Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Dev Biol ; 448(2): 183-198, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30471266

RESUMEN

Ascidian papillae (palps) constitute a transient sensory adhesive organ that assures larval settlement and the onset of metamorphosis to the filterfeeding adult. Despite the importance of papillae for the ascidian development, their cellular composition is only roughly described. For Ciona intestinalis/robusta, a clear definition of cell numbers and discriminative molecular markers for the different cell types is missing. While some attention was given to neural cell types and their connectivity little is known about the adhesive producing collocytes. We converge serial-section electron microscopy and confocal imaging with various marker combinations to document the 3D organization of the Ciona papillae. We show the papillar development with 4 axial columnar cells (ACCs), 4 lateral primary sensory neurons (PSNs) and 12 central collocytes (CCs). We propose molecular markers for each cell type including novel ones for collocytes. The subcellular characteristics are suggestive of their role in papillar function: the ACCs featuring apical protrusions and microvilli, also contain neuroactive and endocytic vesicles indicative of a chemosensory role. They are clearly distinct from the ciliated glutamatergic PSNs. CCs encircle the ACCs and contain microvilli, small endocytic vesicles and notably a large numbers of adhesive granules that, according to element analysis and histochemistry, contain glycoproteins. Interestingly, we detect two different types of collocyte granules, one of them containing fibrous material and larger quantities of polysaccharides. Consistently, carbohydrate specific lectins label the papillar apex, the granules within CCs and the adhesive plaques upon larval attachment. We further propose CCs to derive from an evolutionary ancient neurosecretory cell type. Our findings contribute to understanding the development of the anterior ('new head') region of the Ciona larva and notably the adhesive secreting cells which has implications for developmental biology, cell differentiation and evolution, but also bioadhesion.


Asunto(s)
Ciona intestinalis/anatomía & histología , Ciona intestinalis/citología , Adhesividad , Animales , Biomarcadores/metabolismo , Ciona intestinalis/ultraestructura , Gránulos Citoplasmáticos/metabolismo , Microtúbulos/metabolismo , Aglutinina de Mani/metabolismo , Células Receptoras Sensoriales/metabolismo , Sinaptotagminas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA