Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 673
Filtrar
1.
Med Res Rev ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234932

RESUMEN

Postmenopausal osteoporosis (PMO) is a common disease associated with aging, and estrogen deficiency is considered to be the main cause of PMO. Recently, however, osteoimmunology has been revealed to be closely related to PMO. On the one hand, estrogen deficiency directly affects the activity of bone cells (osteoblasts, osteoclasts, osteocytes). On the other hand, estrogen deficiency-mediated osteoimmunity also plays a crucial role in bone loss in PMO. In this review, we systematically describe the progress of the mechanisms of bone loss in PMO, estrogen deficiency-mediated osteoimmunity, the differences between PMO patients and postmenopausal populations without osteoporosis, and estrogen deficiency-mediated immune cells (T cells, B cells, macrophages, neutrophils, dendritic cells, and mast cells) activity. The comprehensive summary of this paper provides a clear knowledge context for future research on the mechanism of PMO bone loss.

2.
Semin Cell Dev Biol ; 123: 14-21, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34024716

RESUMEN

Postmenopausal osteoporosis is a systemic disease characterized by the loss of bone mass and increased bone fracture risk largely resulting from significantly reduced levels of the hormone estrogen after menopause. Besides the direct negative effects of estrogen-deficiency on bone, indirect effects of altered immune status in postmenopausal women might contribute to ongoing bone destruction, as postmenopausal women often display a chronic low-grade inflammatory phenotype with altered cytokine expression and immune cell profile. In this context, it was previously shown that various immune cells interact with osteoblasts and osteoclasts either via direct cell-cell contact, or more likely via paracrine mechanisms. For example, specific subtypes of T lymphocytes express TNFα, which was shown to increase osteoblast apoptosis and to indirectly stimulate osteoclastogenesis via B cell-produced receptor-activator of NF-κB ligand (RANKL), thereby triggering bone loss during postmenopausal osteoporosis. Th17 cells release interleukin-17 (IL-17), which directs mesenchymal stem cell differentiation towards the osteogenic lineage, but also indirectly increases osteoclast differentiation. B lymphocytes are a major regulator of osteoclast formation via granulocyte colony-stimulating factor secretion and the RANKL/osteoprotegerin system under estrogen-deficient conditions. Macrophages might act differently on bone cells dependent on their polarization profile and their secreted paracrine factors, which might have implications for the development of postmenopausal osteoporosis, because macrophage polarization is altered during disease progression. Likewise, neutrophils play an important role during bone homeostasis, but their over-activation under estrogen-deficient conditions contributes to osteoblast apoptosis via the release of reactive oxygen species and increased osteoclastogenesis via RANKL signaling. Furthermore, mast cells might be involved in the development of postmenopausal osteoporosis, because they store high levels of osteoclastic mediators, including IL-6 and RANKL, in their granules and their numbers are greatly increased in osteoporotic bone. Additionally, bone fracture healing is altered under estrogen-deficient conditions with the increased presence of pro-inflammatory cytokines, including IL-6 and Midkine, which might contribute to healing disturbances. Consequently, in addition to the direct negative influence of estrogen-deficiency on bone, immune cell alterations contribute to the pathogenesis of postmenopausal osteoporosis.


Asunto(s)
Resorción Ósea , Osteoporosis Posmenopáusica , Resorción Ósea/metabolismo , Resorción Ósea/patología , Huesos/patología , Diferenciación Celular , Estrógenos/metabolismo , Estrógenos/farmacología , Femenino , Humanos , Osteoblastos/patología , Osteoclastos/metabolismo , Osteoporosis Posmenopáusica/metabolismo , Osteoporosis Posmenopáusica/patología
3.
J Proteome Res ; 23(10): 4567-4578, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39226440

RESUMEN

This investigation aims to employ Olink proteomics in analyzing the distinct serum proteins associated with postmenopausal osteoporosis (PMOP) and identifying prognostic markers for early detection of PMOP via molecular mechanism research on postmenopausal osteoporosis. Postmenopausal women admitted to Beijing Jishuitan Hospital were randomly selected and categorized into three groups based on their dual-energy X-ray absorptiometry (DXA) T-scores: osteoporosis group (n = 24), osteopenia group (n = 20), and normal bone mass group (n = 16). Serum samples from all participants were collected for clinical and bone metabolism marker measurements. Olink proteomics was utilized to identify differentially expressed proteins (DEPs) that are highly associated with postmenopausal osteoporosis. The functional analysis of DEPs was performed using Gene Ontology and Kyto Encyclopedia Genes and Genomes (KEGG). The biological characteristics of these proteins and their correlation with PMOP were subsequently analyzed. ROC curve analysis was performed to identify potential biomarkers with the highest diagnostic accuracy for early stage PMOP. Through Olink proteomics, we identified five DEPs highly associated with PMOP, including two upregulated and three downregulated proteins. TWEAK and CDCP1 markers exhibited the highest area under the curve (0.8188 and 0.8031, respectively). TWEAK and CDCP1 have the potential to serve as biomarkers for early prediction of postmenopausal osteoporosis.


Asunto(s)
Biomarcadores , Diagnóstico Precoz , Osteoporosis Posmenopáusica , Proteómica , Humanos , Femenino , Biomarcadores/sangre , Osteoporosis Posmenopáusica/diagnóstico , Osteoporosis Posmenopáusica/sangre , Proteómica/métodos , Persona de Mediana Edad , Anciano , Curva ROC , Absorciometría de Fotón , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/metabolismo , Proteoma/análisis , Citocina TWEAK
4.
Biochem Biophys Res Commun ; 711: 149858, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38621345

RESUMEN

Systemic transplantation of mesenchymal stem cells (MSCs) and conditioned medium derived from MSCs have been reported to recover bone loss in animal models of osteoporosis; however, the underlying mechanisms remain unclear. We recently reported that extracellular vesicles released from human mesenchymal stem cells (hMSCs) prevent senescence of stem cells in bisphosphonate-related osteonecrosis of the jaw model. In this study, we aimed to compare the effects of conditioned medium (hMSCs-CM) from early and late passage hMSCs on cellular senescence and to verify the benefits of CM from early passage hMSCs in mitigating the progression of osteoporosis through the prevention of cellular senescence. We investigated the distinct endocrine effects of early (P5) and late (P17) passage hMSCs in vitro, as well as the preventive benefits of early passage hMSCs-CM in osteoporosis model triggered by ovariectomy. Our results indicate that long-term cultured hMSCs contributed to the progression of inflammatory transcriptional programs in P5 hMSCs, ultimately impairing their functionality and enhancing senescence-related characteristics. Conversely, early passage hMSCs reversed these alterations. Moreover, early passage hMSCs-CM infused intravenously in a postmenopausal osteoporosis mouse model suppressed bone degeneration and prevented osteoporosis by reducing ovariectomy-induced senescence in bone marrow MSCs and reducing the expression of senescence-associated secretory phenotype-related cytokines. Our findings highlight the high translational value of early passage hMSCs-CM in antiaging intervention and osteoporosis prevention.


Asunto(s)
Senescencia Celular , Células Madre Mesenquimatosas , Osteoporosis , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Animales , Medios de Cultivo Condicionados/farmacología , Osteoporosis/patología , Osteoporosis/metabolismo , Femenino , Ratones , Células Cultivadas , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Ovariectomía
5.
Small ; 20(6): e2303494, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37794621

RESUMEN

Insufficient bone formation and excessive bone resorption caused by estrogen deficiency are the major factors resulting in the incidence of postmenopausal osteoporosis (PMOP). The existing drugs usually fail to re-establish the osteoblast/osteoclast balance from both sides and generate side-effects owing to the lack of bone-targeting ability. Here, engineered cell-membrane-coated nanogels PNG@mR&C capable of scavenging receptor activator of nuclear factor-κB ligand (RANKL) and responsively releasing therapeutic PTH 1-34 in the bone microenvironment are prepared from RANK and CXCR4 overexpressed bone mesenchymal stem cell (BMSC) membrane-coated chitosan biopolymers. The CXCR4 on the coated-membranes confer bone-targeting ability, and abundant RANK effectively absorb RANKL to inhibit osteoclastogenesis. Meanwhile, the release of PTH 1-34 triggered by osteoclast-mediated acid microenvironment promote osteogenesis. In addition, the dose and frequency are greatly reduced due to the smart release property, prolonged circulation time, and bone-specific accumulation. Thus, PNG@mR&C exhibits satisfactory therapeutic effects in the ovariectomized (OVX) mouse model. This study provides a new paradigm re-establishing the bone metabolic homeostasis from multitargets and shows great promise for the treatment of PMOP.


Asunto(s)
Osteoclastos , Osteoporosis Posmenopáusica , Humanos , Animales , Ratones , Femenino , Osteoporosis Posmenopáusica/tratamiento farmacológico , Osteoporosis Posmenopáusica/metabolismo , Nanogeles , Biomimética , Diferenciación Celular , Osteoblastos , Osteogénesis , FN-kappa B/metabolismo
6.
Osteoporos Int ; 35(5): 841-849, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38296866

RESUMEN

The impact of ROMO on the width of anabolic windows and the increase in BMD was reduced in the RA group compared to the non-RA group, and this reduction was associated with correlations to RA-related factors. PURPOSE: To investigate the effects of romosozumab (ROMO) in postmenopausal osteoporosis, with and without comorbid rheumatoid arthritis (RA). METHODS: In this retrospective, case-controlled, multicenter study, 171 postmenopausal patients who did not receive oral glucocorticoid, comprising 59 in the RA group and 121 in the non-RA group, received uninterrupted ROMO treatment for 12 months. Propensity score matching was employed to ensure comparability in clinical backgrounds, resulting in 41 patients in each group. Baseline characteristics were as follows: overall (mean age, 76.3 years; T-score of lumbar spine (LS), - 3.0; 45.1% were treatment-naive for osteoporosis); RA group (anti-cyclic citrullinated peptide antibody (ACPA) positivity, 80.5%; titer, 206.2 U/ml; clinical disease activity index (CDAI), 13.6; health assessment questionnaire disability index (HAQ-DI), 0.9). Bone mineral density (BMD) and serum bone turnover markers were monitored over a 12-month period. RESULTS: The rate of increase in the bone formation marker, PINP, and the rates of decrease in the bone resorption marker, TRACP-5b, exhibited a trend toward smaller changes in the RA group compared to the non-RA group, implying a smaller anabolic window. After 12 months, the RA group displayed lower BMD increases in the LS (9.1% vs. 12.6%; P = 0.013) and total hip (2.4% vs. 4.8%; P = 0.025) compared to the non-RA group. Multiple regression analysis in the all RA group (n = 59) for the association between RA-specific factors and 12-month BMD changes revealed negative correlations between ACPA titer and LS BMD and between HAQ-DI and femoral neck BMD. CONCLUSIONS: The efficacy of ROMO may be attenuated by RA-related factors.


Asunto(s)
Anticuerpos Monoclonales , Artritis Reumatoide , Conservadores de la Densidad Ósea , Osteoporosis Posmenopáusica , Femenino , Humanos , Anciano , Osteoporosis Posmenopáusica/complicaciones , Osteoporosis Posmenopáusica/tratamiento farmacológico , Estudios de Casos y Controles , Estudios Retrospectivos , Densidad Ósea , Artritis Reumatoide/complicaciones , Artritis Reumatoide/tratamiento farmacológico , Conservadores de la Densidad Ósea/farmacología , Conservadores de la Densidad Ósea/uso terapéutico , Factor Reumatoide , Vértebras Lumbares
7.
Osteoporos Int ; 35(2): 365-370, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37783758

RESUMEN

To test the hypothesis that during treatment with denosumab osteomorphs and precursors recycle to higher number of osteoclasts with time, we measured TRAcP5b in serum taken 6 months after the last injection in postmenopausal women treated for 1-10 years. Serum TRAcP5b values were not related to time of exposure to denosumab. PURPOSE: In women with postmenopausal osteoporosis the aetiology of the observed inverse relationship between duration of denosumab (Dmab) therapy and bone loss after its discontinuation is currently unknown. In studies in mice inhibition of RANKL is associated with an increase in osteomorphs and osteoclast precursors that recycle into osteoclasts and may accumulate with time. We hypothesized that longer inhibition of RANKL by Dmab will be followed by the synchronous formation of a larger number of osteoclasts after stopping treatment. To test this hypothesis, we measured serum TRAcP5b, a marker of osteoclast numbers, in postmenopausal women treated with Dmab for different periods of time up to 10 years. METHODS: TRAcP5b, C-terminal telopeptide of type 1 collagen (CTX) and procollagen type 1 N-terminal propeptide (P1NP) were measured at 6.0 months ± 15 days after last Dmab injection in 59 women who had received Dmab for 4.0 ± 2.3 years (range 1-10 years). Of these, 38 were treatment naïve (group 1) and 21 had received other treatments prior Dmab (group 2). RESULTS: Duration of Dmab treatment was not related to serum TRAcP5b values or to TRAcP5b/CTX ratio either in the whole cohort or in each of the two groups separately. In contrast, serum TRAcP5b values were significantly correlated with serum CTX values (rs = 0.619; p < 0.001), but not with serum P1NP values or BMD at all skeletal sites. CONCLUSION: Our observations indicate that serum TRAcP5b, measured at 6 months after a Dmab injection, is not a useful early marker for time-dependent increased accumulation of osteoclasts in humans and for identification of patients at risk for a higher rebound increase in bone resorption.


Asunto(s)
Conservadores de la Densidad Ósea , Resorción Ósea , Osteoporosis Posmenopáusica , Humanos , Femenino , Animales , Ratones , Osteoporosis Posmenopáusica/tratamiento farmacológico , Denosumab/farmacología , Denosumab/uso terapéutico , Densidad Ósea
8.
Osteoporos Int ; 35(4): 653-658, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38129674

RESUMEN

PURPOSE: The main effect of anti-resorptive agents such as bisphosphonates is a reduction of bone resorption, with a consequent marked decrease of bone turnover. This post-hoc analysis investigated the changes of histomorphometric parameters of bone turnover after alendronate (ALN), according to the baseline turnover. METHODS: Ninety postmenopausal women underwent a transiliac bone biopsy before and after 6 (n = 44) or 12 (n = 46) months of treatment with ALN (70 mg/week). The dynamic parameters reflecting the bone formation and bone turnover were mineralizing surface (MS/BS; %), bone formation rate (BFR/BS; µm3/µm2/d), and activation frequency (Ac.f; /yr). Biochemical markers sPINP and the sCTX were assessed before treatment and after 3, 6, and 12 months. Subjects were divided into quartiles based on the baseline values of BFR/BS. RESULTS: At baseline, MS/BS and Ac.f were significantly different (p < 0.0001) among the BFR quartiles. sCTX and sP1NP were not significantly different among quartiles. After ALN treatment, MS/BS was not significantly different among quartiles but Ac.f remained significantly lower in the first quartile compared to the third and fourth ones (p < 0.03). The absolute value of the difference between pre- and post-treatment significantly correlated with the baseline BFR/BS but when expressed in percent of the baseline value, the magnitude of the diminutions of MS/BS, Ac.f, sCTX, and sP1NP was similar in the four baseline BFR quartiles. CONCLUSION: The percentage response to ALN appeared independent of the baseline level of bone turnover. After treatment, the bone turnover tended to be similar in all BFR quartiles. This analysis investigated the influence of baseline turnover measured by bone histomorphometry on the effect of alendronate. When expressed in percent of pre-treatment values, the decreases of histomorphometric parameters and biochemical markers of bone turnover were independent of the baseline turnover.


Asunto(s)
Conservadores de la Densidad Ósea , Osteoporosis Posmenopáusica , Femenino , Humanos , Alendronato/farmacología , Alendronato/uso terapéutico , Osteoporosis Posmenopáusica/tratamiento farmacológico , Osteoporosis Posmenopáusica/patología , Huesos/patología , Remodelación Ósea/fisiología , Biomarcadores , Conservadores de la Densidad Ósea/farmacología , Conservadores de la Densidad Ósea/uso terapéutico , Densidad Ósea
9.
Calcif Tissue Int ; 115(4): 393-404, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39060403

RESUMEN

The gut microbiome is linked to osteoporosis. Previous clinical studies showed inconsistent results. This study aimed to characterize the gut microbiota feature and reveal its relation with diet in postmenopausal osteoporosis. Fifty-five postmenopausal women with osteoporosis (Op group) and forty-four age-matched postmenopausal women (normal bone mineral density, Con group) were included in this study. Fecal microbiota was collected and analyzed by shallow shotgun sequencing. Food frequency questionnaires were collected from both groups, and Spearman analysis was used to clarify its correlation with gut microbiota. A total of 2671 species from 29 phyla, 292 families, 152 orders, 80 classes were detected in the study. The two groups had no significant difference in the α and ß diversity (p > 0.05). At the genus level, Anaerostipes was enriched in Op group (p < 0.05). At species level, Methanobrevibacter smithii, Bifidobacterium animalis, Rhodococcus defluvii, Lactobacillus plantarum, and Carnobacterium mobile were enriched in the Op group, while Bacillus luciferensis, Acetivibrio cellulolyticus, Citrobacter amalonaticus, and Bifidobacterium breve were differentially enriched in the Con group. Food frequency questionnaire showed that postmenopausal women with osteoporosis intaked more red meat, beer, white and red wine (p < 0.05), and the Con group had more yogurt, fruit, and tea consumption. Red meat consumption had a significant negative correlation with Streptosporangiales (p < 0.01) and Actinomadura (p < 0.05). Fruits intake negatively correlated with Nocardiaceae, Rhodococcus, and Rhodococcus defluvii (p < 0.05). More yogurt intake was consistently correlated with a greater abundance of Streptosporangiales. This study suggests that gut microbiota is significantly altered in the postmenopausal osteoporosis population at genus and species levels, and specific dietary intake might relate to these changes.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Osteoporosis Posmenopáusica , Humanos , Femenino , Osteoporosis Posmenopáusica/microbiología , Microbioma Gastrointestinal/fisiología , Dieta/métodos , Persona de Mediana Edad , Anciano , Heces/microbiología , Bacterias/clasificación , Densidad Ósea/fisiología
10.
Calcif Tissue Int ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198270

RESUMEN

To investigate the potential mechanism of Morinda officinalis F. C. How polysaccharides (MOPs) in regulating osteoclast differentiation and apoptosis through miR-214-3p and its target protein. Ovariectomy was performed in 8-week female C57BL6 mice to establish the postmenopausal osteoporosis (PMOP) model. Mice were treated immediately with 500 mg/kg of MOPs (prevention group); others were treated 2 weeks after operation (treatment group). Left femur bone mineral density (BMD) was examined. RAW264.7 cells were administered with receptor activator of NF-κB ligand (RANKL) to establish the osteoclast (OC) model and treated with serum containing 1 or 2 g/kg of MOPs. Apoptosis-related indexes, miR-214-3p, and Expressed Developmentally Down-regulated 4-Like (NEDD4L) were detected by western blot, quantitative real-time-reverse transcription polymerase chain reaction (qRT-PCR), and flow cytometry. OC received a miR-214-3p inhibitor or NEDD4L small interfering RNA (siRNA). MOPs reversed the PMOP-induced changes in bones. Compared with the RANKL group, MOPs increased the apoptosis and related markers in OCs. MOPs decreased the femur miR-214-3p of PMOP mice (P < 0.001). Higher concentrations of MOPs reversed the upregulation of miR-214 mRNA in OCs (P < 0.001). miR-214-3p inhibitor increased the expression of Bax and CC3 (P < 0.01) and decreased the expression of Bcl-2 (P < 0.05). NEDD4L is targeted by miR-214. NEDD4L was upregulated in the RANKL + MOPs group (P < 0.01). miR-214-3p inhibitor increased the upregulation of NEDD4L induced by MOPs (P < 0.05). siRNA NEDD4L significantly reversed the inhibition of MOPs on osteoclast differentiation with miR-214-3p inhibitor (P < 0.01). MOPs effectively prevent PMOP by inhibiting osteoclastogenesis and inducing OC apoptosis through the miR-214-3p/NEDD4L pathway.

11.
J Bone Miner Metab ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009890

RESUMEN

In the management of osteoporosis, anti-resorptive agents serve as a primary therapeutic approach. However, in cases where individuals exhibit an increased susceptibility to fractures, such as those characterized by severe low bone mass or a history of vertebral or hip fractures that markedly diminish life expectancy, the immediate reduction of fracture risk through the administration of osteoanabolic agents could be beneficial. Teriparatide, available in daily, once-weekly, or twice-weekly dosages, along with abaloparatide and romosozumab, constitutes a trio of such agents. Each of these medications is defined by unique characteristics, distinct efficacy profiles, and specific adverse effects. There is growing evidence to suggest that these agents have a superior effect on enhancing bone mineral density and reducing fracture incidence when compared to traditional bisphosphonate therapies. Nonetheless, their employment demands thorough consideration of clinical indications, which includes evaluating economic factors, the frequency of injections required, and the potential for adverse effects. The objective of this review is to consolidate the current evidence focusing primarily on the efficacy of these agents, with the goal of enhancing understanding and aiding in making more informed treatment decisions, particularly for those individuals who are at an elevated risk of fractures.

12.
Br J Nutr ; 131(4): 567-580, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-37869975

RESUMEN

Postmenopausal osteoporosis is a major concern for women worldwide due to increased risk of fractures and diminished bone quality. Recent research on gut microbiota has suggested that probiotics can combat various diseases, including postmenopausal bone loss. Although several preclinical studies have explored the potential of probiotics in improving postmenopausal bone loss, the results have been inconsistent and the mechanism of action remains unclear. To address this, a meta-analysis was conducted to determine the effect of probiotics on animal models of postmenopausal osteoporosis. The bone parameters studied were bone mineral density (BMD), bone volume fractions (BV/TV), and hallmarks of bone formation and resorption. Pooled analysis showed that probiotic treatment significantly improves BMD and BV/TV of the ovariectomised animals. Probiotics, while not statistically significant, exhibited a tendency towards enhancing bone formation and reducing bone resorption. Next, we compared the effects of Lactobacillus sp. and Bifidobacterium sp. on osteoporotic bone. Both probiotics improved BMD and BV/TV compared with control, but Lactobacillus sp. had a larger effect size. In conclusion, our findings suggest that probiotics have the potential to improve bone health and prevent postmenopausal osteoporosis. However, further studies are required to investigate the effect of probiotics on postmenopausal bone health in humans.


Asunto(s)
Osteoporosis Posmenopáusica , Probióticos , Animales , Femenino , Huesos , Densidad Ósea , Osteoporosis Posmenopáusica/prevención & control , Osteoporosis Posmenopáusica/tratamiento farmacológico , Posmenopausia , Probióticos/uso terapéutico
13.
Mol Biol Rep ; 51(1): 719, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824271

RESUMEN

BACKGROUND: Promoting the balance between bone formation and bone resorption is the main therapeutic goal for postmenopausal osteoporosis (PMOP), and bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation plays an important regulatory role in this process. Recently, several long non-coding RNAs (lncRNAs) have been reported to play an important regulatory role in the occurrence and development of OP and participates in a variety of physiological and pathological processes. However, the role of lncRNA tissue inhibitor of metalloproteinases 3 (lncTIMP3) remains to be investigated. METHODS: The characteristics of BMSCs isolated from the PMOP rat model were verified by flow cytometry assay, alkaline phosphatase (ALP), alizarin red and Oil Red O staining assays. Micro-CT and HE staining assays were performed to examine histological changes of the vertebral trabeculae of the rats. RT-qPCR and western blotting assays were carried out to measure the RNA and protein expression levels. The subcellular location of lncTIMP3 was analyzed by FISH assay. The targeting relationships were verified by luciferase reporter assay and RNA pull-down assay. RESULTS: The trabecular spacing was increased in the PMOP rats, while ALP activity and the expression levels of Runx2, Col1a1 and Ocn were all markedly decreased. Among the RNA sequencing results of the clinical samples, lncTIMP3 was the most downregulated differentially expressed lncRNA, also its level was significantly reduced in the OVX rats. Knockdown of lncTIMP3 inhibited osteogenesis of BMSCs, whereas overexpression of lncTIMP3 exhibited the reverse results. Subsequently, lncTIMP3 was confirmed to be located in the cytoplasm of BMSCs, implying its potential as a competing endogenous RNA for miRNAs. Finally, the negative targeting correlations of miR-214 between lncTIMP3 and Smad4 were elucidated in vitro. CONCLUSION: lncTIMP3 may delay the progress of PMOP by promoting the activity of BMSC, the level of osteogenic differentiation marker gene and the formation of calcium nodules by acting on the miR-214/Smad4 axis. This finding may offer valuable insights into the possible management of PMOP.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , Osteoporosis Posmenopáusica , ARN Largo no Codificante , Proteína Smad4 , Animales , Femenino , Humanos , Ratas , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Osteogénesis/genética , Osteoporosis Posmenopáusica/genética , Osteoporosis Posmenopáusica/metabolismo , Osteoporosis Posmenopáusica/patología , Ratas Sprague-Dawley , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína Smad4/metabolismo , Proteína Smad4/genética , Inhibidor Tisular de Metaloproteinasa-3/genética
14.
Eur J Nutr ; 63(5): 1945-1959, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38753171

RESUMEN

BACKGROUND: Postmenopausal osteoporosis (PMO) is a chronic condition characterized by decreased bone strength. This study aims to investigate the effects and mechanisms of the combination of Butyricicoccus pullicaecorum (Bp) and 3-hydroxyanthranilic acid (3-HAA) on PMO. METHODS: The effects of Bp and 3-HAA on PMO were evaluated in ovariectomized (OVX) rats by assessing stereological parameters, femur microstructure, and autophagy levels. The T helper (Th) 17/Regulatory T (Treg) cells of rats were detected using flow cytometric analysis. Furthermore, the impact of Bp and 3-HAA on the gut microbiota of rats was assessed using 16S rRNA gene sequencing. The correlation between the gut microbiota of rats and Th17/Treg immune factors, as well as femoral stereo parameters, was separately assessed using Spearman rank correlation analysis. RESULTS: Bp and 3-HAA treatments protected OVX rats by promoting osteogenesis and inhibiting autophagy. Compared to the Sham group, OVX rats showed an increase in Th17 cells and a decrease in Treg cells. Bp and 3-HAA reversed these changes. Enterorhabdus and Pseudomonas were significantly enriched in OVX rats. Bp and 3-HAA regulated the gut microbiota of OVX rats, enriching pathways related to nutrient metabolism and immune function. There was a correlation between the gut microbiota and the Th17/Treg, as well as femoral stereo parameters. The concurrent administration of Bp and 3-HAA medication facilitated the enrichment of gut microbiota associated with the improvement of PMO. CONCLUSION: The combination therapy of Bp and 3-HAA can prevent PMO by modulating the gut microbiota and restoring Th17/Treg immune homeostasis.


Asunto(s)
Microbioma Gastrointestinal , Osteoporosis Posmenopáusica , Linfocitos T Reguladores , Células Th17 , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Femenino , Linfocitos T Reguladores/efectos de los fármacos , Células Th17/efectos de los fármacos , Células Th17/metabolismo , Ratas , Osteoporosis Posmenopáusica/prevención & control , Ratas Sprague-Dawley , ortoaminobenzoatos/farmacología , Probióticos/farmacología , Probióticos/administración & dosificación , Humanos , Ovariectomía/métodos , Clostridiales , Modelos Animales de Enfermedad
15.
BMC Musculoskelet Disord ; 25(1): 791, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375626

RESUMEN

BACKGROUND: Postmenopausal osteoporosis (PMO) results from a reduction in bone mass and microarchitectural deterioration in bone tissue due to estrogen deficiency, which may increase the incidence of fragility fractures. In recent years, the "gut-immune response-bone" axis has been proposed as a novel potential approach in the prevention and treatment of PMO. Studies on ovariectomized murine model indicated the reciprocal role of Th17 cells and Treg cells in the aetiology of osteoporosis. However, the relationship among gut microbiota, immune cells and bone metabolic indexes remains unknown in PMO. METHODS: A total of 77 postmenopausal women were recruited for the study and divided into control (n = 30), osteopenia (n = 19), and osteoporosis (n = 28) groups based on their T score. The frequency of Treg and Th17 cells in lymphocytes were analyzed by flow cytometry. The serum levels of interleukin (IL)-10, 17 A, 1ß, 6, tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS) were determined via enzyme-linked immunosorbent assay. Additionally, 16S rRNA gene V3-V4 region sequencing analysis was performed to investigate the gut microbiota of the participants. RESULTS: The results demonstrated decreased bacterial richness and diversed intestinal composition in PMO. In addition, significant differences of relative abundance of the gut microbial community in phylum and genus levels were found, mainly including increased Bacteroidota, Proteobacteria, and Campylobacterota, as well as reduced Firmicutes, Butyricicoccus, and Faecalibacterium. Intriugingly, in the osteoporosis group, the concentration of Treg cells and associated IL-10 in peripheral circulation was negatively regulated, while other chronic systemic proinflammatory cytokines and Th17 cells showed opposite trends. Moreover, significantly elevated plasma lipopolysaccharide (LPS) in patients with osteoporosis indicated that disrupted intestinal integrity and permeability. A correlation analysis showed close relationships between gut bacteria and inflammation. CONCLUSIONS: Collectively, these observations will lead to a better understanding of the relationship among bone homeostasis, the microbiota, and circulating immune cells in PMO. The elevated LPS levels of osteoporosis patients which not only indicate a breach in intestinal integrity but also suggest a novel biomarker for assessing osteoporosis risk linked to gut health.


Asunto(s)
Microbioma Gastrointestinal , Osteoporosis Posmenopáusica , Linfocitos T Reguladores , Células Th17 , Humanos , Femenino , Microbioma Gastrointestinal/inmunología , Persona de Mediana Edad , Osteoporosis Posmenopáusica/inmunología , Osteoporosis Posmenopáusica/microbiología , Osteoporosis Posmenopáusica/sangre , Anciano , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Movimiento Celular , Citocinas/sangre , Posmenopausia/inmunología
16.
Chem Biodivers ; 21(4): e202400172, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369572

RESUMEN

Kariavattom Campus Postmenopausal osteoporosis (PMO) is an old age disorder associated with estrogen deficiency, which reduces bone mass and makes bones more prone to fracture. The present study was proposed to evaluate the invivo osteogenic efficiency of Pterospermum rubiginosum methanolic bark extract (PRME) in the PMO model. Molecular docking studies on transcription factor NFATC1 showed excellent interactions with phytochemical ligands with the lowest binding energies. Female Sprague Dawley (SD) rats (n=24) were divided into four groups, (n=6 each) sham control (Group I) and osteoporotic control (Group II) groups treated with saline, PRME (50 mg/kg/day) and alendronate (10 mg/kg/day) treated with Group III and Group IV (n=6) respectively. The serum tartrate-resistant acid phosphatase 5b and cathepsin-K also exhibited a significant rise after PRME treatment 12.33±2.30 mU/ml and 427.68±46.97 pg/ml, respectively. DEXA results exhibited a remarkable increase in total bone mineral content and density values in PRME-treated animals (0.175±0.002 g/cm2) and (7.95±0.23 g) when compared to osteoporotic control (0.163±0.004 g/cm2) and (6.83±0.34 g). Long-term toxicity study revealed that PRME is non-toxic, up to 100 mg/kg bodyweight for 6 months. Our findings suggest PRME protects osteoporotic SD rats from PMO damage resulting from estrogen deficiency by regulating bone remodelling markers and upregulating BMD indices.


Asunto(s)
Osteoporosis Posmenopáusica , Femenino , Humanos , Ratas , Animales , Osteoporosis Posmenopáusica/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Remodelación Ósea , Estrógenos , Biomarcadores
17.
Environ Toxicol ; 39(4): 2218-2228, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38130072

RESUMEN

Postmenopausal osteoporosis (PMOP) poses a significant threat to women's health worldwide. Eupatilin is a key bioactive component of the Chinese herbal medicine Artemisia asiatica Nakai. Recent research reports have proved the inhibitory function of Eupatilin in many diseases. MicroRNAs (miRNAs) are 21-23 nucleotide-long, single-stranded, noncoding RNA molecules generated endogenously, and many studies have indicated that miRNAs are involved in the development of osteoporosis. This study explored the role and potential mechanism of Eupatilin underlying PMOP. First, rats were given intragastric administration of Eupatilin every day and subcutaneous injections of oligonucleotides or plasmids that interfered with miR-211-5p or janus kinase 2 (JAK2) once a week. After 4 weeks, the PMOP rat model was established. Then, serum alkaline phosphatase, calcium, and phosphorus levels, as well as femur bone mineral density and biomechanical parameters, were detected. Hematoxylin-eosin staining and Masson staining were applied for detecting the pathological condition of femur, and immunohistochemical staining was for detecting osteocalcin. MC3T3-E1 cells were transfected with plasmid vectors interfering with miR-211-5p or JAK2; and cell viability, lactate dehydrogenase cytotoxicity, and cell mineralization were subsequently examined. The relationship between miR-211-5p and JAK2/signal transducer and activator of transcription 3 (STAT3) pathway was analyzed. The targeting relation between miR-211-5p and JAK2 was also verified. The experimental results revealed that Eupatilin improved the pathological conditions of PMOP rats by promoting the proliferation and mineralization of osteoblasts. MiR-211-5p was down-regulated and JAK2/STAT3 was upregulated in PMOP rats. Upregulation of miR-211-5p further improved the pathological conditions of PMOP rats based on Eupatilin treatment. MiR-211-5p inhibited the JAK2/STAT3 pathway. JAK2 offset the effects of elevated miR-211-5p on PMOP rats. Overall, Eupatilin attenuates PMOP through elevating miR-211-5p and repressing JAK2/STAT3 pathway, which suggests the utility of Eupatilin as a potential drug for POMP treatment.


Asunto(s)
Flavonoides , MicroARNs , Osteoporosis Posmenopáusica , Humanos , Femenino , Ratas , Animales , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Osteoporosis Posmenopáusica/tratamiento farmacológico , Osteoporosis Posmenopáusica/genética , MicroARNs/genética , MicroARNs/metabolismo
18.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891810

RESUMEN

Aminobisphosphonates (NBPs) are the first-choice medication for osteoporosis (OP); NBP treatment aims at increasing bone mineral density (BMD) by inhibiting the activity of farnesyl diphosphate synthase (FDPS) enzyme in osteoclasts. Despite its efficacy, inadequate response to the drug and side effects have been reported. The A allele of the rs2297480 (A > C) SNP, found in the regulatory region of the FDPS gene, is associated with reduced gene transcription. This study evaluates the FDPS variant rs2297480 (A > C) association with OP patients' response to alendronate sodium treatment. A total of 304 OP patients and 112 controls were enrolled; patients treated with alendronate sodium for two years were classified, according to BMD variations at specific regions (lumbar spine (L1-L4), femoral neck (FN) and total hip (TH), as responders (OP-R) (n = 20) and non-responders (OP-NR) (n = 40). We observed an association of CC genotype with treatment failure (p = 0.045), followed by a BMD decrease in the regions L1-L4 (CC = -2.21% ± 2.56; p = 0.026) and TH (CC = -2.06% ± 1.84; p = 0.015) after two years of alendronate sodium treatment. Relative expression of the FDPS gene was also evaluated in OP-R and OP-NR patients. Higher expression of the FDPS gene was also observed in OP-NR group (FC = 1.84 ± 0.77; p = 0.006) when compared to OP-R. In conclusion, the influence observed of FDPS expression and the rs2897480 variant on alendronate treatment highlights the importance of a genetic approach to improve the efficacy of treatment for primary osteoporosis.


Asunto(s)
Alendronato , Conservadores de la Densidad Ósea , Densidad Ósea , Geraniltranstransferasa , Osteoporosis , Polimorfismo de Nucleótido Simple , Insuficiencia del Tratamiento , Humanos , Alendronato/uso terapéutico , Alendronato/farmacología , Densidad Ósea/efectos de los fármacos , Densidad Ósea/genética , Femenino , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Masculino , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética , Anciano , Persona de Mediana Edad , Conservadores de la Densidad Ósea/uso terapéutico , Genotipo , Alelos , Estudios de Casos y Controles
19.
Pharm Biol ; 62(1): 42-52, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38112463

RESUMEN

CONTEXT: Liuwei Dihuang pill (LWDH) has been used to treat postmenopausal osteoporosis (PMOP). OBJECTIVE: To explore the effects and mechanisms of action of LWDH in PMOP. MATERIALS AND METHODS: Forty-eight female Sprague-Dawley rats were divided into four groups: sham-operated (SHAM), ovariectomized (OVX), LWDH high dose (LWDH-H, 1.6 g/kg/d) and LWDH low dose (LWDH-L, 0.8 g/kg/d); the doses were administered after ovariectomy via gavage for eight weeks. After eight weeks, the bone microarchitecture was evaluated. The effect of LWDH on the differentiation of bone marrow mesenchymal stem cells (BMSCs) was assessed via osteogenesis- and lipogenesis-induced BMSC differentiation. The senescence-related biological indices were also detected using senescence staining, cell cycle analysis, quantitative real-time polymerase chain reaction and western blotting. Finally, the expression levels of autophagy-related proteins and Yes-associated protein (YAP) were evaluated. RESULTS: LWDH-L and LWDH-H significantly modified OVX-induced bone loss. LWDH promoted osteogenesis and inhibited adipogenesis in OVX-BMSCs. Additionally, LWDH decreased the positive ratio of senescence OVX-BMSCs and improved cell viability, cell cycle, and the mRNA and protein levels of p53 and p21. LWDH upregulated the expression of autophagy-related proteins, LC3, Beclin1 and YAP, in OVX-BMSCs and downregulated the expression of p62. DISCUSSION AND CONCLUSIONS: LWDH improves osteoporosis by delaying the BMSC senescence through the YAP-autophagy axis.


Asunto(s)
Células Madre Mesenquimatosas , Proteínas Señalizadoras YAP , Animales , Femenino , Humanos , Ratas , Autofagia , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/farmacología , Diferenciación Celular , Osteogénesis , Ovariectomía , Ratas Sprague-Dawley
20.
Mod Rheumatol ; 34(5): 1047-1055, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38300506

RESUMEN

OBJECTIVES: The present study aimed to investigate the effectiveness of treatment with romosozumab for 1 year and association between bone turnover markers and changes in bone mineral density (BMD) in patients with postmenopausal osteoporosis. METHODS: Participants were 53 treatment-naïve postmenopausal osteoporosis patients. Correlations of per cent changes (Δ) in lumbar (L) and total hip (TH) BMD 12 months after initiating romosozumab with baseline demographic factors and parameters of N-terminal propeptide of Type 1 collagen (P1NP) and tartrate-resistant acid phosphatase-5b at baseline and Months 1, 3, and 6 were assessed. Multiple regression analysis was performed on factors significantly correlated with ΔL-BMD and ΔTH-BMD at Month 12. RESULTS: ΔL-BMD and ΔTH-BMD at Month 12 were 17.5% and 8.1%, respectively. Multiple regression analysis revealed that a high P1NP value at Month 3 predicted large increases in L-BMD and TH-BMD at Month 12. High total amount of P1NP values from baseline to Month 6 was associated with large increases in L-BMD and TH-BMD at Month 12 and was most strongly correlated with the P1NP value at Month 3. CONCLUSIONS: A high P1NP value at Month 3 predicted large increases in both L-BMD and TH-BMD at Month 12 in postmenopausal osteoporosis patients treated with romosozumab.


Asunto(s)
Anticuerpos Monoclonales , Conservadores de la Densidad Ósea , Densidad Ósea , Osteoporosis Posmenopáusica , Procolágeno , Humanos , Femenino , Osteoporosis Posmenopáusica/tratamiento farmacológico , Densidad Ósea/efectos de los fármacos , Anciano , Persona de Mediana Edad , Procolágeno/sangre , Anticuerpos Monoclonales/uso terapéutico , Conservadores de la Densidad Ósea/uso terapéutico , Fragmentos de Péptidos/sangre , Resultado del Tratamiento , Biomarcadores/sangre , Remodelación Ósea/efectos de los fármacos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA