Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 455
Filtrar
1.
Cell ; 185(13): 2354-2369.e17, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35568036

RESUMEN

Interferons (IFNs) induce an antimicrobial state, protecting tissues from infection. Many viruses inhibit IFN signaling, but whether bacterial pathogens evade IFN responses remains unclear. Here, we demonstrate that the Shigella OspC family of type-III-secreted effectors blocks IFN signaling independently of its cell death inhibitory activity. Rather, IFN inhibition was mediated by the binding of OspC1 and OspC3 to the Ca2+ sensor calmodulin (CaM), blocking CaM kinase II and downstream JAK/STAT signaling. The growth of Shigella lacking OspC1 and OspC3 was attenuated in epithelial cells and in a murine model of infection. This phenotype was rescued in both models by the depletion of IFN receptors. OspC homologs conserved in additional pathogens not only bound CaM but also inhibited IFN, suggesting a widespread virulence strategy. These findings reveal a conserved but previously undescribed molecular mechanism of IFN inhibition and demonstrate the critical role of Ca2+ and IFN targeting in bacterial pathogenesis.


Asunto(s)
Interferones , Factores de Virulencia , Animales , Antivirales , Señalización del Calcio , Células Epiteliales/metabolismo , Interferones/metabolismo , Ratones , Factores de Virulencia/metabolismo
2.
Cell ; 177(3): 683-696.e18, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30929902

RESUMEN

Microbiota and intestinal epithelium restrict pathogen growth by rapid nutrient consumption. We investigated how pathogens circumvent this obstacle to colonize the host. Utilizing enteropathogenic E. coli (EPEC), we show that host-attached bacteria obtain nutrients from infected host cell in a process we termed host nutrient extraction (HNE). We identified an inner-membrane protein complex, henceforth termed CORE, as necessary and sufficient for HNE. The CORE is a key component of the EPEC injectisome, however, here we show that it supports the formation of an alternative structure, composed of membranous nanotubes, protruding from the EPEC surface to directly contact the host. The injectisome and flagellum are evolutionarily related, both containing conserved COREs. Remarkably, CORE complexes of diverse ancestries, including distant flagellar COREs, could rescue HNE capacity of EPEC lacking its native CORE. Our results support the notion that HNE is a widespread virulence strategy, enabling pathogens to thrive in competitive niches.


Asunto(s)
Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/metabolismo , Nutrientes/metabolismo , Aminoácidos/metabolismo , Adhesión Bacteriana/fisiología , Escherichia coli Enteropatógena/crecimiento & desarrollo , Escherichia coli Enteropatógena/metabolismo , Fluoresceínas/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Rastreo , Microscopía Fluorescente
3.
Annu Rev Microbiol ; 77: 669-698, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713458

RESUMEN

Two of the most fascinating bacterial nanomachines-the broadly disseminated rotary flagellum at the heart of cellular motility and the eukaryotic cell-puncturing injectisome essential to specific pathogenic species-utilize at their core a conserved export machinery called the type III secretion system (T3SS). The T3SS not only secretes the components that self-assemble into their extracellular appendages but also, in the case of the injectisome, subsequently directly translocates modulating effector proteins from the bacterial cell into the infected host. The injectisome is thought to have evolved from the flagellum as a minimal secretory system lacking motility, with the subsequent acquisition of additional components tailored to its specialized role in manipulating eukaryotic hosts for pathogenic advantage. Both nanomachines have long been the focus of intense interest, but advances in structural and functional understanding have taken a significant step forward since 2015, facilitated by the revolutionary advances in cryo-electron microscopy technologies. With several seminal structures of each nanomachine now captured, we review here the molecular similarities and differences that underlie their diverse functions.


Asunto(s)
Flagelos , Sistemas de Secreción Tipo III , Microscopía por Crioelectrón , Transporte Biológico , Eucariontes
4.
Annu Rev Microbiol ; 76: 45-65, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35395168

RESUMEN

To suppress plant immunity and promote the intracellular infection required for fixing nitrogen for the benefit of their legume hosts, many rhizobia use type III secretion systems (T3SSs) that deliver effector proteins (T3Es) inside host cells. As reported for interactions between pathogens and host plants, the immune system of legume hosts and the cocktail of T3Es secreted by rhizobia determine the symbiotic outcome. If they remain undetected, T3Es may reduce plant immunity and thus promote infection of legumes by rhizobia. If one or more of the secreted T3Es are recognized by the cognate plant receptors, defense responses are triggered and rhizobial infection may abort. However, some rhizobial T3Es can also circumvent the need for nodulation (Nod) factors to trigger nodule formation. Here we review the multifaceted roles played by rhizobial T3Es during symbiotic interactions with legumes.


Asunto(s)
Fabaceae , Rhizobium , Fabaceae/metabolismo , Inmunidad de la Planta , Rhizobium/metabolismo , Simbiosis/fisiología , Sistemas de Secreción Tipo III/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(40): e2305195120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37751557

RESUMEN

Polymicrobial infections threaten the health of humans and animals but remain understudied in natural systems. We recently described the Pacific Oyster Mortality Syndrome (POMS), a polymicrobial disease affecting oyster production worldwide. In the French Atlantic coast, the disease involves coinfection with ostreid herpesvirus 1 (OsHV-1) and virulent Vibrio. However, it is unknown whether consistent Vibrio populations are associated with POMS in different regions, how Vibrio contribute to POMS, and how they interact with OsHV-1 during pathogenesis. By connecting field-based approaches in a Mediterranean ecosystem, laboratory infection assays and functional genomics, we uncovered a web of interdependencies that shape the structure and function of the POMS pathobiota. We show that Vibrio harveyi and Vibrio rotiferianus are predominant in OsHV-1-diseased oysters and that OsHV-1 drives the partition of the Vibrio community observed in the field. However only V. harveyi synergizes with OsHV-1 by promoting mutual growth and accelerating oyster death. V. harveyi shows high-virulence potential and dampens oyster cellular defenses through a type 3 secretion system, making oysters a more favorable niche for microbe colonization. In addition, V. harveyi produces a key siderophore called vibrioferrin. This important resource promotes the growth of V. rotiferianus, which cooccurs with V. harveyi in diseased oysters, and behaves as a cheater by benefiting from V. harveyi metabolite sharing. Our data show that cooperative behaviors contribute to synergy between bacterial and viral coinfecting partners. Additional cheating behaviors further shape the polymicrobial consortium. Controlling cooperative behaviors or countering their effects opens avenues for mitigating polymicrobial diseases.


Asunto(s)
Coinfección , Ostreidae , Animales , Humanos , Ecosistema , Bioensayo , Conducta Cooperativa
6.
J Biol Chem ; 300(9): 107613, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079629

RESUMEN

Shigella spp. are highly pathogenic members of the Enterobacteriaceae family, causing ∼269 million cases of bacillary dysentery and >200,000 deaths each year. Like many Gram-negative pathogens, Shigella rely on their type three secretion system (T3SS) to inject effector proteins into eukaryotic host cells, driving both cellular invasion and evasion of host immune responses. Exposure to the bile salt deoxycholate (DOC) significantly enhances Shigella virulence and is proposed to serve as a critical environmental signal present in the small intestine that prepares Shigella's T3SS for efficient infection of the colonic epithelium. Here, we uncover critical mechanistic details of the Shigella-specific DOC signaling process by describing the role of a π-helix secondary structure element within the T3SS tip protein invasion plasmid antigen D (IpaD). Biophysical characterization and high-resolution structures of IpaD mutants lacking the π-helix show that it is not required for global protein structure, but that it defines the native DOC binding site and prevents off target interactions. Additionally, Shigella strains expressing the π-helix deletion mutants illustrate the pathogenic importance of its role in guiding DOC interaction as flow cytometry and gentamycin protection assays show that the IpaD π-helix is essential for DOC-mediated apparatus maturation and enhanced invasion of eukaryotic cells. Together, these findings add to our understanding of the complex Shigella pathogenesis pathway and its evolution to respond to environmental bile salts by identifying the π-helix in IpaD as a critical structural element required for translating DOC exposure to virulence enhancement.


Asunto(s)
Antígenos Bacterianos , Ácido Desoxicólico , Shigella flexneri , Virulencia , Ácido Desoxicólico/química , Ácido Desoxicólico/metabolismo , Antígenos Bacterianos/metabolismo , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Shigella flexneri/metabolismo , Shigella flexneri/genética , Shigella flexneri/patogenicidad , Sistemas de Secreción Tipo III/metabolismo , Sistemas de Secreción Tipo III/genética , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Estructura Secundaria de Proteína
7.
Mol Microbiol ; 121(4): 636-645, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37975530

RESUMEN

Bacterial secretion systems, such as the type 3, 4, and 6 are multiprotein nanomachines expressed at the surface of pathogens with Gram-negative like envelopes. They are known to be crucial for virulence and to translocate bacteria-encoded effector proteins into host cells to manipulate cellular functions. This facilitates either pathogen attachment or invasion of the targeted cell. Effector proteins also promote evasion of host immune recognition. Imaging by cryo-electron microscopy in combination with structure determination has become a powerful approach to understand how these nanomachines work. Still, questions on their assembly, the precise secretion mechanisms, and their direct involvement in pathogenicity remain unsolved. Here, we present an overview of the recent developments in in situ cryo-electron microscopy. We discuss its potential for the investigation of the role of bacterial secretion systems during the host-bacterial crosstalk at the molecular level. These in situ studies open new perspectives for our understanding of secretion system structure and function.


Asunto(s)
Sistemas de Secreción Bacterianos , Tomografía con Microscopio Electrónico , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo III/metabolismo
8.
Annu Rev Microbiol ; 74: 221-245, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32660389

RESUMEN

Microbial pathogens have evolved complex mechanisms to interface with host cells in order to evade host defenses and replicate. However, mammalian innate immune receptors detect the presence of molecules unique to the microbial world or sense the activity of virulence factors, activating antimicrobial and inflammatory pathways. We focus on how studies of the major virulence factor of one group of microbial pathogens, the type III secretion system (T3SS) of human pathogenic Yersinia, have shed light on these important innate immune responses. Yersinia are largely extracellular pathogens, yet they insert T3SS cargo into target host cells that modulate the activity of cytosolic innate immune receptors. This review covers both the host pathways that detect the Yersinia T3SS and the effector proteins used by Yersinia to manipulate innate immune signaling.


Asunto(s)
Citosol/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Sistemas de Secreción Tipo III/inmunología , Yersinia/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Citosol/microbiología , Humanos , Inflamasomas , Piroptosis , Transducción de Señal , Factores de Virulencia/metabolismo , Yersinia/metabolismo , Yersinia/patogenicidad
9.
Proc Natl Acad Sci U S A ; 119(34): e2204332119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35976880

RESUMEN

Attaching and effacing (AE) lesion formation on enterocytes by enteropathogenic Escherichia coli (EPEC) requires the EPEC type III secretion system (T3SS). Two T3SS effectors injected into the host cell during infection are the atypical kinases, NleH1 and NleH2. However, the host targets of NleH1 and NleH2 kinase activity during infection have not been reported. Here phosphoproteomics identified Ser775 in the microvillus protein Eps8 as a bona fide target of NleH1 and NleH2 phosphorylation. Both kinases interacted with Eps8 through previously unrecognized, noncanonical "proline-rich" motifs, PxxDY, that bound the Src Homology 3 (SH3) domain of Eps8. Structural analysis of the Eps8 SH3 domain bound to a peptide containing one of the proline-rich motifs from NleH showed that the N-terminal part of the peptide adopts a type II polyproline helix, and its C-terminal "DY" segment makes multiple contacts with the SH3 domain. Ser775 phosphorylation by NleH1 or NleH2 hindered Eps8 bundling activity and drove dispersal of Eps8 from the AE lesion during EPEC infection. This finding suggested that NleH1 and NleH2 altered the cellular localization of Eps8 and the cytoskeletal composition of AE lesions during EPEC infection.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Escherichia coli Enteropatógena , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Fosfotransferasas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Núcleo Celular/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Humanos , Microvellosidades/metabolismo , Fosforilación , Fosfotransferasas/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(50): e2209383119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36469780

RESUMEN

Healthcare-associated infections are major causes of complications that lead to extended hospital stays and significant medical costs. The use of medical devices, including catheters, increases the risk of bacterial colonization and infection through the presence of a foreign surface. Two outcomes are observed for catheterized patients: catheter-associated asymptomatic bacteriuria and catheter-associated urinary tract infection (CAUTI). However, the relationship between these two events remains unclear. To understand this relationship, we studied a murine model of Pseudomonas aeruginosa CAUTI. In this model, we also observe two outcomes in infected animals: acute symptoms that is associated with CAUTI and chronic colonization that is associated with asymptomatic bacteriuria. The timing of the acute outcome takes place in the first week of infection, whereas chronic colonization occurs in the second week of infection. We further showed that mutants lacking genes encoding type III secretion system (T3SS), T3SS effector proteins, T3SS injection pore, or T3SS transcriptional activation all fail to cause acute symptoms of CAUTI. Nonetheless, all mutants defective for T3SS colonized the catheter and bladders at levels similar to the parental strain. In contrast, through induction of the T3SS master regulator ExsA, all infected animals showed acute phenotypes with bacteremia. Our results demonstrated that the acute symptoms, which are analogous to CAUTI, and chronic colonization, which is analogous to asymptomatic bacteriuria, are independent events that require distinct bacterial virulence factors. Experimental delineation of asymptomatic bacteriuria and CAUTI informs different strategies for the treatment and intervention of device-associated infections.


Asunto(s)
Bacteriuria , Infecciones Urinarias , Ratones , Animales , Pseudomonas aeruginosa/genética , Bacteriuria/complicaciones , Infecciones Urinarias/microbiología , Sistemas de Secreción Tipo III , Catéteres/efectos adversos
11.
J Biol Chem ; 299(12): 105387, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890783

RESUMEN

The expression of virulence factors essential for the invasion of host cells by Salmonella enterica is tightly controlled by a network of transcription regulators. The AraC/XylS transcription factor HilD is the main integration point of environmental signals into this regulatory network, with many factors affecting HilD activity. Long-chain fatty acids, which are highly abundant throughout the host intestine, directly bind to and repress HilD, acting as environmental cues to coordinate virulence gene expression. The regulatory protein HilE also negatively regulates HilD activity, through a protein-protein interaction. Both of these regulators inhibit HilD dimerization, preventing HilD from binding to target DNA. We investigated the structural basis of these mechanisms of HilD repression. Long-chain fatty acids bind to a conserved pocket in HilD, in a comparable manner to that reported for other AraC/XylS regulators, whereas HilE forms a stable heterodimer with HilD by binding to the HilD dimerization interface. Our results highlight two distinct, mutually exclusive mechanisms by which HilD activity is repressed, which could be exploited for the development of new antivirulence leads.


Asunto(s)
Proteínas Bacterianas , Intestinos , Salmonella typhimurium , Proteínas Bacterianas/metabolismo , Ácidos Grasos/metabolismo , Regulación Bacteriana de la Expresión Génica , Intestinos/metabolismo , Intestinos/microbiología , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Virulencia , Animales , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/microbiología
12.
Infect Immun ; 92(1): e0032923, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38084951

RESUMEN

Engineering pathogens is a useful method for discovering new details of microbial pathogenesis and host defense. However, engineering can result in off-target effects. We previously engineered Salmonella enterica serovar Typhimurium to overexpress the secretion signal of the type 3 secretion system effector SspH1 fused with domains of other proteins as cargo. Such engineering had no virulence cost to the bacteria for the first 48 hours post infection in mice. Here, we show that after 48 hours, the engineered bacteria manifest an attenuation that correlates with the quantity of the SspH1 translocation signal expressed. In IFN-γ-deficient mice, this attenuation was weakened. Conversely, the attenuation was accelerated in the context of a pre-existing infection. We speculate that inflammatory signals change aspects of the target cell's physiology, which makes host cells less permissive to S. Typhimurium infection. This increased degree of difficulty requires the bacteria to utilize its T3SS at peak efficiency, which can be disrupted by engineered effectors.


Asunto(s)
Salmonella typhimurium , Sistemas de Secreción Tipo III , Animales , Ratones , Virulencia , Sistemas de Secreción Tipo III/genética , Factores de Virulencia/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
13.
Microbiology (Reading) ; 170(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38226962

RESUMEN

Bacteria swim using membrane-spanning, electrochemical gradient-powered motors that rotate semi-rigid helical filaments. This primer provides a brief overview of the basic synthesis, structure and operation of these nanomachines. Details and variations on the basic system can be found in suggested further reading.


Asunto(s)
Citoesqueleto , Flagelos
14.
Annu Rev Genet ; 50: 493-513, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27893961

RESUMEN

In many parts of the world, enteropathogenic Escherichia coli (EPEC) are a leading cause of death in children with diarrhea. Much of what we know about the pathogenesis of EPEC infections is based on the study of one or two prototypic strains that have provided deep insight into the precise mechanisms by which EPEC colonizes the intestine, evades host immunity, and spreads from person to person. In some cases, defining the biochemical activity of the host-interacting effector proteins from these prototypic strains has led to the discovery of novel post-translational protein modifications and new understandings of biology and host-pathogen interactions. However, genomic analysis of recent EPEC isolates has revealed that the EPEC pathotype is more diverse than previously appreciated. Although by definition all strains carry the locus of enterocyte effacement, the effector repertoires of different clonal groups are quite divergent, suggesting that there is still a great deal to learn about the genetic basis of EPEC virulence.


Asunto(s)
Diarrea/microbiología , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/microbiología , Interacciones Huésped-Patógeno , Apoptosis , Escherichia coli Enteropatógena/inmunología , Infecciones por Escherichia coli/complicaciones , Infecciones por Escherichia coli/patología , Humanos , Evasión Inmune , Inflamasomas , Fagocitosis , Virulencia/genética
15.
Appl Environ Microbiol ; 90(8): e0086224, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39058035

RESUMEN

Type 1 fimbria, the short hair-like appendage assembled on the bacterial surface, plays a pivotal role in adhesion and invasion in Edwardsiella piscicida. The type III secretion system (T3SS), another bacterial surface appendage, facilitates E. piscicida's replication in vivo by delivering effectors into host cells. Our previous research demonstrated that E. piscicida T3SS protein EseJ inhibits adhesion and invasion of E. piscicida by suppressing type 1 fimbria. However, how EseJ suppresses type 1 fimbria remains elusive. In this study, a lacI-like operator (nt -245 to -1 of fimA) upstream of type 1 fimbrial operon in E. piscicida was identified, and EseJ inhibits type 1 fimbria through the lacI-like operator. Moreover, through DNA pull-down and electrophoretic mobility shift assay, an AraC-type T3SS regulator, EsrC, was screened and verified to bind to nt -145 to -126 and nt -50 to -1 of fimA, suppressing type 1 fimbria. EseJ is almost abolished upon the depletion of EsrC. EsrC and EseJ impede type 1 fimbria expression. Intriguingly, nutrition and microbiota-derived indole activate type 1 fimbria through downregulating T3SS, alleviating EsrC or EseJ's inhibitory effect on lacI-like operator of type 1 fimbrial operon. By this study, it is revealed that upon entering the gastrointestinal tract, rich nutrients and indole downregulate T3SS and thereof upregulate type 1 fimbria, stimulating efficient adhesion and invasion; upon being internalized into epithelium, the limit in indole and nutrition switches on T3SS and thereof switches off type 1 fimbria, facilitating effector delivery to guarantee E. piscicida's survival/replication in vivo.IMPORTANCEIn this work, we identified the lacI-like operator of type 1 fimbrial operon in E. piscicida, which was suppressed by the repressors-T3SS protein EseJ and EsrC. We unveiled that E. piscicida upregulates type 1 fimbria upon sensing rich nutrition and the microbiota-derived indole, thereof promoting the adhesion of E. piscicida. The increase of indole and nutrition promotes type 1 fimbria by downregulating T3SS. The decrease in EseJ and EsrC alleviates their suppression on type 1 fimbria, and vice versa.


Asunto(s)
Adhesión Bacteriana , Proteínas Bacterianas , Edwardsiella , Fimbrias Bacterianas , Operón , Sistemas de Secreción Tipo III , Edwardsiella/genética , Edwardsiella/fisiología , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Animales , Regulación Bacteriana de la Expresión Génica , Infecciones por Enterobacteriaceae/microbiología
16.
Appl Environ Microbiol ; 90(8): e0098824, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39082807

RESUMEN

Shigella bacteria utilize the type III secretion system (T3SS) to invade host cells and establish local infection. Invasion plasmid antigen D (IpaD), a component of Shigella T3SS, has garnered extensive interest as a vaccine target, primarily due to its pivotal role in the Shigella invasion, immunogenic property, and a high degree of conservation across Shigella species and serotypes. Currently, we are developing an epitope- and structure-based multivalent vaccine against shigellosis and require functional epitope antigens of key Shigella virulence determinants including IpaD. However, individual IpaD B-cell epitopes, their contributions to the overall immunogenicity, and functional activities attributing to bacteria invasion have not been fully characterized. In this study, we predicted continuous B-cell epitopes in silico and fused each epitope to a carrier protein. Then, we immunized mice intramuscularly with each epitope fusion protein, examined the IpaD-specific antibody responses, and measured antibodies from each epitope fusion for the activity against Shigella invasion in vitro. Data showed that all epitope fusion proteins induced similar levels of anti-IpaD IgG antibodies in mice, and differences were noted for antibody inhibition activity against Shigella invasion. IpaD epitope 1 (SPGGNDGNSV), IpaD epitope 2 (LGGNGEVVLDNA), and IpaD epitope 5 (SPNNTNGSSTET) induced antibodies significantly better in inhibiting invasion from Shigella flexneri 2a, and epitopes 1 and 5 elicited antibodies more effectively at preventing invasion of Shigella sonnei. These results suggest that IpaD epitopes 1 and 5 can be the IpaD representative antigens for epitope-based polyvalent protein construction and protein-based cross-protective Shigella vaccine development.IMPORTANCEShigella is a leading cause of diarrhea in children younger than 5 years in developing countries (children's diarrhea) and continues to be a major threat to public health. No licensed vaccines are currently available against the heterogeneous Shigella species and serotype strains. Aiming to develop a cross-protective multivalent vaccine against shigellosis and dysentery, we applied novel multiepitope fusion antigen (MEFA) technology to construct a broadly immunogenic polyvalent protein antigen, by presenting functional epitopes of multiple Shigella virulence determinants on a backbone protein. The functional IpaD epitopes identified from this study will essentially allow us to construct an optimal polyvalent Shigella immunogen, leading to the development of a cross-protective vaccine against shigellosis (and dysentery) and the improvement of global health. In addition, identifying functional epitopes from heterogeneous virulence determinants and using them as antigenic representatives for the development of cross-protective multivalent vaccines can be applied generally in vaccine development.


Asunto(s)
Antígenos Bacterianos , Epítopos de Linfocito B , Shigella flexneri , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genética , Animales , Ratones , Shigella flexneri/inmunología , Shigella flexneri/genética , Epítopos de Linfocito B/inmunología , Vacunas contra la Shigella/inmunología , Vacunas contra la Shigella/administración & dosificación , Vacunas contra la Shigella/genética , Disentería Bacilar/prevención & control , Disentería Bacilar/inmunología , Disentería Bacilar/microbiología , Ratones Endogámicos BALB C , Mapeo Epitopo , Femenino , Shigella/inmunología , Shigella/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/sangre , Shigella sonnei/inmunología , Shigella sonnei/genética , Sistemas de Secreción Tipo III/inmunología , Sistemas de Secreción Tipo III/genética
17.
Plant Cell Environ ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132878

RESUMEN

Reactive oxygen species (ROS) play a crucial role in regulating numerous functions in organisms. Among the key regulators of ROS production are NADPH oxidases, primarily referred to as respiratory burst oxidase homologues (RBOHs). However, our understanding of whether and how pathogens directly target RBOHs has been limited. In this study, we revealed that the effector protein RipBJ, originating from the phytopathogenic bacterium Ralstonia solanacearum, was present in low- to medium-virulence strains but absent in high-virulence strains. Functional genetic assays demonstrated that the expression of ripBJ led to a reduction in bacterial infection. In the plant, RipBJ expression triggered plant cell death and the accumulation of H2O2, while also enhancing host defence against R. solanacearum by modulating multiple defence signalling pathways. Through protein interaction and functional studies, we demonstrated that RipBJ was associated with the plant's plasma membrane and interacted with the tomato RBOH known as SlWfi1, which contributed positively to RipBJ's effects on plants. Importantly, SlWfi1 expression was induced during the early stages following R. solanacearum infection and played a key role in defence against this bacterium. This research uncovers the plant RBOH as an interacting target of a pathogen's effector, providing valuable insights into the mechanisms of plant defence.

18.
Fish Shellfish Immunol ; 153: 109854, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39179188

RESUMEN

Vibrio parahaemolyticus (V. parahaemolyticus) is a major bacterial pathogen found in brackish environments, leading to disease outbreaks and great economic losses in the mud crab industry. This study investigated the molecular mechanism of V. parahaemolyticus infecting mud crabs through genome sequencing analysis, survival experiments, and the expression patterns of related functional genes. A strain of V. parahaemolyticus with high pathogenicity and lethality was isolated from diseased mud crab in South China. The genome sequencing results showed that the genome size of V. parahaemolyticus was a circular chromosome of 3,357,271 bp, with a GC content of 45 %, containing 2985 protein-coding genes, denoted as V. parahaemolyticus LG2206. Genome analysis data revealed that a total of 113 adherence coding genes were obtained, including 120 virulence factor coding genes, 37 type III secretion system (T3SS) coding genes, and 277 sequences of T3SS effectors. Survival experiments showed that the mortality was 20 % within 96 h in the 1 × 104 CFU/mL infection group, 90 % in the 3.2 × 105 CFU/mL treatment group, and 100 % in the 1 × 106 CFU/mL treatment group. The LD50 of V. parahaemolyticus LG2206 was determined as 4.6 × 104 CFU/mL. Six genes of znuA and fliD (flagellin encoding genes), yscE and yscR (T3SS encoding genes), and nfuA and htpX (virulence factor encoding genes) were selected and validated by quantitative real-time PCR analysis after infection with 4.6 × 104 CFU/mL of V. parahaemolyticus LG2206 for 96 h. The expression of the six genes exhibited a significant up-regulation trend at all tested time points. The results indicated that the infestation-related genes screened in the experiment play important roles in the infestation process. This study provides timely and effective information to further analyze the molecular mechanism of V. parahaemolyticus infection and develop comprehensive measures for disease prevention and control.


Asunto(s)
Braquiuros , Hepatopáncreas , Vibrio parahaemolyticus , Vibrio parahaemolyticus/fisiología , Animales , Braquiuros/microbiología , Braquiuros/genética , Braquiuros/inmunología , Hepatopáncreas/microbiología , China , Genoma Bacteriano
19.
Plant Dis ; 108(5): 1174-1178, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105454

RESUMEN

Erwinia amylovora, the causal agent of fire blight disease, has become a serious threat to the pome fruit industry in Korea since 2015. In this study, we showed that two new isolates of E. amylovora, Ea17-2187 and Ea19-7, obtained from pear orchards in Anseong, Korea, exhibited unique pathogenicity compared with other isolates thus far. Both were nonpathogenic to immature apple fruits but occasionally caused disease on immature pear fruits at varying reduced rates. Bioinformatic analyses revealed that their genomes are highly similar to those of the type strains TS3128 and ATCC49946 but have different mutations in essential virulence regulatory genes. Ea17-2187 has a single nucleotide substitution in rcsC, which encodes the core components of the Rcs system that activates the exopolysaccharide amylovoran production. In contrast, Ea19-7 contains a single nucleotide insertion in hrpL, which encodes a master regulator of the type III secretion system. In both cases, the mutation can cause premature termination and production of truncated gene products, disrupting virulence regulation. Introduction of the nonmutated rcsC and hrpL genes into Ea17-2187 and Ea19-7, respectively, fully recovered pathogenicity, comparable with that of TS3128; hence, these mutations were responsible for the altered pathogenicity observed. Interestingly, virulence assays on immature pear fruits showed that the hrpL mutant of Ea19-7 was still pathogenic, although its virulence level was markedly reduced. Taken together, these results suggest that the two new isolates might act as opportunistic pathogens or cheaters and that some Korean isolates might have evolved to acquire alternative pathways for activating pathogenicity factors.


Asunto(s)
Erwinia amylovora , Enfermedades de las Plantas , Pyrus , Erwinia amylovora/genética , Erwinia amylovora/patogenicidad , Enfermedades de las Plantas/microbiología , Pyrus/microbiología , Virulencia/genética , República de Corea , Polimorfismo de Nucleótido Simple , Proteínas Bacterianas/genética , Malus/microbiología , Genoma Bacteriano , Frutas/microbiología , Polisacáridos Bacterianos
20.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062822

RESUMEN

Currently, it is widely accepted that the type III secretion system (T3SS) serves as the transport platform for bacterial virulence factors, while flagella act as propulsion motors. However, there remains a noticeable dearth of comparative studies elucidating the functional disparities between these two mechanisms. Entomopathogenic nematode symbiotic bacteria (ENS), including Xenorhabdus and Photorhabdus, are Gram-negative bacteria transported into insect hosts by Steinernema or Heterorhabdus. Flagella are conserved in ENS, but the T3SS is only encoded in Photorhabdus. There are few reports on the function of flagella and the T3SS in ENS, and it is not known what role they play in the infection of ENS. Here, we clarified the function of the T3SS and flagella in ENS infection based on flagellar inactivation in X. stockiae (flhDC deletion), T3SS inactivation in P. luminescens (sctV deletion), and the heterologous synthesis of the T3SS of P. luminescens in X. stockiae. Consistent with the previous results, the swarming movement of the ENS and the formation of biofilms are dominated by the flagella. Both the T3SS and flagella facilitate ENS invasion and colonization within host cells, with minimal impact on secondary metabolite formation and secretion. Unexpectedly, a proteomic analysis reveals a negative feedback loop between the flagella/T3SS assembly and the type VI secretion system (T6SS). RT-PCR testing demonstrates the T3SS's inhibition of flagellar assembly, while flagellin expression promotes T3SS assembly. Furthermore, T3SS expression stimulates ribosome-associated protein expression.


Asunto(s)
Flagelos , Simbiosis , Sistemas de Secreción Tipo III , Flagelos/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Sistemas de Secreción Tipo III/genética , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Xenorhabdus/metabolismo , Xenorhabdus/genética , Xenorhabdus/fisiología , Regulación Bacteriana de la Expresión Génica , Photorhabdus/metabolismo , Photorhabdus/patogenicidad , Photorhabdus/genética , Photorhabdus/fisiología , Nematodos/microbiología , Nematodos/metabolismo , Biopelículas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA