Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Pediatr Nephrol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225810

RESUMEN

We report a child with biallelic COQ6 variants presenting with familial thrombotic microangiopathy (TMA). A Chinese boy presented with steroid-resistant nephrotic syndrome at 8 months old and went into kidney failure requiring peritoneal dialysis at 15 months old. He presented with hypertensive encephalopathy with the triad of microangiopathic haemolytic anaemia, thrombocytopenia, and acute on chronic kidney injury at 25 months old following a viral illness. Kidney biopsy showed features of chronic TMA. He was managed with supportive therapy and plasma exchanges and maintained on eculizumab. However, he had another TMA relapse despite complement inhibition a year later. Eculizumab was withdrawn, and supportive therapies, including ubiquinol (50 mg/kg/day) and vitamins, were optimized. He remained relapse-free since then for 4 years. Of note, his elder sister succumbed to multiple organ failure with histological evidence of chronic TMA at the age of 4. Retrospective genetic analysis revealed the same compound heterozygous variants in the COQ6 gene.

2.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928470

RESUMEN

Coenzyme Q10 (CoQ10) plays a key role in many aspects of cellular metabolism. For CoQ10 to function normally, continual interconversion between its oxidised (ubiquinone) and reduced (ubiquinol) forms is required. Given the central importance of this ubiquinone-ubiquinol redox cycle, this article reviews what is currently known about this process and the implications for clinical practice. In mitochondria, ubiquinone is reduced to ubiquinol by Complex I or II, Complex III (the Q cycle) re-oxidises ubiquinol to ubiquinone, and extra-mitochondrial oxidoreductase enzymes participate in the ubiquinone-ubiquinol redox cycle. In clinical terms, the outcome of deficiencies in various components associated with the ubiquinone-ubiquinol redox cycle is reviewed, with a particular focus on the potential clinical benefits of CoQ10 and selenium co-supplementation.


Asunto(s)
Oxidación-Reducción , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/deficiencia , Humanos , Mitocondrias/metabolismo , Animales , Selenio/metabolismo , Ataxia , Debilidad Muscular , Enfermedades Mitocondriales
3.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38397087

RESUMEN

It is well known that in the heart and kidney mitochondria, more than 95% of ATP production is supported by the ß-oxidation of long-chain fatty acids. However, the ß-oxidation of fatty acids by mitochondria has been studied much less than the substrates formed during the catabolism of carbohydrates and amino acids. In the last few decades, several discoveries have been made that are directly related to fatty acid oxidation. In this review, we made an attempt to re-evaluate the ß-oxidation of long-chain fatty acids from the perspectives of new discoveries. The single set of electron transporters of the cardiac mitochondrial respiratory chain is organized into three supercomplexes. Two of them contain complex I, a dimer of complex III, and two dimers of complex IV. The third, smaller supercomplex contains a dimer of complex III and two dimers of complex IV. We also considered other important discoveries. First, the enzymes of the ß-oxidation of fatty acids are physically associated with the respirasome. Second, the ß-oxidation of fatty acids creates the highest level of QH2 and reverses the flow of electrons from QH2 through complex II, reducing fumarate to succinate. Third, ß-oxidation is greatly stimulated in the presence of succinate. We argue that the respirasome is uniquely adapted for the ß-oxidation of fatty acids. The acyl-CoA dehydrogenase complex reduces the membrane's pool of ubiquinone to QH2, which is instantly oxidized by the smaller supercomplex, generating a high energization of mitochondria and reversing the electron flow through complex II, which reverses the electron flow through complex I, increasing the NADH/NAD+ ratio in the matrix. The mitochondrial nicotinamide nucleotide transhydrogenase catalyzes a hydride (H-, a proton plus two electrons) transfer across the inner mitochondrial membrane, reducing the cytosolic pool of NADP(H), thus providing the heart with ATP for muscle contraction and energy and reducing equivalents for the housekeeping processes.


Asunto(s)
Complejo III de Transporte de Electrones , Ácidos Grasos , Ácidos Grasos/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Oxidación-Reducción , Mitocondrias Cardíacas/metabolismo , Membranas Mitocondriales/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Ácido Succínico/metabolismo , Succinatos/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Adenosina Trifosfato/metabolismo
4.
J Biol Chem ; 298(3): 101652, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35101444

RESUMEN

Mitochondrial dysfunction induces a strong adaptive retrograde signaling response; however, many of the downstream effectors of this response remain to be discovered. Here, we studied the shared transcriptional responses to three different mitochondrial respiratory chain inhibitors in human primary skin fibroblasts using QuantSeq 3'-RNA-sequencing. We found that genes involved in the mevalonate pathway were concurrently downregulated, irrespective of the respiratory chain complex affected. Targeted metabolomics demonstrated that impaired mitochondrial respiration at any of the three affected complexes also had functional consequences on the mevalonate pathway, reducing levels of cholesterol precursor metabolites. A deeper study of complex I inhibition showed a reduced activity of endoplasmic reticulum-bound sterol-sensing enzymes through impaired processing of the transcription factor Sterol Regulatory Element-Binding Protein 2 and accelerated degradation of the endoplasmic reticulum cholesterol-sensors squalene epoxidase and HMG-CoA reductase. These adaptations of mevalonate pathway activity affected neither total intracellular cholesterol levels nor the cellular free (nonesterified) cholesterol pool. Finally, measurement of intracellular cholesterol using the fluorescent cholesterol binding dye filipin revealed that complex I inhibition elevated cholesterol on intracellular compartments. Taken together, our study shows that mitochondrial respiratory chain dysfunction elevates intracellular free cholesterol levels and therefore attenuates the expression of mevalonate pathway enzymes, which lowers endogenous cholesterol biosynthesis, disrupting the metabolic output of the mevalonate pathway. We conclude that intracellular disturbances in cholesterol homeostasis may alter systemic cholesterol management in diseases associated with declining mitochondrial function.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón , Ácido Mevalónico , Mitocondrias , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Esteroles , Colesterol/metabolismo , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Ácido Mevalónico/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Transducción de Señal , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Esteroles/metabolismo
5.
Mol Biol Rep ; 50(4): 3525-3537, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36787055

RESUMEN

BACKGROUND: The metabolic and intracellular abnormalities in aging and diabetes cause loss of cardioprotection by routine interventions against myocardial ischemia/reperfusion (I/R) injury. We aimed to evaluate the possible interaction of aging and type-2 diabetes mellitus with cardioprotection and the potential protective effect of a mitochondrial cocktail (melatonin/nicotinamide mononucleotide (NMN)/ubiquinol) on myocardial I/R injury in aged diabetic rats. METHODS: Male Wistar rats (n = 108, 22-24 months old, 400-450 g) received high-fat diet/low dose of streptozotocin to induce type-2 diabetes, then were randomized into 9 groups of 12 rats each with/without I/R and/or melatonin, NMN, and ubiquinol, alone or in dual or triple combinations. Myocardial I/R was induced by LAD occlusion for 30 min followed by 24 h reperfusion. NMN (100 mg/kg/48 h, intraperitoneally) was administered for 28 days before I/R operation. Melatonin (10 mg/kg, intraperitoneally) and/or ubiquinol (30 mg/kg, intravenously) were administered at early reperfusion. Finally, hemodynamic index changes, infarct size, CK-MB levels, mitochondrial functional endpoints, and expression of mitochondrial biogenesis genes (SIRT-1/PGC-1α/NRF-2/TFAM) were assessed. RESULTS: The solo and dual applications of melatonin, NMN, and ubiquinol did not exert remarkable cardioprotective impacts. However, the triple combination improved myocardial function and decreased infarct size and CK-MB levels following myocardial I/R (P < .05 to P < .01). It also improved mitochondrial function and restored mitochondrial biogenesis genes (P < .01). CONCLUSIONS: Combination therapy with melatonin, NMN, and ubiquinol exerted significant cardioprotection and improved mitochondrial function and biogenesis via upregulation of SIRT-1/PGC-1α/NRF-2/TFAM profiles in aged diabetic rats and, thus, offers a promising strategy for providing noticeable cardioprotection against I/R injury also in aged diabetic patients.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Melatonina , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Ratas , Masculino , Animales , Melatonina/farmacología , Melatonina/uso terapéutico , Mononucleótido de Nicotinamida/farmacología , Mononucleótido de Nicotinamida/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratas Wistar , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Infarto/tratamiento farmacológico , Morbilidad , Isquemia
6.
Curr Cardiol Rep ; 25(12): 1759-1767, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37971634

RESUMEN

PURPOSE OF REVIEW: According to the World Health Organization (WHO), cardiovascular disease is the leading cause of death worldwide. Heart failure has been defined as a global pandemic leading to millions of deaths. Recent research clearly approved the beneficial effect of Coenzyme Q10 supplementation in treatment and prevention of cardiovascular disease in patients with heart failure in clinical trials but did not distinguish between the oxidised form CoQ10 and reduced form CoQH2 of Coenzyme Q10. The aim of this study is to determine differences in medical application of CoQ10 and CoQH2 supplementation and evaluate the efficacy of CoQ10 and CoQH2 supplementation to prevent cardiovascular disease in patients with heart failure. RECENT FINDINGS: A PubMed search for the terms "ubiquinone" and "ubiquinol" was conducted, and 28 clinical trials were included. Our findings go along with the biochemical description of CoQ10 and CoQH2, recording cardiovascular benefits for CoQ10 and antioxidative and anti-inflammatory properties for CoQH2. Our main outcomes are the following: (I) CoQ10 supplementation reduced cardiovascular death in patients with heart failure. This is not reported for CoQH2. (II) Test concentrations leading to cardiovascular benefits are much lower in CoQ10 studies than in CoQH2 studies. (III) Positive long-term effects reducing cardiovascular mortality are only observed in CoQ10 studies. Based on the existing literature, the authors recommend CoQ10 instead of CoQH2 to treat and prevent cardiovascular disease in patients with heart failure.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Humanos , Ubiquinona/farmacología , Ubiquinona/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Suplementos Dietéticos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/prevención & control
7.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982307

RESUMEN

Ubiquinone redox chemistry is of fundamental importance in biochemistry, notably in bioenergetics. The bi-electronic reduction of ubiquinone to ubiquinol has been widely studied, including by Fourier transform infrared (FTIR) difference spectroscopy, in several systems. In this paper, we have recorded static and time-resolved FTIR difference spectra reflecting light-induced ubiquinone reduction to ubiquinol in bacterial photosynthetic membranes and in detergent-isolated photosynthetic bacterial reaction centers. We found compelling evidence that in both systems under strong light illumination-and also in detergent-isolated reaction centers after two saturating flashes-a ubiquinone-ubiquinol charge-transfer quinhydrone complex, characterized by a characteristic band at ~1565 cm-1, can be formed. Quantum chemistry calculations confirmed that such a band is due to formation of a quinhydrone complex. We propose that the formation of such a complex takes place when Q and QH2 are forced, by spatial constraints, to share a common limited space as, for instance, in detergent micelles, or when an incoming quinone from the pool meets, in the channel for quinone/quinol exchange at the QB site, a quinol coming out. This latter situation can take place both in isolated and membrane bound reaction centers Possible consequences of the formation of this charge-transfer complex under physiological conditions are discussed.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética , Rhodobacter sphaeroides , Ubiquinona/metabolismo , Hidroquinonas , Detergentes , Espectrofotometría Infrarroja , Quinonas/metabolismo , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Rhodobacter sphaeroides/metabolismo , Transporte de Electrón
8.
J Clin Biochem Nutr ; 72(2): 101-106, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36936872

RESUMEN

Coenzyme Q10 (CoQ10) is an important lipid-soluble antioxidant and an essential component of the mitochondria. The oral bioavailability of the reduced form of CoQ10, ubiquinol-10, has been reported to be greater than that of the oxidized form of CoQ10, ubiquinone-10, in some studies. In contrast, it has also been highlighted that the oral bioavailability of ubiquinol-10 is not superior to that of ubiquinone-10 because ubiquinol-10 may be oxidized during digestion. In fact, it has not been shown which form of CoQ10 exists in the process from oral intake to absorption in the gastrointestinal tract. In this study, the amounts of ubiquinol-10 and ubiquinone-10 were measured in the gastrointestinal content and small intestine tissue after oral administration of ubiquinol-10 or ubiquinone-10 to C57BL/6J mice. The form of CoQ10 detected in the gastrointestinal content and small intestine tissue was almost the same as that when administered orally. The results of our study suggested that the orally administered ubiquinol-10 and ubiquinone-10 mostly reached the small intestine without oxidizing to ubiquinone-10 and reducing to ubiquinol-10, and both were absorbed by the small intestine tissue in almost their original forms.

9.
Cell Biochem Funct ; 40(2): 118-126, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35026863

RESUMEN

We recently proposed a diffusible reactive (oxygen) species (DRS/DROS) based function for cytochrome b complexes (CBC) and quinones (Q)/quinols (QH2 ) in the murburn model of bioenergetics. This proposal is in direct conflict with the classical purview of Q-cycle. Via extensive analyses of the structure-function correlations of membrane-quinones/quinols and proteins, we present qualitative and quantitative arguments to infer that the classical model cannot explain the energetics, kinetics, mechanism and probabilistic considerations. Therefore, it is proposed that Q-cycle is neither necessary nor feasible at CBCs. In contrast, we substantiate that the murburn model explains: (a) crucial structural data of CBCs, (b) why quinones/quinols are utilized in bioenergetic membranes, (c) how trans-membrane potential is generated owing to effective charge separation at CBCs, (d) mobility data of O2 , DRS, Q/QH2 , and (e) utility of other reaction/membrane components. Further, the murburn model also accommodates the absence of quinones in anaerobic Archaea, wherein methanophenazines are prevalent. The work mandates that the textbooks and research agendas are refreshed to reflect the new perception. SIGNIFICANCE: The current article must be seen as a critical and detailed analysis of the role and working mechanism of quinone (Q) /quinols (QH2 ) in bioenergetic membranes. In the classical model, QH2 are perceived as highly mobile electron-transport agents that bind and donate electrons to cytochrome b complexes (CBCs), using sophisticated electronic circuitries, in order to recycle Q and pump protons. The classical perception sees radicals (such as Q*-, O2 *-, etc., also called diffusible reactive species, DRS) as wasteful or toxic (patho) physiological manifestations. It is highlighted herein that QH2 has low mobility and matrix has little protons to pump. New insights from the structural analyses of diverse CBCs and quinols, in conjunction with murburn reaction thermodynamics suggest that the electrons from substrates/quinols are effectively utilized via DRS. This perception fits into a much broader analysis of 1 and 2 electron transfers in overall redox metabolism, as recently brought out by the murburn model, wherein DRS are considered obligatory ingredients of physiology. Thus, the findings mandate a reorientation in the pertinent research field.


Asunto(s)
Citocromos b , Hidroquinonas , Respiración de la Célula , Metabolismo Energético , Cinética , Oxidación-Reducción
10.
Brain ; 143(11): 3352-3373, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-33141179

RESUMEN

Parkinson's disease is a neurodegenerative disorder with a multifactorial aetiology. Nevertheless, the genetic predisposition in many families with multi-incidence disease remains unknown. This study aimed to identify novel genes that cause familial Parkinson's disease. Whole exome sequencing was performed in three affected members of the index family with a late-onset autosomal-dominant parkinsonism and polyneuropathy. We identified a novel heterozygous substitution c.941A>C (p.Tyr314Ser) in the mitochondrial ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) gene, which co-segregates with disease within the family. Additional analysis of 699 unrelated Parkinson's disease probands with autosomal-dominant Parkinson's disease and 1934 patients with sporadic Parkinson's disease revealed another two variants in UQCRC1 in the probands with familial Parkinson's disease, c.931A>C (p.Ile311Leu) and an allele with concomitant splicing mutation (c.70-1G>A) and a frameshift insertion (c.73_74insG, p.Ala25Glyfs*27). All substitutions were absent in 1077 controls and the Taiwan Biobank exome database from healthy participants (n = 1517 exomes). We then assayed the pathogenicity of the identified rare variants using CRISPR/Cas9-based knock-in human dopaminergic SH-SY5Y cell lines, Drosophila and mouse models. Mutant UQCRC1 expression leads to neurite degeneration and mitochondrial respiratory chain dysfunction in SH-SY5Y cells. UQCRC1 p.Tyr314Ser knock-in Drosophila and mouse models exhibit age-dependent locomotor defects, dopaminergic neuronal loss, peripheral neuropathy, impaired respiratory chain complex III activity and aberrant mitochondrial ultrastructures in nigral neurons. Furthermore, intraperitoneal injection of levodopa could significantly improve the motor dysfunction in UQCRC1 p.Tyr314Ser mutant knock-in mice. Taken together, our in vitro and in vivo studies support the functional pathogenicity of rare UQCRC1 variants in familial parkinsonism. Our findings expand an additional link of mitochondrial complex III dysfunction in Parkinson's disease.


Asunto(s)
Mitocondrias/genética , Trastornos Parkinsonianos/genética , Polineuropatías/genética , Edad de Inicio , Anciano , Animales , Antiparkinsonianos/uso terapéutico , Línea Celular , Aberraciones Cromosómicas , Drosophila , Complejo III de Transporte de Electrones/genética , Femenino , Mutación del Sistema de Lectura , Técnicas de Sustitución del Gen , Genes Dominantes , Humanos , Levodopa/uso terapéutico , Masculino , Ratones , Persona de Mediana Edad , Mutación/genética , Trastornos Parkinsonianos/complicaciones , Trastornos Parkinsonianos/tratamiento farmacológico , Linaje , Polineuropatías/etiología , Secuenciación del Exoma
11.
Pathol Int ; 71(5): 304-315, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33751738

RESUMEN

In this review, the author shows that simultaneous multiple disorders caused by reactivation of Epstein-Barr virus can lead to salivary gland disorders as part of Sjogren's syndrome (SS). Therefore, clinicians must differentiate SS from other diseases when diagnosing and treating salivary gland disorders. In particular, the author explains how microbial infection in SS overcomes immunological tolerance, leading to pathological changes, and how cytokine overexpression and endocrine disrupters contribute to glandular tissue injury. Also, the author suggests that involvement of reactive oxygen species is a common pathogenesis of salivary gland disorders and SS, so regulation of oxidative stress is an effective treatment for both. The results of clinical studies on restoring salivary gland function and regenerating salivary glands with tissue stem cells may provide clues on elucidating the cause of SS.


Asunto(s)
Glándulas Salivales , Síndrome de Sjögren , Antioxidantes/farmacología , Artritis Reumatoide/complicaciones , Autoantígenos , Enfermedades Autoinmunes/complicaciones , Enfermedades Autoinmunes/inmunología , Citocinas/metabolismo , Diagnóstico Diferencial , Dioxinas/metabolismo , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/patología , Estrógenos/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Herpesvirus Humano 4/patogenicidad , Humanos , Interleucina-10/metabolismo , Linfocitos/inmunología , Masculino , Enfermedad de Mikulicz/diagnóstico , Enfermedad de Mikulicz/patología , Estrés Oxidativo/inmunología , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Glándulas Salivales/metabolismo , Glándulas Salivales/patología , Glándulas Salivales/virología , Síndrome de Sjögren/diagnóstico , Síndrome de Sjögren/genética , Síndrome de Sjögren/patología , Síndrome de Sjögren/terapia , Trasplante de Células Madre , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Activación Viral , Virosis/complicaciones , Virosis/patología
12.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008564

RESUMEN

Coenzyme Q (CoQ) is a key component of the respiratory chain of all eukaryotic cells. Its function is closely related to mitochondrial respiration, where it acts as an electron transporter. However, the cellular functions of coenzyme Q are multiple: it is present in all cell membranes, limiting the toxic effect of free radicals, it is a component of LDL, it is involved in the aging process, and its deficiency is linked to several diseases. Recently, it has been proposed that coenzyme Q contributes to suppressing ferroptosis, a type of iron-dependent programmed cell death characterized by lipid peroxidation. In this review, we report the latest hypotheses and theories analyzing the multiple functions of coenzyme Q. The complete knowledge of the various cellular CoQ functions is essential to provide a rational basis for its possible therapeutic use, not only in diseases characterized by primary CoQ deficiency, but also in large number of diseases in which its secondary deficiency has been found.


Asunto(s)
Ataxia/metabolismo , Enfermedades Mitocondriales/metabolismo , Debilidad Muscular/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Animales , Membrana Celular/metabolismo , Respiración de la Célula/fisiología , Humanos , Peroxidación de Lípido/fisiología , Mitocondrias/metabolismo , Ubiquinona/metabolismo
13.
J Biol Chem ; 294(45): 16663-16671, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31537648

RESUMEN

Assembly of the mitochondrial respiratory chain requires the coordinated synthesis of mitochondrial and nuclear encoded subunits, redox co-factor acquisition, and correct joining of the subunits to form functional complexes. The conserved Cbp3-Cbp6 chaperone complex binds newly synthesized cytochrome b and supports the ordered acquisition of the heme co-factors. Moreover, it functions as a translational activator by interacting with the mitoribosome. Cbp3 consists of two distinct domains: an N-terminal domain present in mitochondrial Cbp3 homologs and a highly conserved C-terminal domain comprising a ubiquinol-cytochrome c chaperone region. Here, we solved the crystal structure of this C-terminal domain from a bacterial homolog at 1.4 Å resolution, revealing a unique all-helical fold. This structure allowed mapping of the interaction sites of yeast Cbp3 with Cbp6 and cytochrome b via site-specific photo-cross-linking. We propose that mitochondrial Cbp3 homologs carry an N-terminal extension that positions the conserved C-terminal domain at the ribosomal tunnel exit for an efficient interaction with its substrate, the newly synthesized cytochrome b protein.


Asunto(s)
Citocromos b/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Brucella abortus/metabolismo , Cristalografía por Rayos X , Citocromos b/química , Citocromos b/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
14.
Annu Rev Pharmacol Toxicol ; 57: 535-565, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-27860548

RESUMEN

Mitochondria have emerged as key participants in and regulators of myocardial injury during ischemia and reperfusion. This review examines the sites of damage to cardiac mitochondria during ischemia and focuses on the impact of these defects. The concept that mitochondrial damage during ischemia leads to cardiac injury during reperfusion is addressed. The mechanisms that translate ischemic mitochondrial injury into cellular damage, during both ischemia and early reperfusion, are examined. Next, we discuss strategies that modulate and counteract these mechanisms of mitochondrial-driven injury. The new concept that mitochondria are not merely stochastic sites of oxidative and calcium-mediated injury but that they activate cellular responses of mitochondrial remodeling and cellular reactions that modulate the balance between cell death and recovery is reviewed, and the therapeutic implications of this concept are discussed.


Asunto(s)
Fármacos Cardiovasculares/uso terapéutico , Precondicionamiento Isquémico Miocárdico/métodos , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Animales , Fármacos Cardiovasculares/farmacología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/fisiología , Humanos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología
15.
Biochem Biophys Res Commun ; 523(4): 966-971, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31964528

RESUMEN

Ferroptosis is a multi-step regulated cell death that is characterized by excessive iron accumulation and lipid peroxidation. Cancer cells can acquire resistance to ferroptosis by the upregulation of anti-ferroptotic proteins or by the downregulation of pro-ferroptotic proteins. Apoptosis-inducing factor mitochondria-associated 2 (AIFM2, also known as FSP1 or PRG3) has been recently demonstrated as an endogenous ferroptosis suppressor, but its mechanism remains obscure. Here, we show that AIFM2 blocks erastin-, sorafenib-, and RSL3-induced ferroptotic cancer cell death through a mechanism independent of ubiquinol, the reduced and active antioxidant form of coenzyme Q10. In contrast, AIFM2-dependent endosomal sorting complexes required for transport (ESCRT)-III recruitment in the plasma membrane is responsible for ferroptosis resistance through the activation of a membrane repair mechanism that regulates membrane budding and fission. Importantly, the genetic inhibition of the AIFM2-dependent ESCRT-III pathway increases the anticancer activity of sorafenib in a xenograft tumor mouse model. These findings shed new light on the mechanism involved in ferroptosis resistance during tumor therapy.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Ferroptosis , Proteínas Mitocondriales/metabolismo , Ubiquinona/análogos & derivados , Animales , Antioxidantes/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Ratones Desnudos , Ubiquinona/metabolismo
16.
Biochem Biophys Res Commun ; 529(4): 904-909, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32819597

RESUMEN

Ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) plays a key role in influencing mitochondrial function. Increasing evidence supports that UQCRC1 overexpression takes part in cardioprotection. However, it remains unclear about the signaling pathway mediating the protective role of UQCRC1 overexpression. Thus, the current study aimed to investigate the signaling pathway. Inhibition of PI3K completely abolished the protective effects of UQCRC1 overexpression on cell viability and mitochondrial membrane potential after OGD or hydrogen peroxide injury in H9c2 cardiac cells, while inhibition of ERK only partially abolished these effects. Moreover, UQCRC1 overexpression dramatically increased the phosphorylation of PI3K downstream signal molecules including Akt and GSK-3ß. Finally, UQCRC1 overexpression upregulated the expression of antiapoptotic protein Bcl-2, downregulated the expression of proapoptotic protein Bax, decreased active caspase 3 expression and cell apoptosis, which were completely abolished by inhibition of PI3K. In conclusion, UQCRC1 overexpression protects H9c2 cardiac cells against mimic ischemia/reperfusion injury through mediating PI3K/Akt/GSK-3ß pathway to regulate apoptosis-related proteins.


Asunto(s)
Complejo III de Transporte de Electrones/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Miocitos Cardíacos/metabolismo , Oxígeno/farmacología , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular , Cromonas/farmacología , Complejo III de Transporte de Electrones/metabolismo , Embrión de Mamíferos , Regulación de la Expresión Génica , Glucosa/deficiencia , Glucosa/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Peróxido de Hidrógeno/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Modelos Biológicos , Morfolinas/farmacología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Transducción de Señal , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
17.
J Intensive Care Med ; 35(8): 797-804, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30021499

RESUMEN

Ubiquinol is a fundamental component of cellular metabolism. Low ubiquinol levels have been associated with mortality. This was a substudy of a randomized trial in patients undergoing coronary artery bypass grafting. We drew blood before and after surgery. Ubiquinol or placebo was added to peripheral blood mononuclear cells for oxygen consumption (OCR) measurements. In vivo ubiquinol levels were lower postsurgery compared to presurgery (0.16 µmol/L [quartiles: 0.02-0.39], P = .01), although the difference disappeared when adjusting for hemoglobin levels (P = .30). There was no difference in presurgical basal (1.0 mL/min/mg [95% confidence interval [CI]: -0.9 to 2.2], P = .08) and maximal (0.5 mL/min/mg [95% CI: -4.3 to 7.3], P = .56) OCR in cells receiving ubiquinol or placebo. There was a difference in postsurgical basal (1.1 mL/min/mg [95% CI: 0.9-1.6], P < .001) and maximal (4.2 mL/min/mg [95% CI: 0.3-7.0], P = .01) OCR between the groups. We found no association between ubiquinol and OCR levels (all P > .05).


Asunto(s)
Puente de Arteria Coronaria , Leucocitos Mononucleares/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Ubiquinona/análogos & derivados , Anciano , Método Doble Ciego , Femenino , Humanos , Masculino , Periodo Posoperatorio , Periodo Preoperatorio , Ensayos Clínicos Controlados Aleatorios como Asunto , Ubiquinona/administración & dosificación , Ubiquinona/sangre
18.
Bioorg Chem ; 105: 104329, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33068813

RESUMEN

CoQ10 and Vitamin E are used in medicinal applications, but they are both lipophilic molecules and the poor solubility in aqueous media results in an inefficient administration, poor bioavailability and potential toxicity. A mixed conjugate Ubiquinol-Polyethylene glycol-Vitamin E was synthesized and characterized to improve the bioavailability of CoQ10 and Vitamin E. The synthesized mixed PEG conjugate was characterized by 1H NMR spectroscopy and MALDI spectrometry. The in vitro release of the conjugate was measured at various pH conditions and in human plasma and the evaluation of free CoQ10 and Vitamin E were also conducted. The obtained results demonstrated that more CoQ10 and Vitamin E were released from PEG conjugate at pH 7.4 and in plasma within the 24 h. The antioxidant activity evaluation was carried out by DPPH assay. Our results indicated that the chemical modification after esterification with PEG of the two drugs Ubiquinol and Vitamin E doesn't significantly affected their antioxidant potential.


Asunto(s)
Antioxidantes/química , Portadores de Fármacos/química , Polietilenglicoles/química , Ubiquinona/análogos & derivados , Vitamina E/química , Antioxidantes/farmacología , Disponibilidad Biológica , Composición de Medicamentos , Liberación de Fármacos , Quimioterapia Combinada , Humanos , Solubilidad , Ácido Succínico/química , Ubiquinona/química , Ubiquinona/farmacocinética , Vitamina E/farmacocinética
19.
Cell Mol Life Sci ; 76(7): 1381-1396, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30666338

RESUMEN

Ubiquinol cytochrome c reductase core protein I (UQCRC1) is a component of the complex III in the respiratory chain. Its biological functions are unknown. Here, we showed that knockout of UQCRC1 led to embryonic lethality. Disrupting one UQCRC1 allele in mice (heterozygous mice) of both sexes did not affect their growth but reduced UQCRC1 mRNA and protein in the brain. These mice had decreased complex III formation, complex III activity and ATP content in the brain at baseline. They developed worsened neurological outcome after brain ischemia/hypoxia or focal brain ischemia compared with wild-type mice. The ischemic cerebral cortex of the heterozygous mice had decreased mitochondrial membrane potential and ATP content as well as increased free radicals. Also, the heterozygous mice performed poorly in the Barnes maze and novel object recognition tests. Finally, UQCRC1 was expressed abundantly in neurons and astrocytes. These results suggest a critical role of UQCRC1 in embryo survival. UQCRC1 may also be important by forming the complex III to maintain normal brain ischemic tolerance, learning and memory.


Asunto(s)
Isquemia Encefálica/patología , Cognición/fisiología , Complejo III de Transporte de Electrones/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Astrocitos/metabolismo , Isquemia Encefálica/metabolismo , Resistencia a la Enfermedad , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Complejo III de Transporte de Electrones/genética , Embrión de Mamíferos/metabolismo , Femenino , Masculino , Aprendizaje por Laberinto , Potencial de la Membrana Mitocondrial , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
20.
Molecules ; 25(3)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012733

RESUMEN

The aim of this study was to develop a prodrug of ubiquinol-10 (UqH-10), the active form of ubiquinone-10 (Uq-10), for oral delivery. Bioavailability of UqH-10 is hampered by its high susceptibility to oxidation and water-insolubility. We prepared three novel N,N-dimethylglycine ester derivatives of UqH-10, including a 1-monoester (UqH-1-DMG), 4-monoester (UqH-4-DMG), and 1,4-bis-ester (UqH-DMG), and assessed their physicochemical properties in vitro and in vivo. UqH-DMG spontaneously formed an aqueous micelle solution comprising 20 nm particles at 36.5 °C. Cationic UqH-DMG formed nano-sized (5 nm) mixed-micelles with taurocholic acid. Reconversion of the derivatives to UqH-10 was accelerated in human liver microsomes. The oral bioavailability of UqH-10 after administration of UqH-derivatives or Uq-10 was determined in fasted and postprandial rats secreting normal and high levels of bile, respectively. In fasted rats, plasma UqH-10 after UqH-derivatives administration reached Cmax at 2-3 h and after Uq-10 administration, it remained low. The AUC0-24h of UqH-10 after UqH-derivatives administration was 2-3-fold higher than that after Uq-10 administration. In postprandial rats, the Tmax of UqH-10 after UqH-derivatives administration was an hour earlier than after Uq-10 administration. In conclusion, cationic UqH-derivatives are convenient prodrugs that enhance UqH-10 bioavailability by forming nanosized mixed-micelles with intestinal bile acids.


Asunto(s)
Aniones/química , Ácidos y Sales Biliares/química , Cationes/química , Absorción Intestinal/efectos de los fármacos , Micelas , Profármacos/administración & dosificación , Ubiquinona/administración & dosificación , Administración Oral , Animales , Aniones/metabolismo , Ácidos y Sales Biliares/metabolismo , Disponibilidad Biológica , Transporte Biológico , Masculino , Nanopartículas , Oxidación-Reducción , Profármacos/química , Profármacos/metabolismo , Ratas , Ratas Sprague-Dawley , Ubiquinona/química , Ubiquinona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA