Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Bacteriol ; 205(3): e0047622, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36840595

RESUMEN

Antibiotic tolerance, the ability of bacteria to sustain viability in the presence of typically bactericidal antibiotics for extended time periods, is an understudied contributor to treatment failure. The Gram-negative pathogen Vibrio cholerae, the causative agent of cholera, becomes highly tolerant to ß-lactam antibiotics (penicillin and related compounds) in a process requiring the two-component system VxrAB. VxrAB is induced by exposure to cell wall damaging conditions, which results in the differential regulation of >100 genes. While the effectors of VxrAB are relatively well known, VxrAB environment-sensing and activation mechanisms remain a mystery. Here, we used transposon mutagenesis to screen for mutants that spontaneously upregulate VxrAB signaling. This screen was answered by genes known to be required for proper cell envelope homeostasis, validating the approach. Unexpectedly, we also uncovered a new connection between central carbon metabolism and antibiotic tolerance in Vibrio cholerae. Inactivation of pgi (vc0374, coding for glucose-6-phosphate isomerase) resulted in an intracellular accumulation of glucose-6-phosphate and fructose-6-phosphate, concomitant with a marked cell envelope defect, resulting in VxrAB induction. Deletion of pgi also increased sensitivity to ß-lactams and conferred a growth defect on salt-free LB, phenotypes that could be suppressed by deleting sugar uptake systems and by supplementing cell wall precursors in the growth medium. Our data suggest an important connection between central metabolism and cell envelope integrity and highlight a potential new target for developing novel antimicrobial agents. IMPORTANCE Antibiotic tolerance (the ability to survive exposure to antibiotics) is a stepping stone toward antibiotic resistance (the ability to grow in the presence of antibiotics), an increasingly common cause of antibiotic treatment failure. The mechanisms promoting tolerance are poorly understood. Here, we identified central carbon metabolism as a key contributor to antibiotic tolerance and resistance. A strain with a mutation in a sugar utilization pathway accumulates metabolites that likely shut down the synthesis of cell wall precursors, which weakens the cell wall and thus increases susceptibility to cell wall-active drugs. Our results illuminate the connection between central carbon metabolism and cell wall homeostasis in V. cholerae and suggest that interfering with metabolism may be a fruitful future strategy for the development of antibiotic adjuvants.


Asunto(s)
Vibrio cholerae , Vibrio cholerae/metabolismo , Mutación , Penicilinas/farmacología , Antibacterianos/farmacología , Antibacterianos/metabolismo , Monobactamas/metabolismo , beta-Lactamas/farmacología
2.
J Bacteriol ; 199(18)2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28607158

RESUMEN

Two-component signal transduction systems (TCSs), typically composed of a sensor histidine kinase (HK) and a response regulator (RR), are the primary mechanism by which pathogenic bacteria sense and respond to extracellular signals. The pathogenic bacterium Vibrio cholerae is no exception and harbors 52 RR genes. Using in-frame deletion mutants of each RR gene, we performed a systematic analysis of their role in V. cholerae biofilm formation. We determined that 7 RRs impacted the expression of an essential biofilm gene and found that the recently characterized RR, VxrB, regulates the expression of key structural and regulatory biofilm genes in V. choleraevxrB is part of a 5-gene operon, which contains the cognate HK vxrA and three genes of unknown function. Strains carrying ΔvxrA and ΔvxrB mutations are deficient in biofilm formation, while the ΔvxrC mutation enhances biofilm formation. The overexpression of VxrB led to a decrease in motility. We also observed a small but reproducible effect of the absence of VxrB on the levels of cyclic di-GMP (c-di-GMP). Our work reveals a new function for the Vxr TCS as a regulator of biofilm formation and suggests that this regulation may act through key biofilm regulators and the modulation of cellular c-di-GMP levels.IMPORTANCE Biofilms play an important role in the Vibrio cholerae life cycle, providing protection from environmental stresses and contributing to the transmission of V. cholerae to the human host. V. cholerae can utilize two-component systems (TCS), composed of a histidine kinase (HK) and a response regulator (RR), to regulate biofilm formation in response to external cues. We performed a systematic analysis of V. cholerae RRs and identified a new regulator of biofilm formation, VxrB. We demonstrated that the VxrAB TCS is essential for robust biofilm formation and that this system may regulate biofilm formation via its regulation of key biofilm regulators and cyclic di-GMP levels. This research furthers our understanding of the role that TCSs play in the regulation of V. cholerae biofilm formation.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Histidina Quinasa/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/fisiología , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Análisis Mutacional de ADN , Eliminación de Gen , Histidina Quinasa/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA