Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Fish Biol ; 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36149358

RESUMEN

Fish trophic niches reflect important ecological interactions and provide insight into the structure of mangrove food webs. Few studies have been conducted in mangrove fish predators to investigate interpopulation trophic niches and ontogenetic shifts. Using stable isotope analysis and two complementary approaches, the authors investigated trophic niche patterns within and between two ontogenetic groups (juveniles and sub-adults) of a generalist predator (Acentrogobius viridipunctatus) in four mangroves with heterogeneous environmental conditions (e.g., tidal regimes, salinity fluctuations and mangrove tree community). The authors hypothesized that the trophic niche between populations would vary regionally and trophic position would increase consistently from juvenile to sub-adult stages. The results revealed that both δ13 C and δ15 N values varied greatly across populations and between ontogenetic groups, and complex spatio-ontogenetic variations were expressed by Layman's metrics. They also found some niche separation in space, which is most likely related to resource availability in spatially diverse ecosystems. In addition, trophic niche position increased consistently from juveniles to sub-adults, indicating ontogenetic feeding shifts. The isotopic plasticity index and Fulton's condition index also showed significant spatial-ontogenetic variation, which is consistent with optimal foraging theory. The findings highlight that trophic plasticity has a high adaptive value for mangrove fish predators in dynamic ecosystems.

2.
Oecologia ; 196(2): 441-453, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34009471

RESUMEN

As the environment is getting warmer and species are redistributed, consumers can be forced to adjust their interactions with available prey, and this could have cascading effects within food webs. To better understand the capacity for foraging flexibility, our study aimed to determine the diet variability of an ectotherm omnivore inhabiting kelp forests, the sea urchin Echinus esculentus, along its entire latitudinal distribution in the northeast Atlantic. Using a combination of gut content and stable isotope analyses, we determined the diet and trophic position of sea urchins at sites in Portugal (42° N), France (49° N), southern Norway (63° N), and northern Norway (70° N), and related these results to the local abundance and distribution of putative food items. With mean estimated trophic levels ranging from 2.4 to 4.6, omnivory and diet varied substantially within and between sites but not across latitudes. Diet composition generally reflected prey availability within epiphyte or understorey assemblages, with local affinities demonstrating that the sea urchin adjusts its foraging to match the small-scale distribution of food items. A net "preference" for epiphytic food sources was found in northern Norway, where understorey food was limited compared to other regions. We conclude that diet change may occur in response to food source redistribution at multiple spatial scales (microhabitats, sites, regions). Across these scales, the way that key consumers alter their foraging in response to food availability can have important implication for food web dynamics and ecosystem functions along current and future environmental gradients.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Conducta Alimentaria , Francia , Noruega , Erizos de Mar
3.
Environ Res ; 199: 111398, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34052247

RESUMEN

Aquatic pollution is known to reduce biodiversity and disrupt wildlife populations. Mercury (Hg) pollution is pervasive worldwide, contributing to the degradation of ecosystems, and causing deleterious effects to exposed organisms and populations. Batoids have a life history linked to the benthic substrate of coastal areas and occupy upper trophic levels. These combined with large bodies, long lifespan, and slow growth rates contributes to increased uptake and accumulation of Hg. However, mechanisms governing these associations are not well understood. Using multiple biogeochemical tracers (δ13C, δ15N and total Hg), we describe trophic interactions of three sympatric batoid species inhabiting an urbanized estuary and identify diet sources that contribute to Hg accumulation and trophic position among these mesopredators. We also use the Bat-ray (Myliobatis californica) as a model species, to compare diet composition, trophic position, and isotopic niche between two populations in two Californian bays. Trophic plasticity in M. californica was characterized by isotopic niche, diet proportions, and trophic position estimates using Bayesian statistics. We found diet and local contamination background strongly associated with Hg accumulation, and Hg levels that exceed EPA water quality criterion (<0.3 µg.g-1 w.w.) in all studied species.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Teorema de Bayes , Ecosistema , Monitoreo del Ambiente , Cadena Alimentaria , Mercurio/análisis , Isótopos de Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
4.
Oecologia ; 189(3): 733-744, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30697643

RESUMEN

Abiotic change can alter species interactions by modifying species' trophic roles, but this has not been well studied. Until now, bromeliad-dwelling tipulid larvae were thought to positively affect other macroinvertebrates via a facilitative processing chain. However, under drought, we found the opposite. We performed two microcosm experiments in which we factorially manipulated water level and predation by tipulids, and measured the effects on mosquito and chironomid larvae. The experiments differed in whether high water was contrasted with low or no water, allowing us to distinguish between the effects of desiccation stress (no water) and increased encounter rates due to compression of habitat or reductions in prey mobility (low and no water). We also included a caged tipulid treatment to measure any non-consumptive effects. As well as directly reducing prey survival, reductions in water level indirectly decreased chironomid and mosquito survival by altering the trophic role of tipulids. Our results suggest that increased encounter rates with prey led to tipulids becoming predatory under simulated drought, as tipulids consumed prey under both low and no water. When water level was high, tipulids exerted negative non-consumptive effects on prey survival. Because opportunistic predators are common throughout aquatic ecosystems, the effects of drought on the trophic roles of species may be widespread. Such restructuring of food webs should be considered when attempting to predict the ecological effects of environmental change.


Asunto(s)
Sequías , Ecosistema , Animales , Ecología , Cadena Alimentaria , Conducta Predatoria
5.
J Exp Biol ; 219(Pt 3): 354-63, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26847560

RESUMEN

Two phenotypes are present within the European eel population: broad-heads and narrow-heads. The expression of these phenotypes has been linked to several factors, such as diet and differential growth. The exact factors causing this dimorphism, however, are still unknown. In this study, we performed a feeding experiment on glass eels from the moment they start to feed. Eels were either fed a hard diet, which required biting and spinning behavior, or a soft diet, which required suction feeding. We found that the hard feeders develop a broader head and a larger adductor mandibulae region than eels that were fed a soft diet, implying that the hard feeders are capable of larger bite forces. Next to this, soft feeders develop a sharper and narrower head, which could reduce hydrodynamic drag, allowing more rapid strikes towards their prey. Both phenotypes were found in a control group, which were given a combination of both diets. These phenotypes were, however, not as extreme as the hard or the soft feeding group, indicating that some specimens are more likely to consume hard prey and others soft prey, but that they do not selectively eat one of both diets. In conclusion, we found that diet is a major factor influencing head shape in European eel and this ability to specialize in feeding on hard or soft prey could decrease intra-specific competition in European eel populations.


Asunto(s)
Anguilla/anatomía & histología , Anguilla/crecimiento & desarrollo , Dieta , Conducta Predatoria , Anguilla/fisiología , Animales , Cráneo/anatomía & histología , Cráneo/crecimiento & desarrollo , Cráneo/fisiología
6.
J Fish Biol ; 86(4): 1348-62, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25846858

RESUMEN

In this study, the feeding apparatus (gill rakers, GR) and the diet composition of European sardine Sardina pilchardus populations living in two contrasting environments were compared: the upwelling area off western Iberia and the comparatively less productive region of the north-western Mediterranean Sea. The importance of local adaptations in the trophic ecology of this species was estimated. Sardina pilchardus from the Atlantic Iberian coast and from the north-western Mediterranean Sea have clear differences in the feeding apparatus and diet compositions. Those from the Atlantic Iberian coast have significantly more GRs than S. pilchardus of the same size range in the Mediterranean Sea. While S. pilchardus from the Mediterranean Sea mostly depend on prey ranging between 750-1500 and 3000-4000 µm, corresponding mostly to cladocerans, decapods and copepods, those from the Atlantic depend on smaller prey (50-500 and 1000-1500 µm) that include phytoplankton and copepods, particularly during summer months, and S. pilchardus eggs during the winter. The marked difference between the trophic ecology of S. pilchardus in the two areas studied appears to have originated from different dietary strategies that the two populations have adopted in contrasting feeding environments. These differences are shown to profoundly affect the size and quality of prey consumed, and the effect of cannibalism on the populations.


Asunto(s)
Dieta/veterinaria , Peces/anatomía & histología , Peces/fisiología , Animales , Océano Atlántico , Ecosistema , Contenido Digestivo , Mar Mediterráneo , Conducta Predatoria , Estaciones del Año
7.
Ecol Evol ; 14(6): e11326, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38895579

RESUMEN

Feeding habits of herbivorous fishes play an important role in shaping the form and function of coastal marine ecosystems. Rabbitfishes (Siganidae) are important consumers of macroalgae on Indo-West Pacific coral reefs. However, it is unclear how their diet varies among and within species at biogeographical scales, casting doubt on their precise functional roles across different regions. The present study assessed the inter- and intra-specific diet variation of four rabbitfishes (Siganus trispilos, Siganus corallinus, Siganus virgatus and Siganus doliatus) factored by morphological relatedness among populations from Ningaloo Reef (western Australia), the Great Barrier Reef (GBR, eastern Australia) and the Yaeyama Islands (Okinawa Prefecture, Japan). Results showed that the region had a strong effect on diet, effectively reducing the expected effect of morphologic similitude. While intra-specific differences were only significant when populations inhabited different regions; interspecific differences were not as predicted, with different morphotypes having similar diets when populations inhabited the same regions. Rabbitfishes consumed more corticated and filamentous macroalgae on the GBR, more foliose and membranous macroalgae at the Yaeyama Islands, and more leathery macroalgae at Ningaloo Reef. The findings indicate that rabbitfishes have high diet plasticity, and hence their functional role as mediators of competition between macroalgae and corals can change across biogeographic regions. Local context is therefore important when assessing the diet and functional role of herbivorous fishes. As climate change unfolds, shifts in the distribution, trophic behaviour and function of species are expected, making the study of trophic plasticity more important.

8.
Mar Pollut Bull ; 206: 116715, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39024910

RESUMEN

The contribution of non-indigenous species to the transfer of contaminants in invaded food webs represents an active research area. Here we measured trace metals and CN stable isotopes in five populations of the invasive Atlantic blue crab Callinectes sapidus and in baseline bivalve species from Spain, Italy and Greece. They were used to estimate trophic transfer effects and the trophic position and isotopic niche of C. sapidus. Maximum trophic transfer effects occurred where the crab showed the largest isotopic niches and highest trophic positions; furthermore, the consistency of trace metal profiles between bivalves and crabs co-varied with the trophic position of the latters. Omnivory may influence the success of an invasive species, but also limit its effectiveness for biomonitoring. However, our results indicated that stable isotopes analysis provides a clarifying background where to cast patterns of contamination of the blue crab as well as of other omnivorous biomonitor species.


Asunto(s)
Braquiuros , Monitoreo del Ambiente , Especies Introducidas , Metales , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Cadena Alimentaria , España , Bivalvos , Italia , Mar Mediterráneo , Grecia
9.
Anat Rec (Hoboken) ; 306(10): 2597-2609, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36794994

RESUMEN

The fossil record of pinnipeds documents a suite of morphological changes that facilitate their ecological transition from a terrestrial to an aquatic lifestyle. Among these is the loss of the tribosphenic molar and the behavior typically associated with it in mammals: mastication. Instead, modern pinnipeds exhibit a broad range of feeding strategies that facilitate their distinct aquatic ecologies. Here, we examine the feeding morphology of two species of pinnipeds with disparate feeding ecologies: Zalophus californianus, a specialized raptorial biter, and Mirounga angustirostris, a suction specialist. Specifically, we test whether the morphology of the lower jaws facilitates trophic plasticity in feeding for either of these species. We used finite element analysis (FEA) to simulate the stresses during the opening and closing of the lower jaws in these species to explore the mechanical limits of their feeding ecology. Our simulations demonstrate that both jaws are highly resistant to the tensile stresses experienced during feeding. The lower jaws of Z. californianus experienced the maximum stress at the articular condyle and the base of the coronoid process. The lower jaws of M. angustirostris experienced the maximum stress at the angular process and were more evenly distributed throughout the body of the mandible. Surprisingly, the lower jaws of M. angustirostris were even more resistant to the stresses experienced during feeding than those of Z. californianus. Thus, we conclude that the superlative trophic plasticity of Z. californianus is driven by other factors unrelated to the mandible's tensile resistance to stress during feeding.


Asunto(s)
Caniformia , Leones Marinos , Phocidae , Animales , Maxilares , Mandíbula
10.
Ecol Evol ; 13(12): e10798, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38099138

RESUMEN

Back-to-back marine heatwaves in 2016 and 2017 resulted in severe coral bleaching and mortality across the Great Barrier Reef (GBR). Encouragingly, some corals that survived these events exhibit increased bleaching resistance and may represent thermally tolerant populations that can better cope with ocean warming. Using the GBR as a natural laboratory, we investigated whether a history of minimal (Heron Island) or severe (Lizard Island) coral bleaching in 2016 and 2017 equates to stress tolerance in a successive heatwave (2020). We examined the genetic diversity, physiological performance, and trophic plasticity of juvenile (<10 cm) and adult (>25 cm) corals of two common genera (Pocillopora and Stylophora). Despite enduring greater cumulative heat stress (6.3°C week-1 vs. 5.6°C week-1), corals that experienced the third marine heatwave in 5 years (Lizard) exhibited twice as high survival and visual bleaching thresholds compared to corals that had not experienced significant bleaching in >10 years (Heron). Surprisingly, only one shared host-Symbiodiniaceae association was uncovered between locations (Stylophora pistillata-Cladocopium "C8 group") and there was no genetic overlap in Pocillopora-Cladocopium partnerships, suggesting turnover in species composition from recent marine heatwaves. Corals within the species complex Pocillopora that survived the 2016 and 2017 marine heatwaves at Lizard Island were the most resilient, exhibiting three times greater calcification rates than conspecifics at Heron Island. Further, surviving corals (Lizard) had distinct isotopic niches, lower host carbon, and greater host protein, while conspecifics that had not experienced recent bleaching (Heron) had two times greater symbiont carbon content, suggesting divergent trophic strategies that influenced survival (i.e., greater reliance on heterotrophy vs. symbiont autotrophy, respectively). Ultimately, while corals may experience less bleaching and survive repeated thermal stress events, species-specific trade-offs do occur, leaving open many questions related to the long-term health and recovery of coral reef ecosystems in the face of intensifying marine heatwaves.

11.
Ecol Evol ; 12(12): e9572, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36523514

RESUMEN

Many traits including trophic niche parameters are attributed to species. However, generalist species may vary in trophic niches with environments, making species-based knowledge hard to extrapolate beyond local food webs. Here we tested trophic consistency in oribatid mite species (Acari), one of the most abundant arthropods that occupy all trophic levels in soil food webs. We used stable isotope analysis to compare trophic niches of 40 Oribatida species that co-occur in litter (OL) and soil (0-5 cm, mainly OF/H, AH) of five forest types (native European beech, non-native Douglas fir, range-expanding Norway spruce, two beech-conifer mixed forests). Although stable isotope signatures of bulk material differed between litter and soil, 13C and 15 N values of Oribatida species were remarkably stable irrespective of soil depth. Furthermore, Oribatida were more enriched in 13C in European beech than in coniferous forests, but forest type little affected 15 N values of Oribatida across a range of site conditions. We conclude that Oribatida species occupy virtually identical trophic niches (δ13C and δ15N values) irrespective of the soil depth they colonize and that forest management including non-native tree species little affects trophic position (δ15N values) of oribatid mites. Our findings suggest that the trophic position can be used as a trait in community analysis of Oribatida across forest ecosystems. Our results further indicate that trophic niches of generalist species can be highly consistent irrespective of environment.

12.
Biology (Basel) ; 11(5)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35625444

RESUMEN

The great pipefish Syngnathus acus is one of the most representative European syngnathids, being highly associated with seagrass and macroalgal beds. Surprisingly, the ecology of this large ovoviviparous marine fish has received scanty attention. The population inhabiting three sites on Cíes Archipelago (Atlantic Islands National Park, NW Spain) was monitored in 2017-2018 for spatial and temporal changes in abundances, reproduction traits, trophic niche occupancy, and dietary regimes across reproduction states, through an isotopic (δ13C and δ15N) approach. Abundances were highly variable across seasons and sites, decreasing significantly from mid-autumn. The population consisted almost exclusively of large adults that migrate by the end of the breeding season, which extended from mid-spring to summer. Operational sex ratios suggest that the species is sex-role reversed. S. acus is a secondary consumer (Trophic position = 3.36 ± 0.05), preferring amphipods but displaying annual and seasonal dietary plasticity. Mature fish were less selective than immatures (especially females), with a higher preference for amphipods (36-68%) in the former. The second most-preferred prey were carideans, copepods, or isopods, depending on the year and the reproduction state. Overall, the wider trophic niches in females and immature specimens compared to males and mature fish would indicate a higher variability in both the use of prey resources and/or their origin. The present study highlights the trophic plasticity and unique features of S. acus population in the Cíes Archipelago, especially regarding the outstanding size of the fish and the exceptional occurrence of breeders.

13.
Zoology (Jena) ; 139: 125754, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32088526

RESUMEN

Freshwater gammarids are known to colonise occasionally sinking-cave streams, providing contrasting morphological, life-history and ecophysiological adaptations compared to their surface conspecifics. In this study, a subterranean and a surface population of the species Gammarus balcanicus was surveyed for one year in a sinking-cave stream from the Western Carpathians (Romania). The results showed that the cave-dwelling population comprised individuals that were significantly larger compared to their surface conspecifics, had larger body-size at sexual maturity and that the females produced fewer, but larger eggs, compared to the population situated outside the cave. The trophic position and the omnivory were significantly higher for the cave-dwelling compared to surface population and the elemental imbalance for C:P molar ratios lower, but similar for C:N. However, the subterranean population did not present troglomorphic characters or longer lifespan as known for other cave-surface paired crustaceans. This, together with the rather extensive hydrological connection of the habitats, suggests active gene-flow between populations and similar response to seasonality for body-size distributions, indicating that the observed ecophysiological and life-history differences are rather the consequence of phenotypic plasticity than the result of genetic adaptation.


Asunto(s)
Anfípodos/fisiología , Cuevas , Ecosistema , Ríos , Anfípodos/crecimiento & desarrollo , Animales , Femenino , Masculino , Rumanía
14.
Mar Pollut Bull ; 90(1-2): 167-80, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25467873

RESUMEN

We examined trophic relationships in a newly established community 1.5 years after the Hebei Spirit oil spill on the west coast of Korea. Carbon and nitrogen stable isotope ratios in consumers and their potential food sources were compared between the oil-spill site and reference site, located 13.5 km from the oil-spill spot. The isotopic mixing model and a novel circular statistics rejected the influx of petrogenic carbon into the community and identified spatial consistencies such as the high contributions of microphytobenthos, food-chain length, and the isotopic niche of each feeding guild between sites. We suggested that high level of trophic plasticity and the prevalence of omnivory of consumers may promote the robustness of food web against the oil contamination. Furthermore, we highlighted the need of holistic approaches including different functional groups to quantify changes in the food web structure and assess the influence of different perturbations including oil spill.


Asunto(s)
Monitoreo del Ambiente , Cadena Alimentaria , Contaminación por Petróleo , Animales , Teorema de Bayes , Isótopos de Carbono/análisis , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , República de Corea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA