
5.
Annu Rev Med ; 75: 49-66, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285513

RESUMEN

Prostate-specific membrane antigen (PSMA) as a transmembrane protein is overexpressed by prostate cancer (PC) cells and is accessible for binding antibodies or low-molecular-weight radioligands due to its extracellular portion. Successful targeting of PSMA began with the development of humanized J591 antibody. Due to their faster clearance compared to antibodies, small-molecule radioligands for targeted imaging and therapy of PC have been favored in recent development efforts. PSMA positron emission tomography (PET) imaging has higher diagnostic performance than conventional imaging for initial staging of high-risk PC and biochemical recurrence detection/localization. However, it remains to be demonstrated how to integrate PSMA PET imaging for therapy response assessment and as an outcome endpoint measure in clinical trials. With the recent approval of 177Lu-PSMA-617 by the US Food and Drug Administration for metastatic castration-resistant PC progressing after chemotherapy, the high value of PSMA-targeted therapy was confirmed. Compared to standard of care, PSMA-based radioligand therapy led to a better outcome and a higher quality of life. This review, focusing on the advanced PC setting, provides an overview of different approved and nonapproved PSMA-targeted imaging and therapeutic modalities and discusses the future of PSMA-targeted theranostics, also with an outlook on non-radiopharmaceutical-based PSMA-targeted therapies.


Asunto(s)
Neoplasias de la Próstata , Calidad de Vida , Estados Unidos , Masculino , Humanos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/terapia , Tomografía de Emisión de Positrones , Medicina de Precisión
6.
Proc Natl Acad Sci U S A ; 120(3): e2216458120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626557

RESUMEN

The lack of techniques for noninvasive imaging of inflammation has challenged precision medicine management of acute respiratory distress syndrome (ARDS). Here, we determined the potential of positron emission tomography (PET) of chemokine-like receptor-1 (CMKLR1) to monitor lung inflammation in a murine model of lipopolysaccharide-induced injury. Lung uptake of a CMKLR1-targeting radiotracer, [64Cu]NODAGA-CG34, was significantly increased in lipopolysaccharide-induced injury, correlated with the expression of multiple inflammatory markers, and reduced by dexamethasone treatment. Monocyte-derived macrophages, followed by interstitial macrophages and monocytes were the major CMKLR1-expressing leukocytes contributing to the increased tracer uptake throughout the first week of lipopolysaccharide-induced injury. The clinical relevance of CMKLR1 as a biomarker of lung inflammation in ARDS was confirmed using single-nuclei RNA-sequencing datasets which showed significant increases in CMKLR1 expression among transcriptionally distinct subsets of lung monocytes and macrophages in COVID-19 patients vs. controls. CMKLR1-targeted PET is a promising strategy to monitor the dynamics of lung inflammation and response to anti-inflammatory treatment in ARDS.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Ratones , Animales , Lipopolisacáridos/toxicidad , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/diagnóstico por imagen , Lesión Pulmonar Aguda/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Quimiocinas/metabolismo , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Imagen Molecular , Receptores de Quimiocina
7.
J Neurosci ; 44(33)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38997157

RESUMEN

Synapses are fundamental to the function of the central nervous system and are implicated in a number of brain disorders. Despite their pivotal role, a comprehensive imaging resource detailing the distribution of synapses in the human brain has been lacking until now. Here, we employ high-resolution PET neuroimaging in healthy humans (17F/16M) to create a 3D atlas of the synaptic marker Synaptic Vesicle glycoprotein 2A (SV2A). Calibration to absolute density values (pmol/ml) was achieved by leveraging postmortem human brain autoradiography data. The atlas unveils distinctive cortical and subcortical gradients of synapse density that reflect functional topography and hierarchical order from core sensory to higher-order integrative areas-a distribution that diverges from SV2A mRNA patterns. Furthermore, we found a positive association between IQ and SV2A density in several higher-order cortical areas. This new resource will help advance our understanding of brain physiology and the pathogenesis of brain disorders, serving as a pivotal tool for future neuroscience research.


Asunto(s)
Encéfalo , Glicoproteínas de Membrana , Proteínas del Tejido Nervioso , Tomografía de Emisión de Positrones , Sinapsis , Humanos , Sinapsis/metabolismo , Sinapsis/fisiología , Masculino , Femenino , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/fisiología , Adulto , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Tomografía de Emisión de Positrones/métodos , Persona de Mediana Edad , Atlas como Asunto , Adulto Joven , Autorradiografía/métodos , Anciano
8.
Physiology (Bethesda) ; 39(2): 0, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38113392

RESUMEN

White adipose tissue and brown adipose tissue (WAT and BAT) regulate fatty acid metabolism and control lipid fluxes to other organs. Dysfunction of these key metabolic processes contributes to organ insulin resistance and inflammation leading to chronic diseases such as type 2 diabetes, metabolic dysfunction-associated steatohepatitis, and cardiovascular diseases. Metabolic tracers combined with molecular imaging methods are powerful tools for the investigation of these pathogenic mechanisms. Herein, I review some of the positron emission tomography and magnetic resonance imaging methods combined with stable isotopic metabolic tracers to investigate fatty acid and energy metabolism, focusing on human WAT and BAT metabolism. I will discuss the complementary strengths offered by these methods for human investigations and current gaps in the field.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ácidos Grasos , Humanos , Ácidos Grasos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Tejido Adiposo Pardo/diagnóstico por imagen , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Metabolismo Energético/fisiología
9.
FASEB J ; 38(10): e23700, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38787606

RESUMEN

Distinguishing quiescent from rupture-prone atherosclerotic lesions has significant translational and clinical implications. Electrochemical impedance spectroscopy (EIS) characterizes biological tissues by assessing impedance and phase delay responses to alternating current at multiple frequencies. We evaluated invasive 6-point stretchable EIS sensors over a spectrum of experimental atherosclerosis and compared results with intravascular ultrasound (IVUS), molecular positron emission tomography (PET) imaging, and histology. Male New Zealand White rabbits (n = 16) were placed on a high-fat diet, with or without endothelial denudation via balloon injury of the infrarenal abdominal aorta. Rabbits underwent in vivo micro-PET imaging of the abdominal aorta with 68Ga-DOTATATE, 18F-NaF, and 18F-FDG, followed by invasive interrogation via IVUS and EIS. Background signal-corrected values of impedance and phase delay were determined. Abdominal aortic samples were collected for histology. Analyses were performed blindly. EIS impedance was associated with markers of plaque activity including macrophage infiltration (r = .813, p = .008) and macrophage/smooth muscle cell (SMC) ratio (r = .813, p = .026). Moreover, EIS phase delay correlated with anatomic markers of plaque burden, namely intima/media ratio (r = .883, p = .004) and %stenosis (r = .901, p = .002), similar to IVUS. 68Ga-DOTATATE correlated with intimal macrophage infiltration (r = .861, p = .003) and macrophage/SMC ratio (r = .831, p = .021), 18F-NaF with SMC infiltration (r = -.842, p = .018), and 18F-FDG correlated with macrophage/SMC ratio (r = .787, p = .036). EIS with phase delay integrates key atherosclerosis features that otherwise require multiple complementary invasive and non-invasive imaging approaches to capture. These findings indicate the potential of invasive EIS to comprehensively evaluate human coronary artery disease.


Asunto(s)
Aterosclerosis , Espectroscopía Dieléctrica , Animales , Conejos , Espectroscopía Dieléctrica/métodos , Masculino , Aterosclerosis/patología , Aterosclerosis/diagnóstico por imagen , Aorta Abdominal/patología , Aorta Abdominal/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/patología , Tomografía de Emisión de Positrones/métodos , Fenotipo , Modelos Animales de Enfermedad , Macrófagos/patología , Macrófagos/metabolismo
10.
CA Cancer J Clin ; 68(2): 116-132, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29194581

RESUMEN

Hodgkin lymphoma (HL) is a unique hematopoietic neoplasm characterized by cancerous Reed-Sternberg cells in an inflammatory background. Patients are commonly diagnosed with HL in their 20s and 30s, and they present with supradiaphragmatic lymphadenopathy, often with systemic B symptoms. Even in advanced-stage disease, HL is highly curable with combination chemotherapy, radiation, or combined-modality treatment. Although the same doxorubicin, bleomycin, vinblastine, and dacarbazine chemotherapeutic regimen has been the mainstay of therapy over the last 30 years, risk-adapted approaches have helped de-escalate therapy in low-risk patients while intensifying treatment for higher risk patients. Even patients who are not cured with initial therapy can often be salvaged with alternate chemotherapy combinations, the novel antibody-drug conjugate brentuximab, or high-dose autologous or allogeneic hematopoietic stem cell transplantation. The programmed death-1 inhibitors nivolumab and pembrolizumab have both demonstrated high response rates and durable remissions in patients with relapsed/refractory HL. Alternate donor sources and reduced-intensity conditioning have made allogeneic hematopoietic stem cell transplantation a viable option for more patients. Future research will look to integrate novel strategies into earlier lines of therapy to improve the HL cure rate and minimize long-term treatment toxicities. CA Cancer J Clin 2018;68:116-132. © 2017 American Cancer Society.


Asunto(s)
Enfermedad de Hodgkin/diagnóstico , Enfermedad de Hodgkin/terapia , Protocolos de Quimioterapia Combinada Antineoplásica , Biomarcadores de Tumor/sangre , Terapia Combinada , Diagnóstico Diferencial , Diagnóstico por Imagen , Trasplante de Células Madre Hematopoyéticas , Enfermedad de Hodgkin/mortalidad , Enfermedad de Hodgkin/patología , Humanos , Estadificación de Neoplasias , Pronóstico , Factores de Riesgo , Análisis de Supervivencia , Acondicionamiento Pretrasplante/tendencias
11.
Arterioscler Thromb Vasc Biol ; 44(6): 1432-1446, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38660800

RESUMEN

BACKGROUND: Vascular calcification causes significant morbidity and occurs frequently in diseases of calcium/phosphate imbalance. Radiolabeled sodium fluoride positron emission tomography/computed tomography has emerged as a sensitive and specific method for detecting and quantifying active microcalcifications. We developed a novel technique to quantify and map total vasculature microcalcification to a common space, allowing simultaneous assessment of global disease burden and precise tracking of site-specific microcalcifications across time and individuals. METHODS: To develop this technique, 4 patients with hyperphosphatemic familial tumoral calcinosis, a monogenic disorder of FGF23 (fibroblast growth factor-23) deficiency with a high prevalence of vascular calcification, underwent radiolabeled sodium fluoride positron emission tomography/computed tomography imaging. One patient received serial imaging 1 year after treatment with an IL-1 (interleukin-1) antagonist. A radiolabeled sodium fluoride-based microcalcification score, as well as calcification volume, was computed at all perpendicular slices, which were then mapped onto a standardized vascular atlas. Segment-wise mCSmean and mCSmax were computed to compare microcalcification score levels at predefined vascular segments within subjects. RESULTS: Patients with hyperphosphatemic familial tumoral calcinosis had notable peaks in microcalcification score near the aortic bifurcation and distal femoral arteries, compared with a control subject who had uniform distribution of vascular radiolabeled sodium fluoride uptake. This technique also identified microcalcification in a 17-year-old patient, who had no computed tomography-defined calcification. This technique could not only detect a decrease in microcalcification score throughout the patient treated with an IL-1 antagonist but it also identified anatomic areas that had increased responsiveness while there was no change in computed tomography-defined macrocalcification after treatment. CONCLUSIONS: This technique affords the ability to visualize spatial patterns of the active microcalcification process in the peripheral vasculature. Further, this technique affords the ability to track microcalcifications at precise locations not only across time but also across subjects. This technique is readily adaptable to other diseases of vascular calcification and may represent a significant advance in the field of vascular biology.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos , Radioisótopos de Flúor , Hiperfosfatemia , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Fluoruro de Sodio , Calcificación Vascular , Humanos , Hiperfosfatemia/genética , Hiperfosfatemia/diagnóstico por imagen , Masculino , Femenino , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/genética , Adulto , Valor Predictivo de las Pruebas , Persona de Mediana Edad , Adolescente , Adulto Joven , Calcinosis/genética , Calcinosis/diagnóstico por imagen , Hiperostosis Cortical Congénita
12.
Arterioscler Thromb Vasc Biol ; 44(9): 1975-1985, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39051097

RESUMEN

BACKGROUND: Abdominal aortic aneurysms expand over time and increase the risk of fatal ruptures. To predict expansion, the isolated assessment of 18F-fluorodeoxyglucose (FDG) and sodium fluoride (NaF) uptake or calcification volume in aneurysms has been investigated with variability in results. We systematically evaluated whether 18F-FDG and 18F-NaF uptake was predictive of abdominal aortic aneurysm expansion. METHODS: Seventy-four male Sprague-Dawley rat abdominal aortic aneurysm models were imaged using positron emission tomography-computed tomography with 18F-FDG and 18F-NaF at 1, 2, 4, 6, and 8 weeks after CaCl2 or saline stimulation. In the 1-week cohort (n=25), the correlation between 18F-FDG or 18F-NaF uptake and pathological markers was investigated. In the time course cohort (n=49), animals received either atorvastatin, losartan, aldactone, or risedronate to assess the effect of these drugs, and the relationship between aortic size and sequential 18F-FDG and 18F-NaF uptake or calcification volume was examined. RESULTS: In the 1-week cohort, the maximum standard unit value of 18F-FDG and 18F-NaF uptake correlated with CD68- (r=0.82; P=0.001) and von Kossa staining-positive areas (r=0.89; P<0.001), respectively. In the time course cohort, 18F-FDG and 18F-NaF uptake changed in a time-dependent manner and drugs attenuated this uptake. Specifically, 18F-FDG showed high uptake at weeks 1 and 2, whereas a high 18F-NaF uptake was noted throughout the study period. Atorvastatin and risedronate showed a decreased and increased aortic size, respectively. The final aortic area correlated well with 18F-FDG and 18F-NaF uptake and calcification volume, especially at 1 and 2 weeks (18F-NaF [1 week]: r=0.61, 18F-FDG [2 weeks]: r=0.51, calcification volume [1 week]: r=0.59; P<0.001). Multiple linear regression analysis showed that the combination of these factors predicted the final aortic size, with 18F-NaF uptake at 1 week being the strongest predictor. CONCLUSIONS: The uptake of 18F-NaF and 18F-FDG and the calcification volume at appropriate times correlated with the development of abdominal aortic aneurysms, with 18F-NaF uptake being the strongest predictor.


Asunto(s)
Aorta Abdominal , Aneurisma de la Aorta Abdominal , Modelos Animales de Enfermedad , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Ratas Sprague-Dawley , Fluoruro de Sodio , Calcificación Vascular , Animales , Masculino , Fluorodesoxiglucosa F18/farmacocinética , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/inducido químicamente , Aorta Abdominal/diagnóstico por imagen , Aorta Abdominal/metabolismo , Aorta Abdominal/patología , Aorta Abdominal/efectos de los fármacos , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Valor Predictivo de las Pruebas , Factores de Tiempo , Radioisótopos de Flúor , Progresión de la Enfermedad , Ratas
13.
Brain ; 147(7): 2566-2578, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38289855

RESUMEN

Compartmentalized meningeal inflammation is thought to represent one of the key players in the pathogenesis of cortical demyelination in multiple sclerosis. PET targeting the 18 kDa mitochondrial translocator protein (TSPO) is a molecular-specific approach to quantifying immune cell-mediated density in the cortico-meningeal tissue compartment in vivo. This study aimed to characterize cortical and meningeal TSPO expression in a heterogeneous cohort of multiple sclerosis cases using in vivo simultaneous MR-PET with 11C-PBR28, a second-generation TSPO radioligand, and ex vivo immunohistochemistry. Forty-nine multiple sclerosis patients (21 with secondary progressive and 28 with relapsing-remitting multiple sclerosis) with mixed or high affinity binding for 11C-PBR28 underwent 90-min 11C-PBR28 simultaneous MR-PET. Tracer binding was measured using 60-90 min normalized standardized uptake value ratios sampled at mid-cortical depth and ∼3 mm above the pial surface. Data in multiple sclerosis patients were compared to 21 age-matched healthy controls. To characterize the nature of 11C-PBR28 PET uptake, the meningeal and cortical lesion cellular expression of TSPO was further described in post-mortem brain tissue from 20 cases with secondary progressive multiple sclerosis and five age-matched healthy donors. Relative to healthy controls, patients with multiple sclerosis exhibited abnormally increased TSPO signal in the cortex and meningeal tissue, diffusively in progressive disease and more localized in relapsing-remitting multiple sclerosis. In multiple sclerosis, increased meningeal TSPO levels were associated with increased Expanded Disability Status Scale scores (P = 0.007, by linear regression). Immunohistochemistry, validated using in situ sequencing analysis, revealed increased TSPO expression in the meninges and adjacent subpial cortical lesions of post-mortem secondary progressive multiple sclerosis cases relative to control tissue. In these cases, increased TSPO expression was related to meningeal inflammation. Translocator protein immunostaining was detected on meningeal MHC-class II+ macrophages and cortical-activated MHC-class II+ TMEM119+ microglia. In vivo arterial blood data and neuropathology showed that endothelial binding did not significantly account for increased TSPO cortico-meningeal expression in multiple sclerosis. Our findings support the use of TSPO-PET in multiple sclerosis for imaging in vivo inflammation in the cortico-meningeal brain tissue compartment and provide in vivo evidence implicating meningeal inflammation in the pathogenesis of the disease.


Asunto(s)
Meninges , Esclerosis Múltiple , Tomografía de Emisión de Positrones , Receptores de GABA , Humanos , Receptores de GABA/metabolismo , Receptores de GABA/genética , Femenino , Masculino , Persona de Mediana Edad , Adulto , Tomografía de Emisión de Positrones/métodos , Meninges/metabolismo , Meninges/diagnóstico por imagen , Meninges/patología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Anciano , Corteza Cerebral/metabolismo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología , Imagen por Resonancia Magnética , Esclerosis Múltiple Crónica Progresiva/metabolismo , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/patología , Acetamidas , Piridinas
14.
Brain ; 147(3): 936-948, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37787146

RESUMEN

Blood-based biomarkers have been extensively evaluated for their diagnostic potential in Alzheimer's disease. However, their relative prognostic and monitoring capabilities for cognitive decline, amyloid-ß (Aß) accumulation and grey matter loss in cognitively unimpaired elderly require further investigation over extended time periods. This prospective cohort study in cognitively unimpaired elderly [n = 185, mean age (range) = 69 (53-84) years, 48% female] examined the prognostic and monitoring capabilities of glial fibrillary acidic protein (GFAP), neurofilament light (NfL), Aß1-42/Aß1-40 and phosphorylated tau (pTau)181 through their quantification in serum. All participants underwent baseline Aß-PET, MRI and blood sampling as well as 2-yearly cognitive testing. A subset additionally underwent Aß-PET (n = 109), MRI (n = 106) and blood sampling (n = 110) during follow-up [median time interval (range) = 6.1 (1.3-11.0) years]. Matching plasma measurements were available for Aß1-42/Aß1-40 and pTau181 (both n = 140). Linear mixed-effects models showed that high serum GFAP and NfL predicted future cognitive decline in memory (ßGFAP×Time = -0.021, PFDR = 0.007 and ßNfL×Time = -0.031, PFDR = 0.002) and language (ßGFAP×Time = -0.021, PFDR = 0.002 and ßNfL×Time = -0.018, PFDR = 0.03) domains. Low serum Aß1-42/Aß1-40 equally but independently predicted memory decline (ßAß1-42/Aß1-40×Time = -0.024, PFDR = 0.02). Whole-brain voxelwise analyses revealed that low Aß1-42/Aß1-40 predicted Aß accumulation within the precuneus and frontal regions, high GFAP and NfL predicted grey matter loss within hippocampal regions and low Aß1-42/Aß1-40 predicted grey matter loss in lateral temporal regions. Serum GFAP, NfL and pTau181 increased over time, while Aß1-42/Aß1-40 decreased only in Aß-PET-negative elderly. NfL increases associated with declining memory (ßNfLchange×Time = -0.030, PFDR = 0.006) and language (ßNfLchange×Time = -0.021, PFDR = 0.02) function and serum Aß1-42/Aß1-40 decreases associated with declining language function (ßAß1-42/Aß1-40×Time = -0.020, PFDR = 0.04). GFAP increases associated with Aß accumulation within the precuneus and NfL increases associated with grey matter loss. Baseline and longitudinal serum pTau181 only associated with Aß accumulation in restricted occipital regions. In head-to-head comparisons, serum outperformed plasma Aß1-42/Aß1-40 (ΔAUC = 0.10, PDeLong, FDR = 0.04), while both plasma and serum pTau181 demonstrated poor performance to detect asymptomatic Aß-PET positivity (AUC = 0.55 and 0.63, respectively). However, when measured with a more phospho-specific assay, plasma pTau181 detected Aß-positivity with high performance (AUC = 0.82, PDeLong, FDR < 0.007). In conclusion, serum GFAP, NfL and Aß1-42/Aß1-40 are valuable prognostic and/or monitoring tools in asymptomatic stages providing complementary information in a time- and pathology-dependent manner.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Femenino , Anciano , Masculino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Estudios Prospectivos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Amiloide/metabolismo , Disfunción Cognitiva/metabolismo , Biomarcadores , Cognición , Tomografía de Emisión de Positrones
15.
Brain ; 147(7): 2308-2324, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38437860

RESUMEN

Cholinergic degeneration is significant in Lewy body disease, including Parkinson's disease, dementia with Lewy bodies, and isolated REM sleep behaviour disorder. Extensive research has demonstrated cholinergic alterations in the CNS of these disorders. More recently, studies have revealed cholinergic denervation in organs that receive parasympathetic denervation. This enables a comprehensive review of cholinergic changes in Lewy body disease, encompassing both central and peripheral regions, various disease stages and diagnostic categories. Across studies, brain regions affected in Lewy body dementia show equal or greater levels of cholinergic impairment compared to the brain regions affected in Lewy body disease without dementia. This observation suggests a continuum of cholinergic alterations between these disorders. Patients without dementia exhibit relative sparing of limbic regions, whereas occipital and superior temporal regions appear to be affected to a similar extent in patients with and without dementia. This implies that posterior cholinergic cell groups in the basal forebrain are affected in the early stages of Lewy body disorders, while more anterior regions are typically affected later in the disease progression. The topographical changes observed in patients affected by comorbid Alzheimer pathology may reflect a combination of changes seen in pure forms of Lewy body disease and those seen in Alzheimer's disease. This suggests that Alzheimer co-pathology is important to understand cholinergic degeneration in Lewy body disease. Thalamic cholinergic innervation is more affected in Lewy body patients with dementia compared to those without dementia, and this may contribute to the distinct clinical presentations observed in these groups. In patients with Alzheimer's disease, the thalamus is variably affected, suggesting a different sequential involvement of cholinergic cell groups in Alzheimer's disease compared to Lewy body disease. Patients with isolated REM sleep behaviour disorder demonstrate cholinergic denervation in abdominal organs that receive parasympathetic innervation from the dorsal motor nucleus of the vagus, similar to patients who experienced this sleep disorder in their prodrome. This implies that REM sleep behaviour disorder is important for understanding peripheral cholinergic changes in both prodromal and manifest phases of Lewy body disease. In conclusion, cholinergic changes in Lewy body disease carry implications for understanding phenotypes and the influence of Alzheimer co-pathology, delineating subtypes and pathological spreading routes, and for developing tailored treatments targeting the cholinergic system.


Asunto(s)
Neuronas Colinérgicas , Progresión de la Enfermedad , Enfermedad por Cuerpos de Lewy , Enfermedad por Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/metabolismo , Humanos , Neuronas Colinérgicas/patología , Neuronas Colinérgicas/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo
16.
Brain ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940331

RESUMEN

Increasing evidence shows that neuroinflammation is a possible modulator of tau spread effects on cognitive impairment in Alzheimer's disease. In this context, plasma levels of the glial fibrillary acidic protein (GFAP) have been suggested to have a robust association with Alzheimer's disease pathophysiology. This study aims to assess the correlation between plasma GFAP and Alzheimer's disease pathology, and their synergistic effect on cognitive performance and decline. A cohort of 122 memory clinic subjects with amyloid and tau positron emission tomography, MRI scans, plasma GFAP, and Mini-Mental State Examination (MMSE) was included in the study. A subsample of 94 subjects had a follow-up MMSE score at least one year after baseline. Regional and voxel-based correlations between Alzheimer's disease biomarkers and plasma GFAP were assessed. Mediation analyses were performed to evaluate the effects of plasma GFAP on the association between amyloid and tau PET, and tau PET and cognitive impairment and decline. GFAP was associated with increased tau PET ligand uptake in the lateral temporal and inferior temporal lobes in a strong left-sided pattern independently of age, gender, education, amyloid, and APOE status (ß=0.001, p < 0.01). The annual rate of MMSE change was significantly and independently correlated with both GFAP (ß=0.006, p < 0.01) and global tau SUVR (ß=4.33, p < 0.01), but not with amyloid burden. Partial mediation effects of GFAP were found on the association between amyloid and tau pathology (13.7%), and between tau pathology and cognitive decline (17.4%), but not on global cognition at baseline. Neuroinflammation measured by circulating GFAP is independently associated with tau Alzheimer's disease pathology and with cognitive decline, suggesting neuroinflammation as a potential target for future disease-modifying trials targeting tau pathology. Peretti et al. show that a circulatory marker of neuroinflammation-glial fibrillary acidic protein-is associated with tau pathology in lateral temporal and frontal regions in patients with Alzheimer's disease, independent of amyloid load. Neuroinflammation appears to modulate the association between amyloid and tau biomarkers.

17.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38186005

RESUMEN

Neuronal inhibition, primarily mediated by GABAergic neurotransmission, is crucial for brain development and healthy cognition. Gamma-aminobutyric acid concentration levels in sensory areas have been shown to correlate with hemodynamic and oscillatory neuronal responses. How these measures relate to one another during working memory, a higher-order cognitive process, is still poorly understood. We address this gap by collecting magnetoencephalography, functional magnetic resonance imaging, and Flumazenil positron emission tomography data within the same subject cohort using an n-back working-memory paradigm. By probing the relationship between GABAA receptor distribution, neural oscillations, and Blood Oxygen Level Dependent (BOLD) modulations, we found that GABAA receptor density in higher-order cortical areas predicted the reaction times on the working-memory task and correlated positively with the peak frequency of gamma power modulations and negatively with BOLD amplitude. These findings support and extend theories linking gamma oscillations and hemodynamic responses to gamma-aminobutyric acid neurotransmission and to the excitation-inhibition balance and cognitive performance in humans. Considering the small sample size of the study, future studies should test whether these findings also hold for other, larger cohorts as well as to examine in detail how the GABAergic system and neural fluctuations jointly support working-memory task performance.


Asunto(s)
Memoria a Corto Plazo , Receptores de GABA-A , Humanos , Memoria a Corto Plazo/fisiología , Magnetoencefalografía/métodos , Imagen por Resonancia Magnética , Ácido gamma-Aminobutírico , Encéfalo/fisiología
18.
Proc Natl Acad Sci U S A ; 119(15): e2113641119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35380901

RESUMEN

The human brain is composed of functional networks that have a modular topology, where brain regions are organized into communities that form internally dense (segregated) and externally sparse (integrated) subnetworks that underlie higher-order cognitive functioning. It is hypothesized that amyloid-ß and tau pathology in preclinical Alzheimer's disease (AD) spread through functional networks, disrupting neural communication that results in cognitive dysfunction. We used high-resolution (voxel-level) graph-based network analyses to test whether in vivo amyloid-ß and tau burden was associated with the segregation and integration of brain functional connections, and episodic memory, in cognitively unimpaired Presenilin-1 E280A carriers who are expected to develop early-onset AD dementia in ∼13 y on average. Compared to noncarriers, mutation carriers exhibited less functional segregation and integration in posterior default-mode network (DMN) regions, particularly the precuneus, and in the retrospenial cortex, which has been shown to link medial temporal regions and cortical regions of the DMN. Mutation carriers also showed greater functional segregation and integration in regions connected to the salience network, including the striatum and thalamus. Greater tau burden was associated with lower segregated and integrated functional connectivity of DMN regions, particularly the precuneus and medial prefrontal cortex. In turn, greater tau pathology was related to higher segregated and integrated functional connectivity in the retrospenial cortex and the anterior cingulate cortex, a hub of the salience network. These findings enlighten our understanding of how AD-related pathology distinctly alters the brain's functional architecture in the preclinical stage, possibly contributing to pathology propagation and ultimately resulting in dementia.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Conectoma , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Heterocigoto , Humanos , Imagen por Resonancia Magnética/métodos , Trastornos de la Memoria/diagnóstico por imagen , Trastornos de la Memoria/genética , Memoria Episódica , Tomografía de Emisión de Positrones/métodos , Presenilina-1/genética , Proteínas tau/metabolismo
19.
Semin Cancer Biol ; 91: 124-142, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36906112

RESUMEN

Based on the advantages of revealing the functional status and molecular expression of tumor cells, positron emission tomography (PET) imaging has been performed in numerous types of malignant diseases for diagnosis and monitoring. However, insufficient image quality, the lack of a convincing evaluation tool and intra- and interobserver variation in human work are well-known limitations of nuclear medicine imaging and restrict its clinical application. Artificial intelligence (AI) has gained increasing interest in the field of medical imaging due to its powerful information collection and interpretation ability. The combination of AI and PET imaging potentially provides great assistance to physicians managing patients. Radiomics, an important branch of AI applied in medical imaging, can extract hundreds of abstract mathematical features of images for further analysis. In this review, an overview of the applications of AI in PET imaging is provided, focusing on image enhancement, tumor detection, response and prognosis prediction and correlation analyses with pathology or specific gene mutations in several types of tumors. Our aim is to describe recent clinical applications of AI-based PET imaging in malignant diseases and to focus on the description of possible future developments.


Asunto(s)
Inteligencia Artificial , Neoplasias , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Emisión de Positrones , Neoplasias/diagnóstico por imagen , Oncología Médica
20.
J Neurosci ; 43(26): 4884-4895, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37225435

RESUMEN

Establishing the neural mechanisms responsible for the altered global states of consciousness during anesthesia and dissociating these from other drug-related effects remains a challenge in consciousness research. We investigated differences in brain activity between connectedness and disconnectedness by administering various anesthetics at concentrations designed to render 50% of the subjects unresponsive. One hundred and sixty healthy male subjects were randomized to receive either propofol (1.7 µg/ml; n = 40), dexmedetomidine (1.5 ng/ml; n = 40), sevoflurane (0.9% end-tidal; n = 40), S-ketamine (0.75 µg/ml; n = 20), or saline placebo (n = 20) for 60 min using target-controlled infusions or vaporizer with end-tidal monitoring. Disconnectedness was defined as unresponsiveness to verbal commands probed at 2.5-min intervals and unawareness of external events in a postanesthesia interview. High-resolution positron emission tomography (PET) was used to quantify regional cerebral metabolic rates of glucose (CMRglu) utilization. Contrasting scans where the subjects were classified as connected and responsive versus disconnected and unresponsive revealed that for all anesthetics, except S-ketamine, the level of thalamic activity differed between these states. A conjunction analysis across the propofol, dexmedetomidine and sevoflurane groups confirmed the thalamus as the primary structure where reduced metabolic activity was related to disconnectedness. Widespread cortical metabolic suppression was observed when these subjects, classified as either connected or disconnected, were compared with the placebo group, suggesting that these findings may represent necessary but alone insufficient mechanisms for the change in the state of consciousness.SIGNIFICANCE STATEMENT Experimental anesthesia is commonly used in the search for measures of brain function which could distinguish between global states of consciousness. However, most previous studies have not been designed to separate effects related to consciousness from other effects related to drug exposure. We employed a novel study design to disentangle these effects by exposing subjects to predefined EC50 doses of four commonly used anesthetics or saline placebo. We demonstrate that state-related effects are remarkably limited compared with the widespread cortical effects related to drug exposure. In particular, decreased thalamic activity was associated with disconnectedness with all used anesthetics except for S-ketamine.


Asunto(s)
Anestesia , Anestésicos por Inhalación , Dexmedetomidina , Ketamina , Propofol , Masculino , Humanos , Propofol/farmacología , Sevoflurano/farmacología , Ketamina/farmacología , Dexmedetomidina/farmacología , Anestésicos por Inhalación/farmacología , Anestésicos Intravenosos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA