Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Vet Parasitol ; : 110220, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38910035

RESUMEN

Phylogenetic evidence indicates that free-living nematodes gave rise to parasitic nematodes where parasitism evolved independently at least 15 times. The high level of genetic and biological diversity among parasites dictates an equally high level of diversity in the transition to parasitism. We previously hypothesized that horizontal gene transfer (HGT) played an important role in the evolution of parasitism among early ancestors of Trichinella, mediated by an interplay of ecological and evolutionary pathways that contributed to persistence and diversification. We propose that host selection may have been associated with the metabolism of ammonia and engender a new paradigm whereby the reprogrammed nurse cell is capable of generating cyanate thereby enabling the importance of the Trichinella cyanase in the longevity of the cell. Parasites and parasitism have revealed considerable resilience against a backdrop of climate change and environmental perturbation. Here we provide a putative link between key periods in the evolution of Trichinella and major geological and climatological events dating back 500 million years. A useful lens for exploring such ideas, the Stockholm Paradigm, integrates Ecological Fitting (a foundation for host colonization and diversification), the Oscillation Hypothesis (recurring shifts between trends in generalization and specialization relative to host range), the Geographic Mosaic Theory of Coevolution (microevolutionary co-adaptive processes), and the Taxon Pulse Hypothesis (alternating events of biotic expansion i.e., exploitation in evolutionary and ecological time). Here we examine how one or more of these interactive theories, in a phylogenetic-historical context and in conjunction with HGT, may help explain the scope and depth of diversity among Trichinella genotypes.

2.
R Soc Open Sci ; 9(2): 211687, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35223062

RESUMEN

Climate change, emerging infectious diseases (EIDs) and food security create a dangerous nexus. Habitat interfaces, assumed to be efficient buffers, are being disrupted by human activities which in turn accelerate the movement of pathogens. EIDs threaten directly and indirectly availability and access to nutritious food, affecting global security and human health. In the next 70 years, food-secure and food-insecure countries will face EIDs driving increasingly unsustainable costs of production, predicted to exceed national and global gross domestic products. Our modern challenge is to transform this business as usual and embrace an alternative vision of the biosphere formalized in the Stockholm paradigm (SP). First, a pathogen-centric focus shifts our vision of risk space, determining how pathogens circulate in realized and potential fitness space. Risk space and pathogen exchange are always heightened at habitat interfaces. Second, apply the document-assess-monitor-act (DAMA) protocol developing strategic data for EID risk, to be translated, synthesized and broadcast as actionable information. Risk management is realized through targeted interventions focused around information exchanged among a community of scientists, policy practitioners of food and public health security and local populations. Ultimately, SP and DAMA protect human rights, supporting food security, access to nutritious food, health interventions and environmental integrity.

3.
Transbound Emerg Dis ; 69(4): 1727-1738, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33963679

RESUMEN

This study evaluates through modelling the possible individual and combined effect of three populational parameters of pathogens (reproduction rate; rate of novelty emergence; and propagule size) on the colonization of new host species-putatively the most fundamental process leading to the emergence of new infectious diseases. The results are analysed under the theoretical framework of the Stockholm Paradigm using IBM simulations to better understand the evolutionary dynamics of the pathogen population and the possible role of Ecological Fitting. The simulations suggest that all three parameters positively influence the success of colonization of new hosts by a novel parasite population, but contrary to the prevailing belief, the rate of novelty emergence (e.g. mutations) is the least important factor. Maximization of all parameters results in a synergetic facilitation of the colonization and emulates the expected scenario for pathogenic microorganisms. The simulations also provide theoretical support for the retention of the capacity of fast-evolving lineages to retro-colonize their previous host species/lineage by ecological fitting. Capacity is, thus, much larger than we can anticipate. Hence, the results support the empirical observations that opportunity of encounter (i.e. the breakdown in mechanisms for ecological isolation) is a fundamental determinant to the emergence of new associations-especially Emergent Infectious Diseases-and the dynamics of host exploration, as observed in SARS-CoV-2. Insights on the dynamics of Emergent Infectious Diseases derived from the simulations and from the Stockholm Paradigm are discussed.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Accidentes , Animales , COVID-19/epidemiología , COVID-19/veterinaria , Enfermedades Transmisibles/parasitología , Enfermedades Transmisibles/veterinaria , Interacciones Huésped-Parásitos , SARS-CoV-2/genética
4.
Transbound Emerg Dis ; 69(2): 254-267, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33527632

RESUMEN

Emerging infectious diseases (EIDs) increasingly threaten global food security and public health. Despite technological breakthroughs, we are losing the battle with (re)emerging diseases as treatment costs and production losses rise. A horizon scan of diseases of crops, livestock, seafood and food-borne illness suggests these costs are unsustainable. The paradigm of coevolution between pathogens and particular hosts teaches that emerging diseases occur only when pathogens evolve specific capacities that allow them to move to new hosts. EIDs ought to be rare and unpredictable, so crisis response is the best we can do. Alternatively, the Stockholm Paradigm suggests that the world is full of susceptible but unexposed hosts that pathogens could infect, given the opportunity. Global climate change, globalized trade and travel, urbanization and land-use changes (often associated with biodiversity loss) increase those opportunities, making EID frequent. We can, however, anticipate their arrival in new locations and their behaviour once they have arrived. We can 'find them before they find us', mitigating their impacts. The DAMA (Document, Assess, Monitor, Act) protocol alters the current reactive stance and embodies proactive solutions to anticipate and mitigate the impacts of EID, extending human and material resources and buying time for development of new vaccinations, medications and control measures.


Asunto(s)
Enfermedades Transmisibles Emergentes , Animales , Biodiversidad , Cambio Climático , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/prevención & control , Enfermedades Transmisibles Emergentes/veterinaria , Seguridad Alimentaria , Salud Pública
5.
Soc Sci Med ; 258: 113107, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32563166

RESUMEN

Emerging infectious diseases (EIDs) are a growing global health threat. The Stockholm Paradigm suggests that their toll will grow tragically in the face of climate change, in particular. The best research protocol for predicting and preventing infectious disease emergence states that an urgent search must commence to identify unknown human and animal pathogens. This short communication proposes that the ethnobiological knowledge of indigenous and impoverished communities can be a source of information about some of those unknown pathogens. I present the ecological and anthropological theory behind this proposal, followed by a few case studies that serve as a limited proof of concept. This paper also serves as a call to action for the medical anthropology community. It gives a brief primer on the EID crisis and how anthropology research may be vital to limiting its havoc on global health. Local knowledge is not likely to play a major role in EID research initiatives, but the incorporation of an awareness of EIDs into standard medical anthropological practice would have myriad other benefits.


Asunto(s)
Enfermedades Transmisibles Emergentes , Enfermedades Transmisibles , Animales , Cambio Climático , Salud Global , Humanos , Conocimiento
6.
Adv Parasitol ; 93: 1-30, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27238001

RESUMEN

History is the foundation that informs about the nuances of faunal assembly that are essential in understanding the dynamic nature of the host-parasite interface. All of our knowledge begins and ends with evolution, ecology and biogeography, as these interacting facets determine the history of biodiverse systems. These components, relating to Haemonchus, can inform about the complex history of geographical distribution, host association and the intricacies of host-parasite associations that are played out in physiological and behavioural processes that influence the potential for disease and our capacity for effective control in a rapidly changing world. Origins and evolutionary diversification among species of the genus Haemonchus and Haemonchus contortus occurred in a complex crucible defined by shifts in environmental structure emerging from cycles of climate change and ecological perturbation during the late Tertiary and through the Quaternary. A history of sequential host colonization associated with waves of dispersal bringing assemblages of ungulates from Eurasia into Africa and processes emerging from ecosystems in collision and faunal turnover defined the arena for radiation among 12 recognized species of Haemonchus. Among congeners, the host range for H. contortus is exceptionally broad, including species among artiodactyls of 40 genera representing 5 families (and within 12 tribes of Bovidae). Broad host range is dramatically reflected in the degree to which translocation, introduction and invasion with host switching, has characterized an expanding distribution over time in North America, South America, southern Eurasia, Australia and New Zealand, coincidental with agriculture, husbandry and global colonization by human populations driven particularly by European exploration after the 1500s. African origins in xeric to mesic habitats of the African savannah suggest that historical constraints linked to ecological adaptations (tolerances and developmental thresholds defined by temperature and humidity for larval stages) will be substantial determinants in the potential outcomes for widespread geographical and host colonization which are predicted to unfold over the coming century. Insights about deeper evolutionary events, ecology and biogeography are critical as understanding history informs us about the possible range of responses in complex systems under new regimes of environmental forcing, especially, in this case, ecological perturbation linked to climate change. A deeper history of perturbation is relevant in understanding contemporary systems that are now strongly structured by events of invasion and colonization. The relaxation of abiotic and biotic controls on the occurrence of H. contortus, coincidental with inception and dissemination of anthelmintic resistance may be synergistic, serving to exacerbate challenges to control parasites or to limit the socioeconomic impacts of infection that can influence food security and availability. Studies of haemonchine nematodes contribute directly to an expanding model about the nature of diversity and the evolutionary trajectories for faunal assembly among complex host-parasite systems across considerable spatial and temporal scales.


Asunto(s)
Evolución Biológica , Haemonchus/fisiología , Interacciones Huésped-Parásitos , Distribución Animal , Animales , Animales Domésticos/parasitología , Biodiversidad , Clima , Ecosistema , Haemonchus/clasificación , Especificidad del Huésped , Humanos , Filogeografía , Factores de Tiempo
7.
Trends Parasitol ; 31(4): 128-33, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25488772

RESUMEN

The field of parasitology contributes to the elucidation of patterns and processes in evolution, ecology, and biogeography that are of fundamental importance across the biosphere, leading to a thorough understanding of biodiversity and varied responses to global change. Foundations from taxonomic and systematic information drive biodiversity discovery and foster considerable infrastructure and integration of research programs. Morphological, physiological, behavioral, life-history, and molecular data can be synthesized to discover and describe global parasite diversity, in a timely manner. In fully incorporating parasitology in policies for adaptation to global change, parasites and their hosts should be archived and studied within a newly emergent conceptual universe (the 'Stockholm Paradigm'), embracing the inherent complexity of host-parasite systems and improved explanatory power to understand biodiversity past, present, and future.


Asunto(s)
Biodiversidad , Parasitología/tendencias , Animales , Clasificación , Cambio Climático , Humanos , Parasitología/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA