Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
S Afr J Bot ; 135: 240-251, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32963416

RESUMEN

Metabolic syndrome comprises a cluster of metabolic disorders related to the development of cardiovascular disease and type 2 diabetes mellitus. In latter years, plant secondary metabolites have become of special interest because of their potential role in preventing and managing metabolic syndrome. Sesquiterpene lactones constitute a large and diverse group of biologically active compounds widely distributed in several medicinal plants used for the treatment of metabolic disorders. The structural diversity and the broad spectrum of biological activities of these compounds drew significant interests in the pharmacological applications. This review describes selected sesquiterpene lactones that have been experimentally validated for their biological activities related to risk factors of metabolic syndrome, together with their mechanisms of action. The potential beneficial effects of sesquiterpene lactones discussed in this review demonstrate that these substances represent remarkable compounds with a diversity of molecular structure and high biological activity, providing new insights into the possible role in metabolic syndrome management.

2.
Nutr Res Rev ; 31(1): 52-70, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28965518

RESUMEN

The antioxidant potential (AP) is an important nutritional property of foods, as increased oxidative stress is involved in most diet-related chronic diseases. In dairy products, the protein fraction contains antioxidant activity, especially casein. Other antioxidants include: antioxidant enzymes; lactoferrin; conjugated linoleic acid; coenzyme Q10; vitamins C, E, A and D3; equol; uric acid; carotenoids; and mineral activators of antioxidant enzymes. The AP of dairy products has been extensively studied in vitro, with few studies in animals and human subjects. Available in vivo studies greatly differ in their design and objectives. Overall, on a 100 g fresh weight-basis, AP of dairy products is close to that of grain-based foods and vegetable or fruit juices. Among dairy products, cheeses present the highest AP due to their higher protein content. AP of milk increases during digestion by up to 2·5 times because of released antioxidant peptides. AP of casein is linked to specific amino acids, whereas ß-lactoglobulin thiol groups play a major role in the AP of whey. Thermal treatments such as ultra-high temperature processing have no clear effect on the AP of milk. Raw fat-rich milks have higher AP than less fat-rich milk, because of lipophilic antioxidants. Probiotic yoghurts and fermented milks have higher AP than conventional yoghurt and milk because proteolysis by probiotics releases antioxidant peptides. Among the probiotics, Lactobacillus casei/acidophilus leads to the highest AP. The data are insufficient for cheese, but fermentation-based changes appear to make a positive impact on AP. In conclusion, AP might participate in the reported dairy product-protective effects against some chronic diseases.


Asunto(s)
Antioxidantes/análisis , Queso/análisis , Fermentación , Leche/química , Probióticos , Yogur/análisis , Animales , Productos Lácteos Cultivados , Humanos , Lactobacillus acidophilus , Lacticaseibacillus casei , Péptidos/análisis
3.
Biosci Biotechnol Biochem ; 82(4): 554-563, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29334323

RESUMEN

In April 2015, Consumer Affairs Agency of Japan launched a new food labeling system known as "Foods with Function Claims (FFC)." Under this system, the food industry independently evaluates scientific evidence on foods and describes their functional properties. As of May 23, 2017, 1023 FFC containing 8 fresh foods have been launched. Meanwhile, to clarify the health-promoting effects of agricultural products, National Agriculture and Food Research Organization (NARO) implemented the "Research Project on Development of Agricultural Products" and demonstrated the risk reduction of osteoporosis of ß-cryptoxanthin rich Satsuma mandarins and the anti-allergic effect of the O-methylated catechin rich tea cultivar Benifuuki. These foods were subsequently released as FFC. Moreover, NARO elucidated the health-promoting effects of various functional agricultural products (ß-glucan rich barley, ß-conglycinin rich soybean, quercetin rich onion, etc.) and a healthy boxed lunch. This review focuses on new food labeling system or research examining functional aspects of agricultural products.


Asunto(s)
Productos Agrícolas , Etiquetado de Alimentos/normas , Alimentos Funcionales/normas , Legislación Alimentaria , Etiquetado de Alimentos/legislación & jurisprudencia , Promoción de la Salud , Humanos , Japón
4.
Br J Nutr ; 116(2): 258-69, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27197628

RESUMEN

The effect of oxidised fatty acids on atherosclerosis progression is controversial. Thus, our objective was to evaluate the effect of long-term consumption of weakly oxidised PUFA from flaxseed oil on oxidative stress biomarkers of LDL-receptor(-/-) mice. To test our hypothesis, mice were separated into three groups. The first group received a high-fat diet containing fresh flaxseed oil (CONT-), the second was fed the same diet prepared using heated flaxseed oil (OXID), and the third group received the same diet containing fresh flaxseed oil and had diabetes induced by streptozotocin (CONT+). Oxidative stress, aortic parameters and non-alcoholic fatty liver disease were assessed. After 3 months, plasma lipid profile, glucose levels, body weight, energy intake and dietary intake did not differ among groups. Likewise, oxidative stress, plasma malondialdehyde (MDA), hepatic MDA expressed as nmol/mg portion (ptn) and antioxidant enzymes did not differ among the groups. Hepatic linoleic acid, α-linolenic acid, arachidonic acid and EPA acid declined in the OXID and CONT+ groups. Aortic wall thickness, lumen and diameter increased only in the OXID group. OXID and CONT+ groups exhibited higher concentrations of MDA, expressed as µmol/mg ptn per %PUFA, when compared with the CONT- group. Our results suggest that ingestion of oxidised flaxseed oil increases hepatic MDA concentration and is potentially pro-atherogenic. In addition, the mean MDA value observed in all groups was similar to those reported in other studies that used xenobiotics as oxidative stress inducers. Thus, the diet applied in this study represents an interesting model for further research involving antioxidants.


Asunto(s)
Dieta Alta en Grasa , Grasas de la Dieta/farmacología , Ácidos Grasos/farmacología , Aceite de Linaza/farmacología , Malondialdehído/metabolismo , Estrés Oxidativo , Receptores de LDL , Animales , Aorta/efectos de los fármacos , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Biomarcadores/metabolismo , Grasas de la Dieta/metabolismo , Ácidos Grasos/metabolismo , Lino/química , Aceite de Linaza/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Noqueados , Modelos Biológicos , Oxidación-Reducción , Receptores de LDL/genética , Receptores de LDL/metabolismo
5.
Br J Nutr ; 115(8): 1325-38, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26907361

RESUMEN

Increased substitution of marine ingredients by terrestrial plant products in aquafeeds has been proven to be suitable for Atlantic salmon farming. However, a reduction in n-3 long-chain PUFA is a consequence of this substitution. In contrast, relatively little attention has been paid to the effects of fishmeal and oil substitution on levels of micronutrients such as Se, considering fish are major sources of this mineral for human consumers. To evaluate the effects of dietary marine ingredient substitution on tissue Se distribution and the expression of Se metabolism and antioxidant enzyme genes, Atlantic salmons were fed three feeds based on commercial formulations with increasing levels of plant proteins (PP) and vegetable oil. Lipid content in flesh did not vary at any sampling point, but it was higher in the liver of 1 kg of fish fed higher PP. Fatty acid content reflected dietary input and was related to oxidation levels (thiobarbituric acid-reactive substances). Liver had the highest Se levels, followed by head kidney, whereas the lowest contents were found in brain and gill. The Se concentration of flesh decreased considerably with high levels of substitution, reducing the added value of fish consumption. Only the brain showed significant differences in glutathione peroxidase, transfer RNA selenocysteine 1-associated protein 1b and superoxide dismutase expression, whereas no significant regulation of Se-related genes was found in liver. Although Se levels in the diets satisfied the essential requirements of salmon, high PP levels led to a reduction in the supply of this essential micronutrient.


Asunto(s)
Dieta/veterinaria , Plantas Comestibles , Salmo salar/metabolismo , Selenio/farmacocinética , Selenoproteínas/genética , Alimentación Animal/análisis , Animales , Antioxidantes/análisis , Acuicultura/métodos , Encéfalo/enzimología , Expresión Génica , Glutatión Peroxidasa/análisis , Peroxidación de Lípido , Lípidos/análisis , Hígado/química , Hígado/enzimología , Músculos/química , Valor Nutritivo , Aceites de Plantas/administración & dosificación , Proteínas de Plantas/administración & dosificación , Salmo salar/crecimiento & desarrollo , Selenio/análisis , Selenocisteína , Superóxido Dismutasa/análisis , Distribución Tisular
6.
J Dairy Res ; 83(3): 412-9, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27600979

RESUMEN

This study was designed to assess anti-diabetic potential of goat, camel, cow and buffalo milk in streptozotocin (STZ) induced type 1 diabetic albino wistar rats. A total of 48 rats were taken for the study where one group was kept as non-diabetic control group (8 rats) while others (40 rats) were made diabetic by STZ (50 mg/kg of body weight) injection. Among diabetic rats, a control group (8 rats) was kept and referred as diabetic control whereas other four groups (8 rats each) of diabetic rats were fed on 50 ml of goat or camel or cow or buffalo milk for 4 weeks. All the rats (non-diabetic and diabetic) were maintained on standard diet for four weeks. STZ administration resulted in enhancement of glucose, total cholesterol, triglyceride, low density lipoprotein, HbA1c and reduction in high density lipoprotein in plasma and lowering of antioxidative enzymes (catalase, glutathione peroxidase and superoxide dismutase) activities in pancreas, kidney, liver and RBCs, coupled with enhanced levels of TBARS and protein carbonyls in pancreas, kidney, liver and plasma. OGTT carried out at the end of 4 week milk feeding indicated that all milks helped in early maintenance of glucose level. All milks reduced atherogenic index. In camel milk fed diabetic group, insulin concentration enhanced to level noted for non-diabetic control while goat, cow and buffalo milk failed to restore insulin level. HbA1c level was also restored only in camel milk fed diabetic group. The level of antioxidative enzymes (catalase, GPx and SOD) in pancreas enhanced in all milk fed groups. Camel milk and to a reasonable extent goat milk reduced formation of TBARS and PCs in tissues and blood. It can be concluded that camel milk ameliorates hyperglycaemia and oxidative damage in type-1 diabetic experimental rats. Further, only camel milk completely ameliorated oxidative damage in pancreas and normalised insulin level.


Asunto(s)
Antioxidantes , Camelus , Diabetes Mellitus Experimental/terapia , Hipoglucemiantes , Leche/química , Animales , Glucemia/análisis , Búfalos , Bovinos , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/terapia , Ácidos Grasos no Esterificados/sangre , Femenino , Hemoglobina Glucada/análisis , Cabras , Hiperglucemia/terapia , Insulina/sangre , Lípidos/sangre , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
7.
Br J Nutr ; 114(9): 1385-94, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-26346559

RESUMEN

In our previous studies, veratric acid (VA) shows beneficial effect on hypertension and its associated dyslipidaemia. In continuation, this study was designed to investigate the effect of VA, one of the major benzoic acid derivatives from vegetables and fruits, on cardiovascular remodelling in hypertensive rats, primarily assessed by functional studies using Langendorff isolated heart system and organ bath system. Hypertension was induced in male albino Wistar rats by oral administration of N ω -nitro-l-arginine methyl ester hydrochloride (l-NAME) (40 mg/kg body weight (b.w.)) in drinking water for 4 weeks. VA was orally administered at a dose of 40 mg/kg b.w. l-NAME-treated rats showed impaired cardiac ventricular and vascular function, evaluated by Langendorff isolated heart system and organ bath studies, respectively; a significant increase in the lipid peroxidation products such as thiobarbituric acid-reactive substances and lipid hydroperoxides in aorta; and a significant decrease in the activities of superoxide dismutase, catalase, glutathione peroxidase and levels of GSH, vitamin C and vitamin E in aorta. Fibrotic remodelling of the aorta and heart were assessed by Masson's Trichrome staining and Van Gieson's staining, respectively. In addition, l-NAME rats showed increased heart fibronectin expression assessed by immunohistochemical analysis. VA supplementation throughout the experimental period significantly normalised cardiovascular function, oxidative stress, antioxidant status and fibrotic remodelling of tissues. These results of the present study conclude that VA acts as a protective agent against hypertension-associated cardiovascular remodelling.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Frutas/química , Hipertensión/tratamiento farmacológico , Ácido Vanílico/análogos & derivados , Remodelación Vascular/efectos de los fármacos , Verduras/química , Administración Oral , Animales , Antioxidantes/administración & dosificación , Aorta/efectos de los fármacos , Aorta/metabolismo , Ácido Ascórbico/metabolismo , Sistema Cardiovascular/efectos de los fármacos , Sistema Cardiovascular/metabolismo , Catalasa/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Peróxidos Lipídicos/metabolismo , Masculino , NG-Nitroarginina Metil Éster/administración & dosificación , NG-Nitroarginina Metil Éster/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Ácido Vanílico/administración & dosificación , Vitamina E/metabolismo
8.
Environ Exp Bot ; 91(100): 74-83, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23825883

RESUMEN

Using iron-deprived (-Fe) chlorotic as well as green iron-deficient (5 µM Fe) and iron-sufficient supplied (50 µM Fe) leaves of young hydroponically reared Brassica napus plants, we explored iron deficiency effects on triggering programmed cell death (PCD) phenomena. Iron deficiency increased superoxide anion but decreased hydroxyl radical (•OH) formation (TBARS levels). Impaired photosystem II efficiency led to hydrogen peroxide accumulation in chloroplasts; NADPH oxidase activity, however, remained on the same level in all treatments. Non-autolytic PCD was observed especially in the chlorotic leaf of iron-deprived plants, to a lesser extent in iron-deficient plants. It correlated with higher DNAse-, alkaline protease- and caspase-3-like activities, DNA fragmentation and chromatin condensation, hydrogen peroxide accumulation and higher superoxide dismutase activity. A significant decrease in catalase activity together with rising levels of dehydroascorbic acid indicated a strong disturbance of the redox homeostasis, which, however, was not caused by •OH formation in concordance with the fact that iron is required to catalyse the Fenton reaction leading to •OH generation. This study documents the chain of events that contributes to the development of non-autolytic PCD in advanced stages of iron deficiency in B. napus leaves.

9.
Chemosphere ; 319: 137917, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36706814

RESUMEN

Mercury (Hg) is among the naturally occurring heavy metal with elemental, organic, and inorganic distributions in the environment. Being considered a global pollutant, high pools of Hg-emissions ranging from >6000 to 8000 Mg Hg/year get accumulated by the natural and anthropogenic activities in the atmosphere. These toxicants have high persistence, toxicity, and widespread contamination in the soil, water, and air resources. Hg accumulation inside the plant parts amplifies the traces of toxic elements in the linking food chains, leads to Hg exposure to humans, and acts as a potential genotoxic, neurotoxic and carcinogenic entity. However, excessive Hg levels are equally toxic to the plant system and severely disrupt the physiological and metabolic processes in plants. Thus, a plausible link between Hg-concentration and its biogeochemical behavior is highly imperative to analyze the plant-soil interactions. Therefore, it is requisite to bring these toxic contaminants in between the acceptable limits to safeguard the environment. Plants efficiently incorporate or absorb the bioavailable Hg from the soil thus a constructive understanding of Hg uptake, translocation/sequestration involving specific heavy metal transporters, and detoxification mechanisms are drawn. Whereas recent investigations in biological remediation of Hg provide insights into the potential associations between the plants and microbes. Furthermore, intense research on Hg-induced antioxidants, protein networks, metabolic mechanisms, and signaling pathways is required to understand these bioremediations techniques. This review sheds light on the mercury (Hg) sources, pollution, biogeochemical cycles, its uptake, translocation, and detoxification methods with respect to its molecular approaches in plants.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Humanos , Mercurio/análisis , Metales Pesados/metabolismo , Plantas/metabolismo , Contaminación Ambiental , Suelo , Contaminantes del Suelo/metabolismo
10.
J Clin Exp Hepatol ; 13(1): 64-74, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36647406

RESUMEN

Background: Sepsis is a severe global health problem, with high morbidity and mortality. In sepsis, one of the main affected organs is the liver. Hepatic alterations characterize a negative prognostic. Omega-3 fatty acids (ω3), eicosapentaenoic acid, and docosahexaenoic acid, are part of the main families of polyunsaturated fatty acids. ω3 has been used in studies as sepsis treatment and as a treatment for non-alcoholic liver disease. Aim: We aimed to evaluate the effects of treatment with fish oil (FO) rich in ω3 on liver changes and damage resulting from experimental sepsis. Methodology: A model of severe sepsis in Wistar rats was used. Oxidative stress in the liver tissue was evaluated by means of tests of thiobarbituric acid reactive substances, 2,7-dihydrodichlorofluorescein diacetate , catalase, and glutathione peroxidase, in the serum TBARS, DCF, thiols and, to assess liver dysfunction, alanine aminotransferase and aspartate aminotransferase. Hepatic tissue damage was evaluated using H&E histology. Results: In assessments of oxidative stress in liver tissue, a protective effect was observed in the tests of TBARS, DCF, CAT, and GPx, when compared the sepsis versus sepsis+ω3 groups. Regarding the oxidative stress in serum, a protective effect of treatment with ω3 was observed in the TBARS, DCF, and thiols assays, in the comparison between the sepsis and sepsis+ω3 groups. ω3 had also a beneficial effect on biochemical parameters in serum in the analysis of ALT, creatinine, urea, and lactate, observed in the comparison between the sepsis and sepsis+ω3 groups. Conclusion: The results suggest ω3 as a liver protector during sepsis with an antioxidant effect, alleviating injuries and dysfunctions.

11.
Toxicol Rep ; 9: 1484-1490, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518450

RESUMEN

Significance: Electronic cigarettes (e-cigarettes) have become a popular way to smoke all over the world. Chronic exposure to e-cigarette aerosol may influence lung health. This study uses an animal model to explore the time course of the effect of exposure to e-cigarette aerosols on the lung. Methods: Lung samples were collected after exposure of Balb/c mice to e-cigarette aerosols for 1 h/day (6 times/week) for 1, 2 and 4 weeks and compared to sham-exposed controls. Examined biomarkers including inflammatory cells, tumor necrosis factor α (TNFα), interleukin-6 (IL-6), interleukin-10 (IL-10), reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione peroxidase (GPx), catalase, superoxide dismutase (SOD), and Thiobarbituric acid reactive substances (TBARS). Results: Exposure of animals to e-cigarette aerosols induced significant increases (P < 0.05) in total inflammatory cells, eosinophils, macrophages and TNFα in the lung tissue after 1, 2 and 4 weeks of exposure. Furthermore, level of IL-10 significantly decreased, whereas levels of neutrophils and basophils significantly increased (P < 0.05) after 1 week of exposure. Exposure of animals to e-cigarette aerosol also induced significant decreases (P < 0.05) in the GSH/GSSG ratio, and GPx levels after 2 and 4 weeks of exposures. The activity of catalase was also reduced (P < 0.05) after 4 weeks of exposure. Level of TBARS showed a trend of elevation with time and it reached a significant elevation after 4 weeks (P < 0.01). Conclusion: Current results indicate that inhalation of unflavored e-cigarette aerosol might be associated with inflammation in lung tissue that worsen as the duration of exposure increases. Further experiments including more time points, histopathology and pulmonary physiology experiments are needed to confirm the current results.

12.
Curr Res Toxicol ; 3: 100083, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935915

RESUMEN

Injuries suffered in armed conflicts often result in wounds with embedded metal fragments. Standard surgical guidance has been to leave fragments in place except under certain circumstances; meaning that individuals may carry these retained fragments for their lifetime. Because of advancements in weapon design and the use of improvised explosive devices, the list of metals that could be found in a wound is extensive. In most cases the toxicological properties of these metals when embedded in the body are not known. To assess the potential damage embedded metals may cause to surrounding tissue, we utilized a rodent model to investigate the effect of a variety of military-relevant metals on markers of oxidative damage. The metals tested included tungsten, nickel, cobalt, iron, copper, aluminum, lead, and depleted uranium. Herein we report our findings on creatine kinase activity, lipid and protein oxidation, total antioxidant capacity, and glutathione levels in gastrocnemius homogenates from Sprague-Dawley rats surgically implanted with metal pellets for periods up to 12 months. Not all embedded metals affected the measured markers equally. However, metal-associated effects were seen at various times for muscle and serum creatinine levels, protein oxidation, total antioxidant capacity, and glutathione levels. No metal-induced effects on lipid peroxidation were observed. Taken together, these data suggest that subtle oxidative damage may be occurring in the muscle surrounding an embedded metal and indicates the need for medical surveillance of those individuals wounded by metal shrapnel.

13.
J Tradit Complement Med ; 12(2): 131-140, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35528469

RESUMEN

Background and aim: Trigonella foenum-graecum L. seeds (TFG) are used as spices in Indian cuisine. In Indian traditional medicine, TFG is used to treat diabetes, dyslipidemia, obesity, arthritis, cancer, digestive disorders, and postmenopausal conditions. Pathophysiology of postmenopausal diseases involves low-grade systemic inflammation. The purpose of this study is to investigate the prophylactic effect of petroleum ether fraction of TFG-extract (PE-TFG) on inflammatory markers, and histopathological changes in ovariectomized rats (OVX-rats) fed with a high-fat diet (HFD). Experimental procedure: OVX female Sprague Dawley rats were used for the study. Three weeks after ovariectomy, rats were randomized in different groups and administered PE-TFG, atorvastatin, diosgenin, 17ß-estradiol for 12 weeks along with HFD. The sham-operated rats (S.OVX) were fed with a standard pellet diet. At the end of 12-weeks, rats were sacrificed, and blood samples were used to estimate lipid profile, glucose, hepatic markers, TNF-α, and leptin. Liver, kidney, and common carotid artery were isolated for testing oxidative stress markers, mRNA expression of adiponectin, PPAR-γ, and histopathological changes. Results: Administration of PE-TFG significantly decreased (P < 0.05) total cholesterol, LDL, hepatic markers, leptin, TNF-α and improved mRNA expression of adiponectin and PPAR-γ in HFD-fed OVX-rats. Further, micro and macro hepatic steatosis, inflammation, glomerular hypertrophy, degenerated tubules in kidney, increased tunica intima, and media thickness of common carotid artery and the pathological changes were not significant upon PE-TFG administration compared to S.OVX-rats. Conclusion: PE-TFG protects cellular inflammation and metabolic alternations in HFD-fed OVX-rats and thus can be explored further in postmenopausal diseases as a prophylactic agent.

14.
Saudi J Biol Sci ; 29(5): 3772-3790, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35844408

RESUMEN

Background: Setaria italica (common name- foxtail, kangni) is one of the major food crops which is prominently cultivated in southern regions of India and in certain regions of Uttar Pradesh. Besides the crop's consumption as a general source of carbohydrate rich cereal, the seeds of the crop are comprised of more fiber. So, it is recommended to add in the dietary supplementation of the diabetic people across the country. Objective: In this paper, it intends to investigate the antidiabetic activity and antioxidant activity of S. italica (foxtail millet) seeds in diabetic rats. Methods: The six genotypes of foxtail millets (S. italica) namely Kangni-1, Kangni-4, Kangni-5, Kangni-6, Kangni-7 & Kangni-10 respectively were subjected to in vitro investigations via. comprehensive metabolic panel (CMP) involving blood glucose study, Kidney & Liver function test, and antioxidant study (Catalase test; Glutathione S-transferase (GST); Superoxide Dismutase (SOD); glutathione (GSH); hiobarbituric acid reactive substances (TBARS) & Glutathione peroxidase (GPx) and were performed in vivo animal investigations in Wistar rats. The STZ induced diabetic rats were fed with doses of different S. italica seed aqueous extract to evaluate its anti-hyperglycemic activity by oral administration of SISAE. Further, it was compared with Glibenclamide which acts as one of the standard oral hypoglycemic agents. Results: From achieved outcomes, a significant fall of blood glucose level (70%) produced 300 mg SISAE/kg b.w. after 6 h of extract administration. However, no change could be produced by these doses of the SISAE in normal rats' blood glucose levels. A significant fall in glucose level along with significant glycemic control by lower HbA1c levels was observed in diabetic treated rats after 3 weeks of treatment with 300 mg of SISAE/kg b.w./day when comparing to untreated diabetic rats. Among these five genotypes of S. italica, the differences in the glycemic index were found. a significant fall could be found in blood glucose levels of Wistar rats, when every experimental rat was incorporating with the extract of different genotypes of Setaria italica L. Beauv than the rats treated with Glibenclamide in every 7 days of interval. The level of catalase, SOD, GST, GPx, GSH and TBARS showed variation while the rats were fed with the extract of S. italica in the liver test of rats. In kidney function test, the result shows that there is significant relationship between foxtail extract and kidney function of STZ induced diabetes rats. They show the change in their serum creatinine level, serum urea and serum uric acid. Conclusion: The result obtained from the study shows that the extract of S. italica seeds is capable for the hypolipidemic and antihyperglycemic activities, thereby, they serve as one of the good sources for herbal medicinal items.

15.
Saudi J Biol Sci ; 29(3): 1842-1852, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35280527

RESUMEN

The purpose of this work was to investigate the protective effect of five essential oils (EOs); Rosmarinus officinalis, Thymus vulgaris, Origanum compactum Benth., Eucalyptus globulus Labill. and Ocimum basilicum L.; against oxidative stress induced by hydrogen peroxide in Saccharomyces cerevisiae. The chemical composition of the EOs was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). The in vitro antioxidant activity was evaluated and the protective effect of EOs was investigated. Yeast cells were pretreated with different concentrations of EOs (6.25-25 µg/ml) for an hour then incubated with H2O2 (2 mM) for an additional hour. Cell viability, antioxidants (Catalase, Superoxide dismutase and Glutathione reductase) and metabolic (Succinate dehydrogenase) enzymes, as well as the level of lipid peroxidation (LPO) and protein carbonyl content (PCO) were evaluated. The chemical composition of EOs has shown the difference qualitatively and quantitatively. Indeed, O. compactum mainly contained Carvacrol, O. basilicum was mainly composed of Linalool, T. vulgaris was rich in thymol, R. officinalis had high α-Pinene amount and for E. globulus, eucalyptol was the major compound. The EOs of basil, oregano and thyme were found to possess the highest amount of total phenolic compounds. Moreover, they have shown the best protective effect on yeast cells against oxidative stress induced by H2O2. In addition, in a dose dependent manner of EOs in yeast medium, treated cells had lower levels of LPO, lower antioxidant and metabolic enzymes activity than cells exposed to H2O2 only. The cell viability was also improved. It seems that the studied EOs are efficient natural antioxidants, which can be exploited to protect against damages and serious diseases related to oxidative stress.

16.
Saudi J Biol Sci ; 28(5): 2877-2885, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34025165

RESUMEN

The role of natural antioxidants in preventing of age-relating diseases is evident. The vegetable industry generates a large amount of waste, which is a good source of antioxidants. The aim of the study was the investigation of the antioxidant effect of long-term consumption of ethanolic yellow onion husk extract in ageing laboratory rodents. Twenty male Wistar albino rats were divided randomly into two groups (n = 10): a control group and an experimental group that received ethanolic yellow onion husk extract (2 mL/rat diluted with distilled water; activity of 4.44 µmol-equiv. quercetin) for 188 days. Oxygen radical absorbance capacity and ferric reducing antioxidant power assays were used to determine the total antioxidant capacity of the extract, which amounted to 941.4 ± 32.7 µmol equiv. Trolox/g raw material and 167.4 ± 16.4 µmol-equiv. quercetin/g raw material, respectively. Oral intake of the onion husk extract affected the indicators of the antioxidant system of the liver and the brain but not of the blood and plasma, mainly due to elevations in the activity of catalase and superoxide dismutase in the liver by 44.4% and 79.1%, respectively, and in the brain by three-fold and 79.1%, respectively. The availability, cheapness and high antioxidant potential of onion waste qualifies it a good source of functional ingredients and bioactive substances applicable in the food and pharmaceutical industries.

17.
Biochem Biophys Rep ; 28: 101168, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34825068

RESUMEN

PURPOSE: This current study investigated the effect of metformin treatment on hepatic oxidative stress and inflammation associated with nonalcoholic fatty liver disease (NADLD) in high fat diet (HFD) fed rats. METHOD: Wistar rats were fed with a HFD or laboratory chow diet for 8 weeks. Metformin was administered orally at a dose of 200 mg/kg. Body weight, food and water intake were recorded on daily basis. Oral glucose tolerance test (OGTT), biochemical analysis and histological examinations were conducted on plasma and tissue samples. Antioxidant and anti-inflammatory mRNA expression was analyzed using reverse transcription polymeric chain reaction (RT-PCR). RESULTS: Metformin treatment for 8 weeks prevented HFD-induced weight gain and decreased fat deposition in HFD fed rats. Biochemical analysis revealed that metformin treatment significantly attenuated nitro-oxidative stress markers malondialdehyde (MDA), advanced protein oxidation product (APOP), and excessive nitric oxide (NO) levels in the liver of HFD fed rats. Gene expression analysis demonestrated that metformin treatment was associated with an enhanced expression of antioxidant genes such as Nrf-2, HO-1, SOD and catalase in liver of HFD fed rats. Metformin treatment also found to modulate the expression of fat metabolizing and anti-inflammatory genes including PPAR--γ, C/EBP-α, SREBP1c, FAS, AMPK and GLUT-4. Consistent with the biochemical and gene expression data, the histopathological examination unveiled that metformin treatment attenuated inflammatory cells infiltration, steatosis, hepatocyte necrosis, collagen deposition, and fibrosis in the liver of HFD fed rats. CONCLUSION: In conclusion, this study suggests that metformin might be effective in the prevention and treatment of HFD-induced steatosis by reducing hepatic oxidative stress and inflammation in the liver.

18.
JHEP Rep ; 3(3): 100253, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33898958

RESUMEN

BACKGROUND & AIMS: A weight-loss-independent beneficial effect of exercise on non-alcoholic fatty liver disease (NAFLD) management has been reported, but the underlying mechanism is unknown. To help determine this mechanism, the effects of exercise on individual tissues (liver, adipose tissue, and skeletal muscle) were retrospectively studied. METHODS: Data from Japanese obese men with NAFLD in a 3-month exercise regimen were analysed and compared with those in a 3-month dietary restriction program designed to achieve weight loss. The underlying mechanism was studied in a smaller subcohort. RESULTS: Independent of the effect of weight loss, the exercise regimen reduced liver steatosis by 9.5% and liver stiffness by 6.8% per 1% weight loss, and resulted in a 16.4% reduction in FibroScan-AST score. Improvements in these hepatic parameters were closely associated with anthropometric changes (reduction in adipose tissue and preservation of muscle mass), increases in muscle strength (+11.6%), reductions in inflammation and oxidative stress (ferritin: -22.3% and thiobarbituric acid: -12.3%), and changes in organokine concentrations (selenoprotein-P: -11.2%, follistatin: +17.1%, adiponectin: +8.9%, and myostatin: -21.6%) during the exercise regimen. Moreover, the expression of target genes of the transcription factor Nrf2, an oxidative stress sensor, was higher in monocytes, suggesting that Nrf2 is activated. Large amounts of high-intensity exercise were effective at further reducing liver steatosis and potentiating improvements in pathophysiological parameters (liver enzyme activities and organokine profiles). CONCLUSIONS: The weight-loss-independent benefits of exercise include anti-steatotic and anti-stiffness effects in the livers of patients with NAFLD. These benefits seem to be acquired through the modification of inter-organ crosstalk, which is characterised by improvements in organokine imbalance and reductions in inflammation and oxidative stress. LAY SUMMARY: We investigated the effects of exercise on non-alcoholic fatty liver disease (NAFLD) that were not related to weight loss. We found that exercise had considerable weight-loss-independent benefits for the liver through a number of mechanisms. This suggests that exercise is important for NAFLD patients, regardless of whether they lose weight.

19.
Toxicol Rep ; 8: 1803-1813, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34760624

RESUMEN

Earlier reports have shown that Cyclophosphamide (CYCP), an anti-malignant drug, elicited cytotoxicity; and that naringin has several beneficial potentials against oxidative stress and dyslipidaemias. We investigated the influence of naringin on free radical scavenging, cellular integrity, cellular ATP, antioxidants, oxidative stress, and lipid profiles in the CYCP-induced erythrocytotoxicity rat model. Rats were pretreated orally by gavage for fourteen consecutive days with three doses (50, 100, and 200 mg/kg) naringin before single CYCP (200 mg/kg, i.p.) administration. Afterwards, the rats were sacrificed. Naringin concentrations required for 50 % scavenging hydrogen peroxide and nitric oxide radical were 0.27 mg/mL and 0.28 mg/mL, respectively. Naringin pretreatment significantly (p < 0.05) protected erythrocytes plasma membrane architecture and integrity by abolishing CYCP-induced decrease in the activity of erythrocyte LDH (a marker of ATP). Pretreatment with naringin remarkably (p < 0.05) reversed CYCP-induced decreases in the erythrocytes glutathione levels, activities of glutathione-S-transferase, catalase, glutathione peroxidase, and glutathione reductase; attenuated CYCP-mediated increases in erythrocytes levels of malondialdehyde, nitric oxide, and major lipids (cholesterol, triacylglycerol, phospholipids, and non-esterified fatty acids). Taken together, different acute pretreatment doses of naringin might avert CYCP-mediated erythrocytes dysfunctions via its antioxidant, free-radical scavenging, and anti-dyslipidaemia properties.

20.
J Ginseng Res ; 45(3): 380-389, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34025131

RESUMEN

Metabolic syndrome (MS) refers to a clustering of at least three of the following medical conditions: high blood pressure, abdominal obesity, hyperglycemia, low high-density lipoprotein level, and high serum triglycerides. MS is related to a wide range of diseases which includes obesity, diabetes, insulin resistance, cardiovascular disease, dyslipidemia, or non-alcoholic fatty liver disease. There remains an ongoing need for improved treatment strategies for MS. The most important risk factors are dietary pattern, genetics, old age, lack of exercise, disrupted biology, medication usage, and excessive alcohol consumption, but pathophysiology of MS has not been completely identified. Korean Red Ginseng (KRG) refers to steamed/dried ginseng, traditionally associated with beneficial effects such as anti-inflammation, anti-fatigue, anti-obesity, anti-oxidant, and anti-cancer effects. KRG has been often used in traditional medicine to treat multiple metabolic conditions. This paper summarizes the effects of KRG in MS and related diseases such as obesity, cardiovascular disease, insulin resistance, diabetes, dyslipidemia, or non-alcoholic fatty liver disease based on experimental research and clinical studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA