Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
1.
Cell ; 178(1): 107-121.e18, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31251911

RESUMEN

Increasing evidence suggests that transcriptional control and chromatin activities at large involve regulatory RNAs, which likely enlist specific RNA-binding proteins (RBPs). Although multiple RBPs have been implicated in transcription control, it has remained unclear how extensively RBPs directly act on chromatin. We embarked on a large-scale RBP ChIP-seq analysis, revealing widespread RBP presence in active chromatin regions in the human genome. Like transcription factors (TFs), RBPs also show strong preference for hotspots in the genome, particularly gene promoters, where their association is frequently linked to transcriptional output. Unsupervised clustering reveals extensive co-association between TFs and RBPs, as exemplified by YY1, a known RNA-dependent TF, and RBM25, an RBP involved in splicing regulation. Remarkably, RBM25 depletion attenuates all YY1-dependent activities, including chromatin binding, DNA looping, and transcription. We propose that various RBPs may enhance network interaction through harnessing regulatory RNAs to control transcription.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Transcripción Genética/genética , Factor de Transcripción YY1/metabolismo , Sitios de Unión , Regulación de la Expresión Génica , Genoma Humano/genética , Células Hep G2 , Humanos , Células K562 , Proteínas Nucleares , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas de Unión al ARN/genética , RNA-Seq , Transcriptoma , Factor de Transcripción YY1/genética
2.
Cell ; 174(3): 564-575.e18, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30033362

RESUMEN

The prostate cancer (PCa) risk-associated SNP rs11672691 is positively associated with aggressive disease at diagnosis. We showed that rs11672691 maps to the promoter of a short isoform of long noncoding RNA PCAT19 (PCAT19-short), which is in the third intron of the long isoform (PCAT19-long). The risk variant is associated with decreased and increased levels of PCAT19-short and PCAT19-long, respectively. Mechanistically, the risk SNP region is bifunctional with both promoter and enhancer activity. The risk variants of rs11672691 and its LD SNP rs887391 decrease binding of transcription factors NKX3.1 and YY1 to the promoter of PCAT19-short, resulting in weaker promoter but stronger enhancer activity that subsequently activates PCAT19-long. PCAT19-long interacts with HNRNPAB to activate a subset of cell-cycle genes associated with PCa progression, thereby promoting PCa tumor growth and metastasis. Taken together, these findings reveal a risk SNP-mediated promoter-enhancer switching mechanism underlying both initiation and progression of aggressive PCa.


Asunto(s)
Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética , Alelos , Línea Celular Tumoral , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica/genética , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Isoformas de ARN/genética , Factores de Riesgo , Factores de Transcripción/metabolismo , Factor de Transcripción YY1/metabolismo
3.
Genes Dev ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39362773

RESUMEN

During B-cell development, cells progress through multiple developmental stages, with the pro-B-cell stage defining commitment to the B-cell lineage. YY1 is a ubiquitous transcription factor that is capable of both activation and repression functions. We found here that knockout of YY1 at the pro-B-cell stage eliminates B lineage commitment. YY1 knockout pro-B cells can generate T lineage cells in vitro using the OP9-DL4 feeder system and in vivo after injection into sublethally irradiated Rag1-/- mice. These T lineage-like cells lose their B lineage transcript profile and gain a T-cell lineage profile. Single-cell RNA-seq experiments showed that as YY1 knockout pro-B cells transition into T lineage cells in vitro, various cell clusters adopt transcript profiles representing a multiplicity of hematopoietic lineages, indicating unusual lineage plasticity. In addition, YY1 KO pro-B cells in vivo can give rise to other hematopoietic lineages in vivo. Evaluation of RNA-seq, scRNA-seq, ChIP-seq, and scATAC-seq data indicates that YY1 controls numerous chromatin-modifying proteins leading to increased accessibility of alternative lineage genes in YY1 knockout pro-B cells. Given the ubiquitous nature of YY1 and its dual activation and repression functions, YY1 may regulate commitment in multiple cell lineages.

4.
Genes Dev ; 37(13-14): 590-604, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37532472

RESUMEN

Nucleosome positioning can alter the accessibility of DNA-binding proteins to their cognate DNA elements, and thus its precise control is essential for cell identity and function. Mammalian preimplantation embryos undergo temporal changes in gene expression and cell potency, suggesting the involvement of dynamic epigenetic control during this developmental phase. However, the dynamics of nucleosome organization during early development are poorly understood. In this study, using a low-input MNase-seq method, we show that nucleosome positioning is globally obscure in zygotes but becomes well defined during subsequent development. Down-regulation of the chromatin assembly in embryonic stem cells can partially reverse nucleosome organization into a zygote-like pattern, suggesting a possible link between the chromatin assembly pathway and fuzzy nucleosomes in zygotes. We also reveal that YY1, a zinc finger-containing transcription factor expressed upon zygotic genome activation, regulates the de novo formation of well-positioned nucleosome arrays at the regulatory elements through identifying YY1-binding sites in eight-cell embryos. The YY1-binding regions acquire H3K27ac enrichment around the eight-cell and morula stages, and YY1 depletion impairs the morula-to-blastocyst transition. Thus, our study delineates the remodeling of nucleosome organization and its underlying mechanism during early mouse development.


Asunto(s)
Nucleosomas , Factores de Transcripción , Animales , Ratones , Cromatina , Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Mamíferos/genética , Nucleosomas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Mol Cell ; 75(3): 590-604.e12, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31230816

RESUMEN

Epigenetic silencing defends against LINE-1 (L1) retrotransposition in mammalian cells. However, the mechanisms that repress young L1 families and how L1 escapes to cause somatic genome mosaicism in the brain remain unclear. Here we report that a conserved Yin Yang 1 (YY1) transcription factor binding site mediates L1 promoter DNA methylation in pluripotent and differentiated cells. By analyzing 24 hippocampal neurons with three distinct single-cell genomic approaches, we characterized and validated a somatic L1 insertion bearing a 3' transduction. The source (donor) L1 for this insertion was slightly 5' truncated, lacked the YY1 binding site, and was highly mobile when tested in vitro. Locus-specific bisulfite sequencing revealed that the donor L1 and other young L1s with mutated YY1 binding sites were hypomethylated in embryonic stem cells, during neurodifferentiation, and in liver and brain tissue. These results explain how L1 can evade repression and retrotranspose in the human body.


Asunto(s)
Represión Epigenética/genética , Elementos de Nucleótido Esparcido Largo/genética , Retroelementos/genética , Factor de Transcripción YY1/genética , Sitios de Unión/genética , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Genoma Humano/genética , Hipocampo/metabolismo , Humanos , Hígado/metabolismo , Neuronas/metabolismo , Análisis de la Célula Individual
6.
Proc Natl Acad Sci U S A ; 120(8): e2214062120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36791105

RESUMEN

We demonstrate that there is a tight functional relationship between two highly evolutionary conserved cell processes, i.e., the circadian clock (CC) and the circadian DNA demethylation-methylation of cognate deoxyCpG-rich islands. We have discovered that every circadian clock-controlled output gene (CCG), but not the core clock nor its immediate-output genes, contains a single cognate intronic deoxyCpG-rich island, the demethylation-methylation of which is controlled by the CC. During the transcriptional activation period, these intronic islands are demethylated and, upon dimerization of two YY1 protein binding sites located upstream to the transcriptional enhancer and downstream from the deoxyCpG-rich island, store activating components initially assembled on a cognate active enhancer (a RORE, a D-box or an E-box), in keeping with the generation of a transcriptionally active condensate that boosts the initiation of transcription of their cognate pre-mRNAs. We report how these single intronic deoxyCpG-rich islands are instrumental in such a circadian activation/repression transcriptional process.


Asunto(s)
Relojes Circadianos , Relojes Circadianos/genética , Regiones Promotoras Genéticas , Ritmo Circadiano/genética , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas CLOCK/genética , Desmetilación
7.
J Biol Chem ; 300(9): 107677, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39151728

RESUMEN

The tricarboxylic acid (TCA) cycle plays a crucial role in mitochondrial ATP production in the healthy heart. However, in heart failure, the TCA cycle becomes dysregulated. Understanding the mechanism by which TCA cycle genes are transcribed in the healthy heart is an important prerequisite to understanding how these genes become dysregulated in the failing heart. PPARγ coactivator 1α (PGC-1α) is a transcriptional coactivator that broadly induces genes involved in mitochondrial ATP production. PGC-1α potentiates its effects through the coactivation of coupled transcription factors, such as estrogen-related receptor (ERR), nuclear respiratory factor 1 (Nrf1), GA-binding protein-a (Gabpa), and Yin Yang 1 (YY1). We hypothesized that PGC-1α plays an essential role in the transcription of TCA cycle genes. Thus, utilizing localization peaks of PGC-1α to TCA cycle gene promoters would allow the identification of coupled transcription factors. PGC-1α potentiated the transcription of 13 out of 14 TCA cycle genes, partly through ERR, Nrf1, Gabpa, and YY1. ChIP-sequencing showed PGC-1α localization peaks in TCA cycle gene promoters. Transcription factors with binding elements that were found proximal to PGC-1α peak localization were generally essential for the transcription of the gene. These transcription factor binding elements were well conserved between mice and humans. Among the four transcription factors, ERR and Gabpa played a major role in potentiating transcription when compared to Nrf1 and YY1. These transcription factor-dependent PGC-1α recruitment was verified with Idh3a, Idh3g, and Sdha promoters with DNA binding assay. Taken together, this study clarifies the mechanism by which TCA cycle genes are transcribed, which could be useful in understanding how those genes are dysregulated in pathological conditions.


Asunto(s)
Ciclo del Ácido Cítrico , Factor Nuclear 1 de Respiración , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Receptores de Estrógenos , Factor de Transcripción YY1 , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Animales , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Humanos , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Factor Nuclear 1 de Respiración/metabolismo , Factor Nuclear 1 de Respiración/genética , Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Factor de Transcripción de la Proteína de Unión a GA/genética , Transcripción Genética , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Miocardio/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Receptor Relacionado con Estrógeno ERRalfa
8.
Proc Natl Acad Sci U S A ; 119(45): e2206846119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322735

RESUMEN

Heat stress limits plant growth, development, and crop yield, but how plant cells precisely sense and transduce heat stress signals remains elusive. Here, we identified a conserved heat stress response mechanism to elucidate how heat stress signal is transmitted from the cytoplasm into the nucleus for epigenetic modifiers. We demonstrate that HISTONE DEACETYLASE 9 (HDA9) transduces heat signals from the cytoplasm to the nucleus to play a positive regulatory role in heat responses in Arabidopsis. Heat specifically induces HDA9 accumulation in the nucleus. Under heat stress, the phosphatase PP2AB'ß directly interacts with and dephosphorylates HDA9 to protect HDA9 from 26S proteasome-mediated degradation, leading to the translocation of nonphosphorylated HDA9 to the nucleus. This heat-induced enrichment of HDA9 in the nucleus depends on the nucleoporin HOS1. In the nucleus, HDA9 binds and deacetylates the target genes related to signaling transduction and plant development to repress gene expression in a transcription factor YIN YANG 1-dependent and -independent manner, resulting in rebalance of plant development and heat response. Therefore, we uncover an HDA9-mediated positive regulatory module in the heat shock signal transduction pathway. More important, this cytoplasm-to-nucleus translocation of HDA9 in response to heat stress is conserved in wheat and rice, which confers the mechanism significant implication potential for crop breeding to cope with global climate warming.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Células Vegetales/metabolismo , Fitomejoramiento , Arabidopsis/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo
9.
J Biol Chem ; 299(5): 104688, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37044212

RESUMEN

TREM2 encoding the transmembrane receptor protein TREM2 is a risk gene of Alzheimer's disease (AD), and the impairment of TREM2 functions in microglia due to mutations in TREM2 may significantly increase the risk of AD by promoting AD pathologies. However, how the expression of TREM2 is regulated and the transcription factors required for TREM2 expression are largely unknown. By luciferase assay, DNA pull-down, and in silico predictions, we identified Yin Yang 1(YY1) as a binding protein of the minimal promoter of the TREM2 gene, and the binding was further confirmed by EMSA and DNA pull-down assay. shRNA-mediated YY1 silencing significantly reduced the activity of the TREM2 minimal promoter and TREM2 protein levels in the microglial cell line BV2 and the neuroblastoma Neuro2A. Furthermore, we found that the levels of TREM2 and YY1 were both downregulated in lipopolysaccharide-treated BV2 cells and in the brain of AD model mice. These results demonstrated that YY1 plays a crucial role in the regulation of TREM2 expression. Our study suggests that microglial YY1 could be targeted to maintain TREM2 expression for AD prevention and therapy.


Asunto(s)
Enfermedad de Alzheimer , Receptores Inmunológicos , Factor de Transcripción YY1 , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Línea Celular , Lipopolisacáridos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
10.
Funct Integr Genomics ; 24(5): 171, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39317806

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women of childbearing age, making it imperative to explore more biomarkers for PCOS. Furthermore, previous studies have reported that cyclin dependent kinase inhibitor 1 C (CDKN1C) might be associated with PCOS progression. However, the molecular mechanism of CDKN1C involved in PCOS is poorly defined. METHODS: CDKN1C and Yin-Yang-1 (YY1) expression levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay. Cell viability, proliferation, cell cycle progression, and cell apoptosis were analyzed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. Caspase 3 activity was examined using a commercial kit. Binding between YY1 and CDKN1C promoter was predicted by JASPAR and verified using Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. RESULTS: CDKN1C and YY1 were highly expressed in PCOS granulosa cells (GCs). Furthermore, CDKN1C silencing could promote cell proliferation and cell cycle process and repress cell apoptosis in human ovarian granulosa cell line KGN cells. For mechanistic analysis, YY1 is directly bound to the promoter of CDKN1C and transcriptional-regulated CDKN1C expression. CONCLUSION: YY1-activated CDKN1C might block KGN cell proliferation and induce cell apoptosis, providing a possible therapeutic target for PCOS treatment.


Asunto(s)
Apoptosis , Proliferación Celular , Inhibidor p57 de las Quinasas Dependientes de la Ciclina , Células de la Granulosa , Síndrome del Ovario Poliquístico , Activación Transcripcional , Regulación hacia Arriba , Factor de Transcripción YY1 , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Humanos , Femenino , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/patología , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Adulto , Regiones Promotoras Genéticas
11.
Development ; 148(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33766932

RESUMEN

Yin Yang 1 (YY1) is a ubiquitous transcription factor and mammalian Polycomb Group protein (PcG) with important functions for regulating lymphocyte development and stem cell self-renewal. YY1 mediates stable PcG-dependent transcriptional repression via recruitment of PcG proteins that result in histone modifications. Many questions remain unanswered regarding how cell- and tissue-specificity is achieved by PcG proteins. Here, we demonstrate that a conditional knockout of Yy1 in the hematopoietic system results in an early T cell developmental blockage at the double negative (DN) 1 stage with reduced Notch1 signaling. There is a lineage-specific requirement for YY1 PcG function. YY1 PcG domain is required for T and B cell development but not necessary for myeloid cells. YY1 functions in early T cell development are multicomponent and involve both PcG-dependent and -independent regulations. Although YY1 promotes early T cell survival through its PcG function, its function to promote the DN1-to-DN2 transition and Notch1 expression and signaling is independent of its PcG function. Our results reveal how a ubiquitously expressed PcG protein mediates lineage-specific and context-specific functions to control early T cell development.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Linfocitos T/metabolismo , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Animales , Supervivencia Celular , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Receptor Notch1 , Transcriptoma
12.
Cancer Cell Int ; 24(1): 71, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347631

RESUMEN

OBJECTIVE: Gastric cancer (GC) stands as a prevalent and deadly global malignancy. Despite its role as a preoperative neoadjuvant therapy, Apatinib's effectiveness is curtailed among GC patients exhibiting elevated YY1 expression. YY1's connection to adverse prognosis, drug resistance, and GC metastasis is established, yet the precise underlying mechanisms remain elusive. This study aims to unravel potential pathogenic pathways attributed to YY1. DESIGN: Utilizing bioinformatics analysis, we conducted differentially expressed genes, functional annotation, and pathway enrichment analyses, and further validation through cellular and animal experiments. RESULTS: Higher YY1 expression correlated with diminished postoperative progression-free survival (PFS) and disease-specific survival (DSS) rates in TCGA analysis, identifying YY1 as an independent DSS indicator in gastric cancer (GC) patients. Notably, YY1 exhibited significantly elevated expression in tumor tissues compared to adjacent normal tissues. Bioinformatics analysis revealed noteworthy differentially expressed genes (DEGs), transcriptional targets, factors, and co-expressed genes associated with YY1. LASSO Cox analysis unveiled Transferrin as a prospective pivotal protein regulated by YY1, with heightened expression linked to adverse DSS and PFS outcomes. YY1's role in governing the p53 signaling pathway and ferroptosis in GC cells was further elucidated. Moreover, YY1 overexpression dampened immune cell infiltration within GC tumors. Additionally, YY1 overexpression hindered GC cell ferroptosis and mediated Apatinib resistance via the p53 pathway. Remarkably, IFN-a demonstrated efficacy in reversing Apatinib resistance and immune suppression in GC tissues. CONCLUSIONS: Our findings underscore the pivotal role of YY1 in driving GC progression and influencing prognosis, thus pinpointing it as a promising therapeutic target to enhance patient outcomes.

13.
FASEB J ; 37(8): e23082, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37462506

RESUMEN

Brain white matter injury (WMI) is a serious disease of the central nervous system. Pleiotrophin (PTN) promotes the differentiation and myelination of oligodendrocytes (OLs) in vitro. However, the role of PTN in WMI remains unknown. Therefore, this study aimed to investigate the neuroprotective role and potential mechanisms of PTN function in neonatal rats with WMI. The PTN and mammalian target of rapamycin (mTOR) inhibitor everolimus was used to treat a WMI model in postnatal day 3 Sprague-Dawley rats, in which the right common carotid arteries of these rats were isolated, ligated, and exposed to a hypoxic environment (6% O2 + 94% N2 ) for 2 h. OL differentiation and myelination, as well as the spatial learning and memory abilities of the rats were evaluated to examine the effects of PTN. Two proteins of the mTOR signaling pathway, YingYang1 (YY1) and inhibitor of DNA binding 4 (Id4), were detected and were used to explore the potential mechanisms of PTN in rat WMI experiment and oxygen glucose deprivation (OGD) model. We found that the differentiation and myelination of OLs were impaired after WMI. PTN administration rescued this injury by activating mTOR/YY1 and inhibiting Id4. Everolimus administration inhibited mTOR/YY1 and activated Id4, which blocked the neuroprotective role of PTN in WMI. PTN plays a neuroprotective role in neonatal rats with WMI, which could be involved in the mTOR/YY1/Id4 signaling pathway.


Asunto(s)
Lesiones Encefálicas , Sustancia Blanca , Animales , Ratas , Animales Recién Nacidos , Sustancia Blanca/metabolismo , Ratas Sprague-Dawley , Everolimus/farmacología , Everolimus/metabolismo , Transducción de Señal , Lesiones Encefálicas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Mamíferos/metabolismo
14.
Mol Cell Biochem ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261409

RESUMEN

Non-small cell lung cancer (NSCLC) is a frequent type of lung cancer. Transcription factor Yin Yang 1 (YY1), an endogenous transcription factor containing zinc finger structure, can accelerate NSCLC progression. However, the impact of YY1 on the stemness of NSCLC cells and the mechanism of promoting NSCLC cell progression is unclear. YY1 and Sonic hedgehog (Shh) expressions were monitored by RT-qPCR, western blot, and immunohistochemistry. Overall survival was tested through Kaplan-Meier analysis. The interaction between YY1 and Shh was confirmed. Then, cell migration, stemness, and epithelial-mesenchymal transition (EMT) were assessed with functional experiments in vitro and in vivo. YY1 and Shh were highly expressed in NSCLC tissues and positively correlated with the poor OS of NSCLC patients. Functional experiments denoted that YY1 or Shh overexpression could accelerate EMT, migration, and stemness of NSCLC cells, and YY1 or Shh knockdown played the opposite role to its overexpression. Mechanism analysis disclosed that Shh, as a target gene of YY1, was positively related to YY1. The rescued experiment manifested that Shh silencing could reverse the induction effect of YY1 overexpression on EMT, migration, and stemness of NSCLC cells. In vivo experiments also confirmed that YY1 could accelerate tumor growth and EMT and weaken apoptosis. YY1 promotes NSCLC EMT, migration, and stemness by Shh, which might be novel diagnostic markers and therapeutic targets for NSCLC therapy.

15.
Cell Biol Int ; 48(11): 1731-1742, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39090819

RESUMEN

Oral squamous cell carcinoma (OSCC) is the most common oral malignancy. DEAD/H-box helicase 11 (DDX11), a DNA helicase, has been implicated in the progression of several cancers. Yet, the precise function of DDX11 in OSCC is poorly understood. The DDX11 expression in OSCC cells and normal oral keratinocytes was evaluated in the Gene Expression Omnibus database (GSE146483 and GSE31853). SCC-4 and CAL-27 cells expressing doxycycline-inducible DDX11 or DDX11 shRNA were generated by lentiviral infection. The role of DDX11 in OSCC cells was determined by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, colony formation assay, flow cytometry assay, TUNEL staining, and western blot. The effects of DDX11 on tumor growth were explored in a xenograft nude mouse model. The relationship between DDX11 and transcription factor Yin Yang-1 (YY1) was researched using the dual luciferase report assay and chromatin immunoprecipitation assay. DDX11 expression was significantly upregulated in OSCC cells. Knockdown of DDX11 inhibited cell proliferation, induced cell cycle arrest, and suppressed PI3K-AKT pathway, while DDX11 overexpression showed opposite effects. The number of apoptotic cells was increased in DDX11 silenced cells. DDX11 upregulation or knockdown accelerated or suppressed tumor growth in vivo, respectively. Moreover, the YY1 bound and activated the DDX11 promoter, resulting in increasing DDX11 expression. Forced expression DDX11 reversed the anticancer effects of YY1 silencing on OSCC cells. DDX11 has tumor-promoting function in OSCC and is transcriptionally regulated by YY1, indicating that DDX11 may serve as a potential target for the OSCC treatment.


Asunto(s)
Carcinoma de Células Escamosas , Proliferación Celular , ARN Helicasas DEAD-box , Ratones Desnudos , Neoplasias de la Boca , Factor de Transcripción YY1 , Humanos , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Animales , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Proliferación Celular/genética , Ratones , Regulación Neoplásica de la Expresión Génica , Progresión de la Enfermedad , Apoptosis/genética , Activación Transcripcional , Ratones Endogámicos BALB C , Transducción de Señal , ADN Helicasas
16.
J Biochem Mol Toxicol ; 38(10): e23864, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39318028

RESUMEN

Previous research has indicated the highly expressed lysine-specific histone demethylase 1A (KDM1A) in several human malignancies, including triple-negative breast cancer (TNBC). However, its detailed mechanisms in TNBC development remain poorly understood. The mRNA levels of KDM1A and Yin Yang 1 (YY1) were determined by RT-qPCR analysis. Western blot was performed to measure KDM1A and ubiquitin-specific protease 1 (USP1) protein expression. Cell proliferation, apoptosis, invasion, migration and stemness were evaluated by MTT assay, EdU assay, flow cytometry, transwell invasion assay, wound-healing assay and sphere-formation assay, respectively. ChIP and dual-luciferase reporter assays were conducted to determine the relationship between YY1 and KDM1A. Xenograft tumor experiment and IHC were carried out to investigate the roles of USP1 and KDM1A in TNBC development in vivo. The highly expressed KDM1A was demonstrated in TNBC tissues and cells, and KDM1A knockdown significantly promoted cell apoptosis, and hampered cell proliferation, invasion, migration, and stemness in TNBC cells. USP1 could increase the stability of KDM1A via deubiquitination, and USP1 depletion restrained the progression of TNBC cells through decreasing KDM1A expression. Moreover, YY1 transcriptionally activated KDM1A expression by directly binding to its promoter in TNBC cells. Additionally, USP1 inhibition reduced KDM1A expression to suppress tumor growth in TNBC mice in vivo. In conclusion, YY1 upregulation increased KDM1A expression via transcriptional activation. USP1 stabilized KDM1A through deubiquitination to promote TNBC progression.


Asunto(s)
Histona Demetilasas , Neoplasias de la Mama Triple Negativas , Proteasas Ubiquitina-Específicas , Ubiquitinación , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Humanos , Femenino , Animales , Línea Celular Tumoral , Ratones , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Progresión de la Enfermedad , Proliferación Celular , Ratones Desnudos , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Regulación Neoplásica de la Expresión Génica , Ratones Endogámicos BALB C , Apoptosis , Movimiento Celular
17.
Cell Mol Life Sci ; 80(1): 27, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36602641

RESUMEN

The proportions of the various muscle fiber types are important in the regulation of skeletal muscle metabolism, as well as animal meat production. Four-and-a-half LIM domain protein 3 (FHL3) is highly expressed in fast glycolytic muscle fibers and differentially regulates the expression of myosin heavy chain (MyHC) isoforms at the cellular level. Whether FHL3 regulates the transformation of muscle fiber types in vivo and the regulatory mechanism is unclear. In this study, muscle-specific FHL3 transgenic mice were generated by random integration, and lentivirus-mediated gene knockdown or overexpression in muscles of mice or pigs was conducted. Functional analysis showed that overexpression of FHL3 in muscles significantly increased the proportion of fast-twitch myofibers and muscle mass but decreased muscle succinate dehydrogenase (SDH) activity and whole-body oxygen consumption. Lentivirus-mediated FHL3 knockdown in muscles significantly decreased muscle mass and the proportion of fast-twitch myofibers. Mechanistically, FHL3 directly interacted with the Yin yang 1 (YY1) DNA-binding domain, repressed the binding of YY1 to the fast glycolytic MyHC2b gene regulatory region, and thereby promoted MyHC2b expression. FHL3 also competed with EZH2 to bind the repression domain of YY1 and reduced H3K27me3 enrichment in the MyHC2b regulatory region. Moreover, FHL3 overexpression reduced glucose tolerance by affecting muscle glycolytic metabolism, and its mRNA expression in muscle was positively associated with hemoglobin A1c (HbA1c) in patients with type 2 diabetes. Therefore, FHL3 is a novel potential target gene for the treatment of muscle metabolism-related diseases and improvement of animal meat production.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ratones , Porcinos , Animales , Diabetes Mellitus Tipo 2/metabolismo , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Glucólisis/genética , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo
18.
Anim Genet ; 55(1): 66-78, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37881102

RESUMEN

Our previous studies showed that SYISL is a negative regulator of muscle growth and regeneration in mice, pigs and humans. SYISL knockout resulted in an increase in the density of muscle fibers and muscle growth. However, it is unclear whether there are natural mutations in pig SYNPO2 intron sense-overlapping lncRNA (pSYISL) that affect the expression of pSYISL and muscle growth traits. In this study, three SNPs in exons and six SNPs within the promoter of pSYISL were identified. Association analysis showed that the two SNPs in exons are significantly associated with loin muscle area (p < 0.05); the six SNPs in the promoter that show complete linkage are significantly associated with live backfat thickness and live loin muscle area in American Large White pigs. Bioinformatics and luciferase reporter assays as well as in vitro binding experiments indicated that the mutation of SNP rs702045770 (g.539G>A) leads to the loss of YY1 binding to the promoter, thus affecting the expression level of pSYISL, and we found that Jiangshan Black pigs with genotype GG have a higher expression level of pSYISL than genotype AA individuals, but the muscle fiber density was significantly lower than in genotype AA individuals. Furthermore, the association analysis showed that the carcass backfat thickness of genotype GG of SNP rs702045770 was significantly higher than that of other genotypes in (Pietrain × Duroc) × (Landrace × Yorkshire) crossbred pigs (p < 0.05). The glycolytic potential of genotype GG was significantly higher than that of other genotypes (p < 0.05). These results provide novel insight into the identification of functional SNPs in non-coding genomic regions.


Asunto(s)
Fibras Musculares Esqueléticas , Polimorfismo de Nucleótido Simple , Humanos , Porcinos , Animales , Ratones , Fenotipo , Genotipo , Regiones Promotoras Genéticas
19.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33436409

RESUMEN

Long noncoding RNAs (lncRNAs) play diverse roles in biological processes, but their expression profiles and functions in cervical carcinogenesis remain unknown. By RNA-sequencing (RNA-seq) analyses of 18 clinical specimens and selective validation by RT-qPCR analyses of 72 clinical samples, we provide evidence that, relative to normal cervical tissues, 194 lncRNAs are differentially regulated in high-risk (HR)-HPV infection along with cervical lesion progression. One such lncRNA, lnc-FANCI-2, is extensively characterized because it is expressed from a genomic locus adjacent to the FANCI gene encoding an important DNA repair factor. Both genes are up-regulated in HPV lesions and in in vitro model systems of HR-HPV18 infection. We observe a moderate reciprocal regulation of lnc-FANCI-2 and FANCI in cervical cancer CaSki cells. In these cells, lnc-FANCI-2 is transcribed from two alternative promoters, alternatively spliced, and polyadenylated at one of two alternative poly(A) sites. About 10 copies of lnc-FANCI-2 per cell are detected preferentially in the cytoplasm. Mechanistically, HR-HPVs, but not low-risk (LR)-HPV oncogenes induce lnc-FANCI-2 in primary and immortalized human keratinocytes. The induction is mediated primarily by E7, and to a lesser extent by E6, mostly independent of p53/E6AP and pRb/E2F. We show that YY1 interacts with an E7 CR3 core motif and transactivates the promoter of lnc-FANCI-2 by binding to two critical YY1-binding motifs. Moreover, HPV18 increases YY1 expression by reducing miR-29a, which targets the 3' untranslated region of YY1 mRNA. These data have provided insights into the mechanisms of how HR-HPV infections contribute to cervical carcinogenesis.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Papillomavirus Humano 16/genética , MicroARNs/genética , Infecciones por Papillomavirus/genética , ARN Largo no Codificante/genética , Neoplasias del Cuello Uterino/genética , Factor de Transcripción YY1/genética , Empalme Alternativo , Secuencia de Bases , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Cuello del Útero/metabolismo , Cuello del Útero/patología , Cuello del Útero/virología , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Femenino , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/patogenicidad , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/metabolismo , Papillomavirus Humano 18/patogenicidad , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Queratinocitos/virología , MicroARNs/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Regiones Promotoras Genéticas , ARN Largo no Codificante/metabolismo , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/virología , Factor de Transcripción YY1/metabolismo
20.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063014

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Current chemotherapy treatment regimens have improved survival rates to approximately 80%; however, resistance development remains the primary cause of treatment failure, affecting around 20% of cases. Some studies indicate that loss of the phosphatase and tensin homolog (PTEN) leads to deregulation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, increasing the expression of proteins involved in chemoresistance. PTEN loss results in deregulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and induces hypoxia-inducible factor 1-alpha (HIF-1α) expression in various cancers. Additionally, it triggers upregulation of the Yin Yang 1 (YY1) transcription factor, leading to chemoresistance mediated by glycoprotein p-170 (Gp-170). The aim of this study was to investigate the role of the PTEN/NF-κB axis in YY1 regulation via HIF-1α and its involvement in ALL. A PTEN inhibitor was administered in RS4;11 cells, followed by the evaluation of PTEN, NF-κB, HIF-1α, YY1, and Gp-170 expression, along with chemoresistance assessment. PTEN, HIF-1α, and YY1 expression levels were assessed in the peripheral blood mononuclear cells (PBMC) from pediatric ALL patients. The results reveal that the inhibition of PTEN activity significantly increases the expression of pAkt and NF-κB, which is consistent with the increase in the expression of HIF-1α and YY1 in RS4;11 cells. In turn, this inhibition increases the expression of the glycoprotein Gp-170, affecting doxorubicin accumulation in the cells treated with the inhibitor. Samples from pediatric ALL patients exhibit PTEN expression and higher HIF-1α and YY1 expression compared to controls. PTEN/Akt/NF-κB axis plays a critical role in the regulation of YY1 through HIF-1α, and this mechanism contributes to Gp-170-mediated chemoresistance in pediatric ALL.


Asunto(s)
Resistencia a Antineoplásicos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Fosfohidrolasa PTEN , Leucemia-Linfoma Linfoblástico de Células Precursoras , Factor de Transcripción YY1 , Humanos , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Resistencia a Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Niño , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Masculino , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA