Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.694
Filtrar
Más filtros

Intervalo de año de publicación
1.
Trends Biochem Sci ; 48(11): 963-977, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37652754

RESUMEN

Biomembranes are complex materials composed of lipids and proteins that compartmentalize biochemistry. They are actively remodeled in response to physical and metabolic cues, as well as during cell differentiation and stress. The concept of homeoviscous adaptation has become a textbook example of membrane responsiveness. Here, we discuss limitations and common misconceptions revolving around it. By highlighting key moments in the life cycle of a transmembrane protein, we illustrate that membrane thickness and a finely regulated membrane compressibility are crucial to facilitate proper membrane protein insertion, function, sorting, and inheritance. We propose that the unfolded protein response (UPR) provides a mechanism for endoplasmic reticulum (ER) membrane homeostasis by sensing aberrant transverse membrane stiffening and triggering adaptive responses that re-establish membrane compressibility.


Asunto(s)
Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico/fisiología , Homeostasis/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(42): e2306990120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37831741

RESUMEN

Hemispheric lateralization and its origins have been of great interest in neuroscience for over a century. The left-right asymmetry in cortical thickness may stem from differential maturation of the cerebral cortex in the two hemispheres. Here, we investigated the spatial pattern of hemispheric differences in cortical thinning during adolescence, and its relationship with the density of neurotransmitter receptors and homotopic functional connectivity. Using longitudinal data from IMAGEN study (N = 532), we found that many cortical regions in the frontal and temporal lobes thinned more in the right hemisphere than in the left. Conversely, several regions in the occipital and parietal lobes thinned less in the right (vs. left) hemisphere. We then revealed that regions thinning more in the right (vs. left) hemispheres had higher density of neurotransmitter receptors and transporters in the right (vs. left) side. Moreover, the hemispheric differences in cortical thinning were predicted by homotopic functional connectivity. Specifically, regions with stronger homotopic functional connectivity showed a more symmetrical rate of cortical thinning between the left and right hemispheres, compared with regions with weaker homotopic functional connectivity. Based on these findings, we suggest that the typical patterns of hemispheric differences in cortical thinning may reflect the intrinsic organization of the neurotransmitter systems and related patterns of homotopic functional connectivity.


Asunto(s)
Mapeo Encefálico , Adelgazamiento de la Corteza Cerebral , Adolescente , Humanos , Vías Nerviosas/fisiología , Imagen por Resonancia Magnética , Lateralidad Funcional/fisiología , Receptores de Neurotransmisores , Encéfalo/fisiología
3.
J Neurosci ; 44(22)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38548336

RESUMEN

Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique gaining more attention in neurodevelopmental disorders (NDDs). Due to the phenotypic heterogeneity of NDDs, tDCS is unlikely to be equally effective in all individuals. The present study aimed to establish neuroanatomical markers in typically developing (TD) individuals that may be used for the prediction of individual responses to tDCS. Fifty-seven male and female children received 2 mA anodal and sham tDCS, targeting the left dorsolateral prefrontal cortex (DLPFCleft), right inferior frontal gyrus, and bilateral temporoparietal junction. Response to tDCS was assessed based on task performance differences between anodal and sham tDCS in different neurocognitive tasks (N-back, flanker, Mooney faces detection, attentional emotional recognition task). Measures of cortical thickness (CT) and surface area (SA) were derived from 3 Tesla structural MRI scans. Associations between neuroanatomy and task performance were assessed using general linear models (GLM). Machine learning (ML) algorithms were employed to predict responses to tDCS. Vertex-wise estimates of SA were more closely linked to differences in task performance than measures of CT. Across ML algorithms, highest accuracies were observed for the prediction of N-back task performance differences following stimulation of the DLPFCleft, where 65% of behavioral variance was explained by variability in SA. Lower accuracies were observed for all other tasks and stimulated regions. This suggests that it may be possible to predict individual responses to tDCS for some behavioral measures and target regions. In the future, these models might be extended to predict treatment outcome in individuals with NDDs.


Asunto(s)
Imagen por Resonancia Magnética , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Estimulación Transcraneal de Corriente Directa/métodos , Femenino , Niño , Adolescente , Cognición/fisiología , Desempeño Psicomotor/fisiología
4.
Gastroenterology ; 166(2): 345-349, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38108671

RESUMEN

DESCRIPTION: Subepithelial lesions of the gastrointestinal tract are not encountered uncommonly during routine endoscopy. There has been remarkable progress in the development of endoscopic options for the resection of subepithelial lesions, including full-thickness resection. The purpose of this American Gastroenterological Association (AGA) Clinical Practice Update (CPU) is to describe the various techniques for endoscopic full-thickness resection and to facilitate their appropriate application in the management of subepithelial lesions. METHODS: This CPU was commissioned and approved by the AGA Institute Clinical Practice Updates Committee (CPUC) and the AGA Governing Board to provide timely guidance on a topic of high clinical importance to the AGA membership and underwent internal peer review by the CPUC and external peer review through standard procedures of Gastroenterology.


Asunto(s)
Resección Endoscópica de la Mucosa , Gastroenterología , Humanos , Tracto Gastrointestinal/cirugía , Resección Endoscópica de la Mucosa/efectos adversos , Resección Endoscópica de la Mucosa/métodos , Endoscopía Gastrointestinal/efectos adversos , Endoscopía Gastrointestinal/métodos
5.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39051658

RESUMEN

Behavioral addiction (BA) is a conceptually new addictive phenotype characterized by compulsive reward-seeking behaviors despite adverse consequences. Currently, its underlying neurogenetic mechanism remains unclear. Here, this study aimed to investigate the association between cortical thickness (CTh) and genetic phenotypes in BA. We conducted a systematic search in five databases and extracted gene expression data from the Allen Human Brain Atlas. Meta-analysis of 10 studies (343 addicted individuals and 355 controls) revealed that the BA group showed thinner CTh in the precuneus, postcentral gyrus, orbital-frontal cortex, and dorsolateral prefrontal cortex (P < 0.005). Meta-regression showed that the CTh in the precuneus and postcentral gyrus were negatively associated with the addiction severity (P < 0.0005). More importantly, the CTh phenotype of BA was spatially correlated with the expression of 12 genes (false discovery rate [FDR] < 0.05), and the dopamine D2 receptor had the highest correlation (rho = 0.55). Gene enrichment analysis further revealed that the 12 genes were involved in the biological processes of behavior regulation and response to stimulus (FDR < 0.05). In conclusion, our findings demonstrated the thinner CTh in cognitive control-related brain areas in BA, which could be associated with the expression of genes involving dopamine metabolism and behavior regulation.


Asunto(s)
Conducta Adictiva , Corteza Cerebral , Humanos , Conducta Adictiva/genética , Conducta Adictiva/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Masculino , Adulto , Femenino , Grosor de la Corteza Cerebral , Receptores de Dopamina D2/genética , Imagen por Resonancia Magnética
6.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39152673

RESUMEN

Blindness is associated with heightened sensory abilities, such as improved hearing and tactile acuity. Moreover, recent evidence suggests that blind individuals are better than sighted individuals at perceiving their own heartbeat, suggesting enhanced interoceptive accuracy. Structural changes in the occipital cortex have been hypothesized as the basis of these behavioral enhancements. Indeed, several studies have shown that congenitally blind individuals have increased cortical thickness within occipital areas compared to sighted individuals, but how these structural differences relate to behavioral enhancements is unclear. This study investigated the relationship between cardiac interoceptive accuracy and cortical thickness in 23 congenitally blind individuals and 23 matched sighted controls. Our results show a significant positive correlation between performance in a heartbeat counting task and cortical thickness only in the blind group, indicating a connection between structural changes in occipital areas and blind individuals' enhanced ability to perceive heartbeats.


Asunto(s)
Ceguera , Frecuencia Cardíaca , Lóbulo Occipital , Humanos , Masculino , Femenino , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Occipital/fisiología , Adulto , Frecuencia Cardíaca/fisiología , Ceguera/fisiopatología , Persona de Mediana Edad , Imagen por Resonancia Magnética , Adulto Joven , Interocepción/fisiología
7.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38102948

RESUMEN

The insula plays a significant role in the neural mechanisms of obsessive-compulsive disorder. Previous studies have identified functional and structural abnormalities in insula in obsessive-compulsive disorder patients. The predictive coding model in the context of interoception can explain the psychological and neuropathological manifestations observed in obsessive-compulsive disorder. The model is based on the degree of laminar differentiation of cerebral cortex. The interindividual differences in a local measure of brain structure often covary with interindividual differences in other brain regions. We investigated the anatomical network involving the insula in a drug-naïve obsessive-compulsive disorder sample. We recruited 58 obsessive-compulsive disorder patients and 84 matched health controls. The cortical thickness covariance maps between groups were compared at each vertex. We also evaluated the modulation of Yale-Brown Obsessive-Compulsive Scale scores and obsessive-compulsive disorder duration on thickness covariance. Our findings indicated that the thickness covariance seeded from granular and dysgranular insula are different compared with controls. The duration and severity of obsessive-compulsive disorder can modulate the thickness covariance of granular and dysgranular insula with posterior cingulate cortex and rostral anterior cingulate cortex. Our results revealed aberrant insular structural characteristics and cortical thickness covariance in obsessive-compulsive disorder patients, contributing to a better understanding of the involvement of insula in the pathological mechanisms underlying obsessive-compulsive disorder.


Asunto(s)
Imagen por Resonancia Magnética , Trastorno Obsesivo Compulsivo , Humanos , Imagen por Resonancia Magnética/métodos , Corteza Cerebral/patología , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Giro del Cíngulo , Encéfalo
8.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629797

RESUMEN

Apraxia localization has relied on voxel-based, lesion-symptom mapping studies in left hemisphere stroke patients. Studies on the neural substrates of different manifestations of apraxia in neurodegenerative disorders are scarce. The primary aim of this study was to look into the neural substrates of different manifestations of apraxia in a cohort of corticobasal syndrome patients (CBS) by use of cortical thickness. Twenty-six CBS patients were included in this cross-sectional study. The Goldenberg apraxia test (GAT) was applied. 3D-T1-weighted images were analyzed via the automated recon-all Freesurfer version 6.0 pipeline. Vertex-based multivariate General Linear Model analysis was applied to correlate GAT scores with cortical thickness. Deficits in imitation of meaningless gestures correlated with bilateral superior parietal atrophy, extending to the angular and supramarginal gyri, particularly on the left. Finger imitation relied predominantly on superior parietal lobes, whereas the left angular and supramarginal gyri, in addition to superior parietal lobes, were critical for hand imitation. The widespread bilateral clusters of atrophy in CBS related to apraxia indicate different pathophysiological mechanisms mediating praxis in neurodegenerative disorders compared to vascular lesions, with implications both for our understanding of praxis and for the rehabilitation approaches of patients with apraxia.


Asunto(s)
Apraxias , Degeneración Corticobasal , Enfermedades Neurodegenerativas , Humanos , Estudios Transversales , Apraxias/diagnóstico por imagen , Apraxias/etiología , Apraxias/patología , Imagen por Resonancia Magnética , Enfermedades Neurodegenerativas/complicaciones , Enfermedades Neurodegenerativas/diagnóstico por imagen , Atrofia , Conducta Imitativa/fisiología
9.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38271274

RESUMEN

Across mammalia, brain morphology follows specific scaling patterns. Bigger bodies have bigger brains, with surface area outpacing volume growth, resulting in increased foldedness. We have recently studied scaling rules of cortical thickness, both local and global, finding that the cortical thickness difference between thick gyri and thin sulci also increases with brain size and foldedness. Here, we investigate early brain development in humans, using subjects from the Developing Human Connectome Project, scanned shortly after pre-term or full-term birth, yielding magnetic resonance images of the brain from 29 to 43 postmenstrual weeks. While the global cortical thickness does not change significantly during this development period, its distribution does, with sulci thinning, while gyri thickening. By comparing our results with our recent work on humans and 11 non-human primate species, we also compare the trajectories of primate evolution with human development, noticing that the 2 trends are distinct for volume, surface area, cortical thickness, and gyrification index. Finally, we introduce the global shape index as a proxy for gyrification index; while correlating very strongly with gyrification index, it offers the advantage of being calculated only from local quantities without generating a convex hull or alpha surface.


Asunto(s)
Corteza Cerebral , Primates , Animales , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo , Cabeza
10.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39077916

RESUMEN

The lifetime effects of repetitive head impacts have captured considerable public and scientific interest over the past decade, yet a knowledge gap persists in our understanding of midlife neurological well-being, particularly in amateur level athletes. This study aimed to identify the effects of lifetime exposure to sports-related head impacts on brain morphology in retired, amateur athletes. This cross-sectional study comprised of 37 former amateur contact sports athletes and 21 age- and sex-matched noncontact athletes. High-resolution anatomical, T1 scans were analyzed for the cortical morphology, including cortical thickness, sulcal depth, and sulcal curvature, and cognitive function was assessed using the Dementia Rating Scale-2. Despite no group differences in cognitive functions, the contact group exhibited significant cortical thinning particularly in the bilateral frontotemporal regions and medial brain regions, such as the cingulate cortex and precuneus, compared to the noncontact group. Deepened sulcal depth and increased sulcal curvature across all four lobes of the brain were also notable in the contact group. These data suggest that brain morphology of middle-aged former amateur contact athletes differs from that of noncontact athletes and that lifetime exposure to repetitive head impacts may be associated with neuroanatomical changes.


Asunto(s)
Atletas , Corteza Cerebral , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/anatomía & histología , Estudios Transversales , Persona de Mediana Edad , Traumatismos en Atletas/patología , Traumatismos en Atletas/diagnóstico por imagen , Anciano , Conmoción Encefálica/patología , Conmoción Encefálica/diagnóstico por imagen , Cognición/fisiología
11.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38451300

RESUMEN

Although previous studies have reported the sex differences in behavior/cognition and the brain, the sex difference in the relationship between memory abilities and the underlying neural basis in the aging process remains unclear. In this study, we used a machine learning model to estimate the association between cortical thickness and verbal/visuospatial memory in females and males and then explored the sex difference of these associations based on a community-elderly cohort (n = 1153, age ranged from 50.42 to 86.67 years). We validated that females outperformed males in verbal memory, while males outperformed females in visuospatial memory. The key regions related to verbal memory in females include the medial temporal cortex, orbitofrontal cortex, and some regions around the insula. Further, those regions are more located in limbic, dorsal attention, and default-model networks, and are associated with face recognition and perception. The key regions related to visuospatial memory include the lateral prefrontal cortex, anterior cingulate gyrus, and some occipital regions. They overlapped more with dorsal attention, frontoparietal and visual networks, and were associated with object recognition. These findings imply the memory performance advantage of females and males might be related to the different memory processing tendencies and their associated network.


Asunto(s)
Reconocimiento Facial , Caracteres Sexuales , Anciano , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano de 80 o más Años , Encéfalo , Cognición , Citoplasma
12.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38679482

RESUMEN

Higher sensitivity to reward (SR) and weaker sensitivity to punishment (SP) construct the fundamental craving characteristics of methamphetamine abuse. However, few studies have appraised relationships between SR/SP (SR or SP) and cortical morphological alterations in methamphetamine abusers and whether hereditary factors take effects on SR/SP is unclear. Based on surface-based morphometric analysis, cortical discrepancy was investigated between 38 methamphetamine abusers and 37 healthy controls. Within methamphetamine abusers, correlation profiling was performed to discover associations among aberrant neuroimaging substrates, SR, SP, and craving. According to nine single nucleotide polymorphism sites of dopamine-related genes, we conducted univariate general linear model to find different effects of genotypes on cortical alterations and SR/SP/craving (SR, SP, or craving). Ultimately, mediation analyses were conducted among single nucleotide polymorphism sites, SR/SP/craving, and cortical morphological alterations to discover their association pathways. Compared to healthy controls, thinner cortices in inferior temporal gyrus, lateral orbitofrontal cortex, medial orbitofrontal cortex, inferior parietal lobule, and lateral occipital cortex in the left hemisphere were found in methamphetamine abusers (P < 0.05, family-wise error corrected). Cortical thickness in the inferior temporal gyrus was negatively correlated with SR scores. We found that rs1800497 A-containing genotypes had lower cortical thickness in the left inferior parietal lobule than the GG genotype. The rs5751876 had effects on SR scores. This study would provide convincing biomarkers for SR in methamphetamine abusers and offer potential genetic targets for personalizing relapse prevention.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Corteza Cerebral , Imagen por Resonancia Magnética , Metanfetamina , Polimorfismo de Nucleótido Simple , Recompensa , Humanos , Masculino , Adulto , Trastornos Relacionados con Anfetaminas/genética , Trastornos Relacionados con Anfetaminas/diagnóstico por imagen , Trastornos Relacionados con Anfetaminas/patología , Metanfetamina/efectos adversos , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Femenino , Adulto Joven , Síndrome de Abstinencia a Sustancias/genética , Síndrome de Abstinencia a Sustancias/patología , Síndrome de Abstinencia a Sustancias/psicología , Síndrome de Abstinencia a Sustancias/diagnóstico por imagen , Ansia/fisiología , Castigo
13.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38112602

RESUMEN

Systemic infiltration is a hallmark of diffuse midline glioma pathogenesis, which can trigger distant disturbances in cortical structure. However, the existence and effects of these changes have been underexamined. This study aimed to investigate whole-brain cortical myelin and thickness alternations induced by diffuse midline glioma. High-resolution T1- and T2-weighted images were acquired from 90 patients with diffuse midline glioma with H3 K27-altered and 64 patients with wild-type and 86 healthy controls. Cortical thickness and myelin content was calculated using Human Connectome Project pipeline. Significant differences in cortical thickness and myelin content were detected among groups. Short-term survival prediction model was constructed using automated machine learning. Compared with healthy controls, diffuse midline glioma with H3 K27-altered patients showed significantly reduced cortical myelin in bilateral precentral gyrus, postcentral gyrus, insular, parahippocampal gyrus, fusiform gyrus, and cingulate gyrus, whereas diffuse midline glioma with H3 K27 wild-type patients exhibited well-preserved myelin content. Furtherly, when comparing diffuse midline glioma with H3 K27-altered and diffuse midline glioma with H3 K27 wild-type, the decreased cortical thickness in parietal and occipital regions along with demyelination in medial orbitofrontal cortex was observed in diffuse midline glioma with H3 K27-altered. Notably, a combination of cortical features and tumor radiomics allowed short-term survival prediction with accuracy 0.80 and AUC 0.84. These findings may aid clinicians in tailoring therapeutic approaches based on cortical characteristics, potentially enhancing the efficacy of current and future treatment modalities.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Histonas/genética , Glioma/diagnóstico por imagen , Vaina de Mielina , Encéfalo/patología , Mutación
14.
Eur Heart J ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140328

RESUMEN

BACKGROUND AND AIMS: Although extreme cardiac adaptions mirroring phenotypes of cardiomyopathy have been observed in endurance athletes, adaptions to high levels of physical activity within the wider population are under-explored. Therefore, in this study, associations between device-measured physical activity and clinically relevant cardiac magnetic resonance volumetric indices were investigated. METHODS: Individuals without known cardiovascular disease or hypertension were included from the UK Biobank. Cardiac magnetic resonance data were collected between 2015 and 2019, and measures of end-diastolic chamber volume, left ventricular (LV) wall thickness, and LV ejection fraction were extracted. Moderate-to-vigorous-intensity physical activity (MVPA), vigorous-intensity physical activity (VPA), and total physical activity were assessed via wrist-worn accelerometers. RESULTS: A total of 5977 women (median age and MVPA: 62 years and 46.8 min/day, respectively) and 4134 men (64 years and 49.8 min/day, respectively) were included. Each additional 10 min/day of MVPA was associated with a 0.70 [95% confidence interval (CI): 0.62, 0.79] mL/m2 higher indexed LV end-diastolic volume (LVEDVi) in women and a 1.08 (95% CI: 0.95, 1.20) mL/m2 higher LVEDVi in men. However, even within the top decile of MVPA, LVEDVi values remained within the normal ranges [79.1 (95% CI: 78.3, 80.0) mL/m2 in women and 91.4 (95% CI: 90.1, 92.7) mL/m2 in men]. Associations with MVPA were also observed for the right ventricle and the left/right atria, with an inverse association observed for LV ejection fraction. Associations of MVPA with maximum or average LV wall thickness were not clinically meaningful. Results for total physical activity and VPA mirrored those for MVPA. CONCLUSIONS: High levels of device-measured physical activity were associated with cardiac remodelling within normal ranges.

15.
Nano Lett ; 24(28): 8664-8670, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38967611

RESUMEN

Stabilization of multiple polarization states at the atomic scale is pivotal for realizing high-density memory devices beyond prevailing bistable ferroelectric architectures. Here, we show that two-dimensional ferroelectric SnS or GeSe is able to revive and stabilize the ferroelectric order of three-dimensional ferroelectric BaTiO3, even when the latter is thinned to one unit cell in thickness. The underlying mechanism for overcoming the conventional detrimental critical thickness effect is attributed to facile interfacial inversion symmetry breaking by robust in-plane polarization of SnS or GeSe. Furthermore, when invoking interlayer sliding, we can stabilize multiple polarization states and achieve efficient interstate switching in the heterostructures, accompanied by dynamical ferroelectric skyrmionic excitations. When invoking sliding and twisting, the moiré domains exhibit nontrivial polar vortexes, which can be laterally displaced via different sliding schemes. These findings provide an intuitive avenue for simultaneously overcoming the standing critical thickness issue in bulk ferroelectrics and weak polarization issue in sliding ferroelectricity.

16.
Nano Lett ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240764

RESUMEN

Polymeric membranes with high permselective performance are desirable for energy-saving bioalcohol separations. However, it remains challenging to design membrane microstructures with low-resistance channels and a thin thickness for fast alcohol transport. Herein, we demonstrate highly crystalline covalent organic framework (COF) membranes with ordered nanochannels as tunable transport layers for efficient butanol/water separation. The thickness was well-regulated by altering the concentration and molar ratio of two aldehyde monomers with different reactivity. The surface-integrated poly(dimethylsiloxane) produced defect-free and hydrophobic COF membranes. The membrane with continuous transport channels exhibited an exceptional flux of up to 18.8 kg m-2 h-1 and a pervaporation separation index of 217.7 kg m-2 h-1 for separating 5 wt % n-butanol/water. The separation efficiency exceeded that of analogous membranes. The calculated mass-transfer coefficient of butanol followed an inverse relationship with the COF membrane thickness. Consequently, this work reveals the great potential of crystalline polymeric membranes with high-density nanopores for biofuel recovery.

17.
J Infect Dis ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743815

RESUMEN

BACKGROUND: The relationship of microbiota composition dynamics and the progression of subclinical atherosclerosis in people with HIV (PWH) remains unknown. METHODS: 96-week, prospective, longitudinal study in virologically-suppressed PWH. Carotid intima-media thickness (cIMT) measurements and stool samples were obtained at baseline, 48-week and 96-week visits. cIMT progression was defined as an increase >10% and/or detection of new carotid plaque. To profile the gut microbiome, amplification and sequencing of 16S ribosomal-RNA (V3-V4 variable regions) were carried out following the Illumina protocol. Sequencing was performed with MiSeq platform. RESULTS: 191, 190 and 167 patients had available fecal samples for microbiome analysis at the baseline, 48- and 96-week visits, respectively. 87 (43%) participants showed atherosclerosis progression, and 54 (26.7%) presented new carotid plaque. No significant differences were observed in adjusted α-diversity indices between groups defined by cIMT progression. Beta-diversity determined through principal coordinate analysis distances showed that the groups exhibited distinct microbial profiles (PERMANOVA p-value = 0.03). Longitudinal analysis with ANCOM-BC2 adjusted for traditional cardiovascular risk factors, MSM and nadir CD4 count revealed that cIMT progression was consistently associated with Agathobacter and Ruminococcus_2, while non-progression was consistently associated with Prevotella_7. CONCLUSION: Progression of atherosclerosis in PWH might be associated with distinctive signatures in the gut microbiota.

18.
J Neurosci ; 43(34): 6010-6020, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37369585

RESUMEN

Adult twin neuroimaging studies have revealed that cortical thickness (CT) and surface area (SA) are differentially influenced by genetic information, leading to their spatially distinct genetic patterning and topography. However, the postnatal origins of the genetic topography of CT and SA remain unclear, given the dramatic cortical development from neonates to adults. To fill this critical gap, this study unprecedentedly explored how genetic information differentially regulates the spatial topography of CT and SA in the neonatal brain by leveraging brain magnetic resonance (MR) images from 202 twin neonates with minimal influence by the complicated postnatal environmental factors. We capitalized on infant-dedicated computational tools and a data-driven spectral clustering method to parcellate the cerebral cortex into a set of distinct regions purely according to the genetic correlation of cortical vertices in terms of CT and SA, respectively, and accordingly created the first genetically informed cortical parcellation maps of neonatal brains. Both genetic parcellation maps exhibit bilaterally symmetric and hierarchical patterns, but distinct spatial layouts. For CT, regions with closer genetic relationships demonstrate an anterior-posterior (A-P) division, while for SA, regions with greater genetic proximity are typically within the same lobe. Certain genetically informed regions exhibit strong similarities between neonates and adults, with the most striking similarities in the medial surface in terms of SA, despite their overall substantial differences in genetic parcellation maps. These results greatly advance our understanding of the development of genetic influences on the spatial patterning of cortical morphology.SIGNIFICANCE STATEMENT Genetic influences on cortical thickness (CT) and surface area (SA) are complex and could evolve throughout the lifespan. However, studies revealing distinct genetic topography of CT and SA have been limited to adults. Using brain structural magnetic resonance (MR) images of twins, we unprecedentedly discovered the distinct genetically-informed parcellation maps of CT and SA in neonatal brains, respectively. Each genetic parcellation map comprises a distinct spatial layout of cortical regions, where vertices within the same region share high genetic correlation. These genetic parcellation maps of CT and SA of neonates largely differ from those of adults, despite their highly remarkable similarities in the medial cortex of SA. These discoveries provide important insights into the genetic organization of the early cerebral cortex development.


Asunto(s)
Encéfalo , Corteza Cerebral , Humanos , Adulto , Lactante , Recién Nacido , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Gemelos/genética , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Mapeo Encefálico
19.
Diabetologia ; 67(5): 928-939, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38431705

RESUMEN

AIMS/HYPOTHESIS: As the prevalence of insulin resistance and glucose intolerance is increasing throughout the world, diabetes-induced eye diseases are a global health burden. We aim to identify distinct optical bands which are closely related to insulin and glucose metabolism, using non-invasive, high-resolution spectral domain optical coherence tomography (SD-OCT) in a large, population-based dataset. METHODS: The LIFE-Adult-Study randomly selected 10,000 participants from the population registry of Leipzig, Germany. Cross-sectional, standardised phenotyping included the assessment of various metabolic risk markers and ocular imaging, such as SD-OCT-derived thicknesses of ten optical bands of the retina. Global and Early Treatment Diabetic Retinopathy Study (ETDRS) subfield-specific optical retinal layer thicknesses were investigated in 7384 healthy eyes of 7384 participants from the LIFE-Adult-Study stratified by normal glucose tolerance, prediabetes (impaired fasting glucose and/or impaired glucose tolerance and/or HbA1c 5.7-6.4% [39-47 mmol/mol]) and diabetes. The association of optical retinal band characteristics with different indices of glucose tolerance (e.g. fasting glucose, area under the glucose curve), insulin resistance (e.g. HOMA2-IR, triglyceride glucose index), or insulin sensitivity (e.g. estimated glucose disposal rate [eGDR], Stumvoll metabolic clearance rate) was determined using multivariable linear regression analyses for the individual markers adjusted for age, sex and refraction. Various sensitivity analyses were performed to validate the observed findings. RESULTS: In the study cohort, nine out of ten optical bands of the retina showed significant sex- and glucose tolerance-dependent differences in band thicknesses. Multivariable linear regression analyses revealed a significant, independent, and inverse association between markers of glucose intolerance and insulin resistance (e.g. HOMA2-IR) with the thickness of the optical bands representing the anatomical retinal outer nuclear layer (ONL, standardised ß=-0.096; p<0.001 for HOMA2-IR) and myoid zone (MZ; ß=-0.096; p<0.001 for HOMA2-IR) of the photoreceptors. Conversely, markers of insulin sensitivity (e.g. eGDR) positively and independently associated with ONL (ß=0.090; p<0.001 for eGDR) and MZ (ß=0.133; p<0.001 for eGDR) band thicknesses. These global associations were confirmed in ETDRS subfield-specific analyses. Sensitivity analyses further validated our findings when physical activity, neuroanatomical cell/tissue types and ETDRS subfield categories were investigated after stratifying the cohort by glucose homeostasis. CONCLUSIONS/INTERPRETATION: An impaired glucose homeostasis associates with a thinning of the optical bands of retinal ONL and photoreceptor MZ. Changes in ONL and MZ thicknesses might predict early metabolic retinal alterations in diabetes.


Asunto(s)
Retinopatía Diabética , Intolerancia a la Glucosa , Resistencia a la Insulina , Estado Prediabético , Adulto , Humanos , Estudios Transversales , Retina , Glucosa
20.
J Biol Chem ; 299(1): 102775, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493904

RESUMEN

Phosphatidylinositol (3,5)-bisphosphate [PtdIns(3,5)P2] is a critical signaling phospholipid involved in endolysosome homeostasis. It is synthesized by a protein complex composed of PIKfyve, Vac14, and Fig4. Defects in PtdIns(3,5)P2 synthesis underlie a number of human neurological disorders, including Charcot-Marie-Tooth disease, child onset progressive dystonia, and others. However, neuron-specific functions of PtdIns(3,5)P2 remain less understood. Here, we show that PtdIns(3,5)P2 pathway is required to maintain neurite thickness. Suppression of PIKfyve activities using either pharmacological inhibitors or RNA silencing resulted in decreased neurite thickness. We further find that the regulation of neurite thickness by PtdIns(3,5)P2 is mediated by NSG1/NEEP21, a neuron-specific endosomal protein. Knockdown of NSG1 expression also led to thinner neurites. mCherry-tagged NSG1 colocalized and interacted with proteins in the PtdIns(3,5)P2 machinery. Perturbation of PtdIns(3,5)P2 dynamics by overexpressing Fig4 or a PtdIns(3,5)P2-binding domain resulted in mislocalization of NSG1 to nonendosomal locations, and suppressing PtdIns(3,5)P2 synthesis resulted in an accumulation of NSG1 in EEA1-positive early endosomes. Importantly, overexpression of NSG1 rescued neurite thinning in PtdIns(3,5)P2-deficient CAD neurons and primary cortical neurons. Our study uncovered the role of PtdIns(3,5)P2 in the morphogenesis of neurons, which revealed a novel aspect of the pathogenesis of PtdIns(3,5)P2-related neuropathies. We also identified NSG1 as an important downstream protein of PtdIns(3,5)P2, which may provide a novel therapeutic target in neurological diseases.


Asunto(s)
Neuritas , Fosfatos de Fosfatidilinositol , Humanos , Endosomas/metabolismo , Neuritas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Fosfatos de Fosfatidilinositol/biosíntesis , Fosfatos de Fosfatidilinositol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA