Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(36): e2208662119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037338

RESUMEN

In gram-negative bacteria, lipoproteins are vital structural components of the outer membrane (OM) and crucial elements of machineries central to the physiology of the cell envelope. A dedicated apparatus, the Lol system, is required for the correct localization of OM lipoproteins and is essential for viability. The periplasmic chaperone LolA is central to this trafficking pathway, accepting triacylated lipoproteins from the inner membrane transporter LolCDE, before carrying them across the periplasm to the OM receptor LolB. Here, we report a crystal structure of liganded LolA, generated in vivo, revealing the molecular details of lipoprotein association. The structure highlights how LolA, initially primed to receive lipoprotein by interaction with LolC, further opens to accommodate the three ligand acyl chains in a precise conformation within its cavity. LolA forms extensive interactions with the acyl chains but not with any residue of the cargo, explaining the chaperone's ability to transport structurally diverse lipoproteins. Structural characterization of a ligandedLolA variant incapable of lipoprotein release reveals aberrant association, demonstrating the importance of the LolCDE-coordinated, sequential opening of LolA for inserting lipoprotein in a manner productive for subsequent trafficking. Comparison with existing structures of LolA in complex with LolC or LolCDE reveals substantial overlap of the lipoprotein and LolC binding sites within the LolA cavity, demonstrating that insertion of lipoprotein acyl chains physically disengages the chaperone protein from the transporter by perturbing interaction with LolC. Taken together, our data provide a key step toward a complete understanding of a fundamentally important trafficking pathway.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Unión Periplasmáticas , Transporte de Proteínas , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligandos , Lipoproteínas/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas/genética
2.
J Biol Chem ; 295(29): 10081-10091, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32404369

RESUMEN

Thiamine pyrophosphate (TPP) is an essential cofactor for various pivotal cellular processes in all living organisms, including bacteria. Thiamine biosynthesis occurs in bacteria but not in humans; therefore, the enzymes in this pathway are attractive targets for antibiotic development. Among these enzymes, thiamine monophosphate kinase (ThiL) catalyzes the final step of this pathway, phosphorylating thiamine monophosphate to produce TPP. Here, we extensively investigated ThiL in Pseudomonas aeruginosa, a major pathogen responsible for hospital-acquired infections. We demonstrate that thiL deletion abolishes not only thiamine biosynthesis but also thiamine salvage capability and results in growth defects of the ΔthiL strain even in the presence of thiamine derivatives, except for TPP. Most importantly, the pathogenesis of the ΔthiL strain was markedly attenuated, compared with that of WT cells, with lower inflammatory cytokine induction and 103-104-fold decreased bacterial loads in an in vivo infection model in which the intracellular TPP level was in the submicromolar range. To validate P. aeruginosa ThiL (PaThiL) as a drug target, we further characterized its biochemical properties, determining a Vmax of 4.0 ± 0.2 nmol·min-1 and Km values of 111 ± 8 and 8.0 ± 3.5 µm for ATP and thiamine monophosphate, respectively. An in vitro small-molecule screening assay identified PaThiL inhibitors including WAY213613, a noncompetitive inhibitor with a Ki value of 13.4 ± 2.3 µm and potential antibacterial activity against P. aeruginosa These comprehensive biological and biochemical results indicate that PaThiL represents a potential drug target for the development of an augmented repertoire of antibiotics against P. aeruginosa.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas , Inhibidores Enzimáticos/farmacología , Fosfotransferasas (Aceptor del Grupo Fosfato) , Pseudomonas aeruginosa/enzimología , Tiamina/biosíntesis , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/antagonistas & inhibidores , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Pseudomonas aeruginosa/genética
3.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477538

RESUMEN

The cell walls of Gram-positive bacteria contain a variety of glycopolymers (CWGPs), a significant proportion of which are covalently linked to the peptidoglycan (PGN) scaffolding structure. Prominent CWGPs include wall teichoic acids of Staphylococcus aureus, streptococcal capsules, mycobacterial arabinogalactan, and rhamnose-containing polysaccharides of lactic acid bacteria. CWGPs serve important roles in bacterial cellular functions, morphology, and virulence. Despite evident differences in composition, structure and underlaying biosynthesis pathways, the final ligation step of CWGPs to the PGN backbone involves a conserved class of enzymes-the LytR-CpsA-Psr (LCP) transferases. Typically, the enzymes are present in multiple copies displaying partly functional redundancy and/or preference for a distinct CWGP type. LCP enzymes require a lipid-phosphate-linked glycan precursor substrate and catalyse, with a certain degree of promiscuity, CWGP transfer to PGN of different maturation stages, according to in vitro evidence. The prototype attachment mode is that to the C6-OH of N-acetylmuramic acid residues via installation of a phosphodiester bond. In some cases, attachment proceeds to N-acetylglucosamine residues of PGN-in the case of the Streptococcus agalactiae capsule, even without involvement of a phosphate bond. A novel aspect of LCP enzymes concerns a predicted role in protein glycosylation in Actinomyces oris. Available crystal structures provide further insight into the catalytic mechanism of this biologically important class of enzymes, which are gaining attention as new targets for antibacterial drug discovery to counteract the emergence of multidrug resistant bacteria.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano/genética , Factores de Transcripción/genética , Pared Celular/genética , Glicoproteínas/genética , Humanos , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidad , Especificidad por Sustrato , Ácidos Teicoicos/genética , Ácidos Teicoicos/metabolismo
4.
Molecules ; 26(9)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33923034

RESUMEN

Present in all organisms, DNA ligases catalyse the formation of a phosphodiester bond between a 3' hydroxyl and a 5' phosphate, a reaction that is essential for maintaining genome integrity during replication and repair. Eubacterial DNA ligases use NAD+ as a cofactor and possess low sequence and structural homology relative to eukaryotic DNA ligases which use ATP as a cofactor. These key differences enable specific targeting of bacterial DNA ligases as an antibacterial strategy. In this study, four small molecule accessible sites within functionally important regions of Escherichia coli ligase (EC-LigA) were identified using in silico methods. Molecular docking was then used to screen for small molecules predicted to bind to these sites. Eight candidate inhibitors were then screened for inhibitory activity in an in vitro ligase assay. Five of these (geneticin, chlorhexidine, glutathione (reduced), imidazolidinyl urea and 2-(aminomethyl)imidazole) showed dose-dependent inhibition of EC-LigA with half maximal inhibitory concentrations (IC50) in the micromolar to millimolar range (11-2600 µM). Two (geneticin and chlorhexidine) were predicted to bind to a region of EC-LigA that has not been directly investigated previously, raising the possibility that there may be amino acids within this region that are important for EC-LigA activity or that the function of essential residues proximal to this region are impacted by inhibitor interactions with this region. We anticipate that the identified small molecule binding sites and inhibitors could be pursued as part of an antibacterial strategy targeting bacterial DNA ligases.


Asunto(s)
ADN Ligasas/antagonistas & inhibidores , Inhibidores Enzimáticos/aislamiento & purificación , Escherichia coli/enzimología , Sitios de Unión/efectos de los fármacos , ADN Ligasas/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Escherichia coli/efectos de los fármacos , Simulación del Acoplamiento Molecular
5.
J Biol Chem ; 294(3): 981-990, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30482840

RESUMEN

The peptidoglycan (PG) cell wall is an essential extracytoplasmic glycopeptide polymer that safeguards bacteria against osmotic lysis and determines cellular morphology. Bacteria use multiprotein machineries for the synthesis of the PG cell wall during cell division and elongation that can be targeted by antibiotics such as the ß-lactams. Lipid II, the lipid-linked precursor for PG biogenesis, is synthesized in the inner leaflet of the cytoplasmic membrane and then translocated across the bilayer, where it is ultimately polymerized into PG. In Escherichia coli, MurJ, a member of the MOP exporter superfamily, has been recently shown to have lipid II flippase activity that depends on membrane potential. Because of its essentiality, MurJ could potentially be targeted by much needed novel antibiotics. Recent structural information suggests that a central cavity in MurJ alternates between inward- and outward-open conformations to flip lipid II, but how these conformational changes occur are unknown. Here, we utilized structure-guided cysteine cross-linking and proteolysis-coupled gel analysis to probe the conformational changes of MurJ in E. coli cells. We found that paired cysteine substitutions in transmembrane domains 2 and 8 and periplasmic loops of MurJ could be cross-linked with homobifunctional cysteine cross-linkers, indicating that MurJ can adopt both inward- and outward-facing conformations in vivo Furthermore, we show that dissipating the membrane potential with an ionophore decreases the prevalence of the inward-facing, but not the outward-facing state. Our study provides in vivo evidence that MurJ uses an alternating-access mechanism during the lipid II transport cycle.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Metabolismo de los Lípidos/fisiología , Proteínas de Transferencia de Fosfolípidos/metabolismo , Transporte Biológico Activo/fisiología , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/genética , Dominios Proteicos , Estructura Secundaria de Proteína
6.
J Enzyme Inhib Med Chem ; 32(1): 203-207, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28114831

RESUMEN

The UDP-glucose pyrophosphorylase of Streptococcus pneumoniae (GalUSpn) is absolutely required for the biosynthesis of capsular polysaccharide, the sine qua non virulence factor of pneumococcus. Since the eukaryotic enzymes are completely unrelated to their prokaryotic counterparts, we propose that the GalU enzyme is a critical target to fight the pneumococcal disease. A recombinant GalUSpn was overexpressed and purified. An enzymatic assay that is rapid, sensitive and easy to perform was developed. This assay was appropriate for screening chemical libraries for searching GalU inhibitors. This work represents a fundamental step in the exploration of novel antipneumococcal drugs.


Asunto(s)
Antibacterianos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/farmacología , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/enzimología , UTP-Glucosa-1-Fosfato Uridililtransferasa/antagonistas & inhibidores , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo
7.
Biochem J ; 471(3): 335-46, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26285656

RESUMEN

The increase in antibiotic resistance has become a major health concern in recent times. It is therefore essential to identify novel antibacterial targets as well as discover and develop new antibacterial agents. FtsZ, a highly conserved bacterial protein, is responsible for the initiation of cell division in bacteria. The functions of FtsZ inside cells are tightly regulated and any perturbation in its functions leads to inhibition of bacterial division. Recent reports indicate that small molecules targeting the functions of FtsZ may be used as leads to develop new antibacterial agents. To identify small molecules targeting FtsZ and inhibiting bacterial division, we screened a U.S. FDA (Food and Drug Administration)-approved drug library of 800 molecules using an independent computational, biochemical and microbial approach. From this screen, we identified doxorubicin, an anthracycline molecule that inhibits Escherichia coli division and forms filamentous cells. A fluorescence-binding assay shows that doxorubicin interacts strongly with FtsZ. A detailed biochemical analysis demonstrated that doxorubicin inhibits FtsZ assembly and its GTPase activity through binding to a site other than the GTP-binding site. Furthermore, using molecular docking, we identified a probable doxorubicin-binding site in FtsZ. A number of single amino acid mutations at the identified binding site in FtsZ resulted in a severalfold decrease in the affinity of FtsZ for doxorubicin, indicating the importance of this site for doxorubicin interaction. The present study suggests the presence of a novel binding site in FtsZ that interacts with the small molecules and can be targeted for the screening and development of new antibacterial agents.


Asunto(s)
Proteínas Bacterianas/metabolismo , División Celular/efectos de los fármacos , Proteínas del Citoesqueleto/metabolismo , Doxorrubicina/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Doxorrubicina/química , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Humanos , Simulación del Acoplamiento Molecular , Mutación , Bibliotecas de Moléculas Pequeñas/farmacología
8.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 10): 1981-94, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24100317

RESUMEN

The bacterial disulfide machinery is an attractive molecular target for developing new antibacterials because it is required for the production of multiple virulence factors. The archetypal disulfide oxidase proteins in Escherichia coli (Ec) are DsbA and DsbB, which together form a functional unit: DsbA introduces disulfides into folding proteins and DsbB reoxidizes DsbA to maintain it in the active form. In Mycobacterium tuberculosis (Mtb), no DsbB homologue is encoded but a functionally similar but structurally divergent protein, MtbVKOR, has been identified. Here, the Mtb protein Rv2969c is investigated and it is shown that it is the DsbA-like partner protein of MtbVKOR. It is found that it has the characteristic redox features of a DsbA-like protein: a highly acidic catalytic cysteine, a highly oxidizing potential and a destabilizing active-site disulfide bond. Rv2969c also has peptide-oxidizing activity and recognizes peptide segments derived from the periplasmic loops of MtbVKOR. Unlike the archetypal EcDsbA enzyme, Rv2969c has little or no activity in disulfide-reducing and disulfide-isomerase assays. The crystal structure of Rv2969c reveals a canonical DsbA fold comprising a thioredoxin domain with an embedded helical domain. However, Rv2969c diverges considerably from other DsbAs, including having an additional C-terminal helix (H8) that may restrain the mobility of the catalytic helix H1. The enzyme is also characterized by a very shallow hydrophobic binding surface and a negative electrostatic surface potential surrounding the catalytic cysteine. The structure of Rv2969c was also used to model the structure of a paralogous DsbA-like domain of the Ser/Thr protein kinase PknE. Together, these results show that Rv2969c is a DsbA-like protein with unique properties and a limited substrate-binding specificity.


Asunto(s)
Antígenos Bacterianos/química , Glutatión Transferasa/química , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/crecimiento & desarrollo , NADH NADPH Oxidorreductasas/química , Fragmentos de Péptidos/química , Vitamina K Epóxido Reductasas/química , Antígenos Bacterianos/genética , Antígenos Bacterianos/toxicidad , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Glutatión Transferasa/genética , Humanos , Macrófagos/enzimología , Macrófagos/microbiología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mycobacterium tuberculosis/genética , Oxidación-Reducción , Fragmentos de Péptidos/genética , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Secundaria de Proteína/genética , Vitamina K Epóxido Reductasas/genética
9.
Biochim Biophys Acta Mol Cell Res ; 1870(2): 119403, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36427551

RESUMEN

The membrane insertase YidC, is an essential bacterial component and functions in the folding and insertion of many membrane proteins during their biogenesis. It is a multispanning protein in the inner (cytoplasmic) membrane of Escherichia coli that binds its substrates in the "greasy slide" through hydrophobic interaction. The hydrophilic part of the substrate transiently localizes in the groove of YidC before it is translocated into the periplasm. The groove, which is flanked by the greasy slide, is within the center of the membrane, and provides a promising target for inhibitors that would block the insertase function of YidC. In addition, since the greasy slide is available for the binding of various substrates, it could also provide a binding site for inhibitory molecules. In this review we discuss in detail the structure and the mechanism of how YidC interacts not only with its substrates, but also with its partner proteins, the SecYEG translocase and the SRP signal recognition particle. Insight into the substrate binding to the YidC catalytic groove is presented. We wind up the review with the idea that the hydrophilic groove would be a potential site for drug binding and the feasibility of YidC-targeted drug development.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Transporte de Membrana , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Celular/metabolismo
10.
Front Cell Infect Microbiol ; 12: 835509, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223555

RESUMEN

Tannerella forsythia and Porphyromonas gingivalis target distinct virulence factors bearing a structurally conserved C-terminal domain (CTD) to the type IX protein secretion system (T9SS). The T9SS comprises an outer membrane translocation complex which works in concert with a signal peptidase for CTD cleavage. Among prominent T9SS cargo linked to periodontal diseases are the TfsA and TfsB components of T. forsythia's cell surface (S-) layer, the bacterium's BspA surface antigen and a set of cysteine proteinases (gingipains) from P. gingivalis. To assess the overall role of the bacterial T9SS in the host response, human macrophages and human gingival fibroblasts were stimulated with T. forsythia and P. gingivalis wild-type bacteria and T9SS signal peptidase-deficient mutants defective in protein secretion, respectively. The immunostimulatory potential of these bacteria was compared by analyzing the mRNA expression levels of the pro-inflammatory mediators IL-6, IL-8, MCP-1 and TNF-α by qPCR and by measuring the production of the corresponding proteins by ELISA. Shot-gun proteomics analysis of T. forsythia and P. gingivalis outer membrane preparations confirmed that several CTD-bearing virulence factors which interact with the human immune system were depleted from the signal peptidase mutants, supportive of effective T9SS shut-down. Three and, more profoundly, 16 hours post stimulation, the T. forsythia T9SS mutant induced significantly less production of cytokines and the chemokine in human cells compared to the corresponding parent strain, while the opposite was observed for the P. gingivalis T9SS mutant. Our data indicate that T9SS shut-down translates into an altered inflammatory response in periodontal pathogens. Thus, the T9SS as a potential novel target for periodontal therapy needs further evaluation.


Asunto(s)
Porphyromonas gingivalis , Tannerella forsythia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Humanos , Inmunidad , Tannerella forsythia/genética , Tannerella forsythia/metabolismo
11.
Front Pharmacol ; 13: 864412, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592425

RESUMEN

Advances in computer hardware and the availability of high-performance supercomputing platforms and parallel computing, along with artificial intelligence methods are successfully complementing traditional approaches in medicinal chemistry. In particular, machine learning is gaining importance with the growth of the available data collections. One of the critical areas where this methodology can be successfully applied is in the development of new antibacterial agents. The latter is essential because of the high attrition rates in new drug discovery, both in industry and in academic research programs. Scientific involvement in this area is even more urgent as antibacterial drug resistance becomes a public health concern worldwide and pushes us increasingly into the post-antibiotic era. In this review, we focus on the latest machine learning approaches used in the discovery of new antibacterial agents and targets, covering both small molecules and antibacterial peptides. For the benefit of the reader, we summarize all applied machine learning approaches and available databases useful for the design of new antibacterial agents and address the current shortcomings.

12.
Front Microbiol ; 12: 603700, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732218

RESUMEN

The bacterial K+ homeostasis machinery is widely conserved across bacterial species, and different from that in animals. Dysfunction in components of the machinery has an impact on intracellular turgor, membrane potential, adaptation to changes in both extracellular pH and osmolarity, and in virulence. Using a fluorescence-based liposome flux assay, we have performed a high-throughput screen to identify novel inhibitors of the KtrAB ion channel complex from Bacillus subtilis, a component of the K+ homeostasis machinery that is also present in many bacterial pathogens. The screen identified 41 compounds that inhibited K+ flux and that clustered into eight chemical groups. Many of the identified inhibitors were found to target KtrAB with an in vitro potency in the low µM range. We investigated the mechanisms of inhibition and found that most molecules affected either the membrane component of the channel, KtrB alone or the full KtrAB complex without a preference for the functional conformation of the channel, thus broadening their inhibitory action. A urea derivative molecule that inhibited the membrane component of KtrAB affected cell viability in conditions in which KtrAB activity is essential. With this proof-of-concept study, we demonstrate that targeting components of the K+ homeostasis machinery has the potential as a new antibacterial strategy and that the fluorescence-based flux assay is a robust tool for screening chemical libraries.

13.
Sci Prog ; 103(1): 36850419890521, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31829791

RESUMEN

Protein-protein interactions among highly conserved and essential proteins can serve as new targets for antibacterial therapies. One protein-protein interaction between two widely conserved and essential bacterial proteins, YeaZ and its paralog, a putative glycoprotease, is being looked into for its antimicrobial drug potential. These two proteins possess tandem functions, including repression of the branched-chain amino acids biosynthesis and induction of a tRNA modification important in enhancing translation fidelity through anticodon-codon base pairing. Heterodimer formation between these two proteins is essential for Staphylococcus aureus, and other bacterial species including Escherichia coli and Salmonella typhimurium. Such YeaZ-glycoprotease interaction could thus be a target for antimicrobial drugs designed for multi-drug-resistant S. aureus. In this review, we discuss the function, structure, and interaction between these two proteins and their orthologs in other bacteria.


Asunto(s)
Proteínas de Escherichia coli , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
14.
Biochem Biophys Rep ; 23: 100773, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32548313

RESUMEN

Increasing resistance of bacteria to antibiotics is a serious global challenge and there is a need to unlock the potential of novel antibacterial targets. One such target is the essential prokaryotic endoribonuclease RNase E. Using a combination of in silico high-throughput screening and in vitro validation we have identified three novel small molecule inhibitors of RNase E that are active against RNase E from Escherichia coli, Francisella tularensis and Acinetobacter baumannii. Two of the inhibitors are non-natural small molecules that could be suitable as lead compounds for the development of broad-spectrum antibiotics targeting RNase E. The third small molecule inhibitor is glucosamine-6-phosphate, a precursor of bacterial cell envelope peptidoglycans and lipopolysaccharides, hinting at a novel metabolite-mediated mechanism of regulation of RNase E.

15.
SLAS Discov ; 24(4): 440-456, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30890054

RESUMEN

For the past three decades, the pharmaceutical industry has undertaken many diverse approaches to discover novel antibiotics, with limited success. We have witnessed and personally experienced many mistakes, hurdles, and dead ends that have derailed projects and discouraged scientists and business leaders. Of the many factors that affect the outcomes of screening campaigns, a lack of understanding of the properties that drive efflux and permeability requirements across species has been a major barrier for advancing hits to leads. Hits that possess bacterial spectrum have seldom also possessed druglike properties required for developability and safety. Persistence in solving these two key barriers is necessary for the reinvestment into discovering antibacterial agents. This perspective narrates our experience in antibacterial discovery-our lessons learned about antibacterial challenges as well as best practices for screening strategies. One of the tenets that guides us is that drug discovery is a hypothesis-driven science. Application of this principle, at all steps in the antibacterial discovery process, should improve decision making and possibly the odds of what has become, in recent decades, an increasingly challenging endeavor with dwindling success rates.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/química , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
16.
Infect Drug Resist ; 10: 521-532, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29290689

RESUMEN

BACKGROUND: Over the decades, new antibacterial agents have been developed in an attempt to combat drug resistance, but they remain unsuccessful. Recently, a novel class of bacterial gene expression regulators, bacterial small RNAs (sRNAs), has received increasing attention toward their involvement in antibiotic resistance. This systematic review aimed to discuss the potential of these small molecules as antibacterial drug targets. METHODS: Two investigators performed a comprehensive search of MEDLINE, EmBase, and ISI Web of Knowledge from inception to October 2016, without restriction on language. We included all in vitro and in vivo studies investigating the role of bacterial sRNA in antibiotic resistance. Risk of bias of the included studies was assessed by a modified guideline of Systematic Review Center for Laboratory Animal Experimentation (SYRCLE). RESULTS: Initial search yielded 432 articles. After exclusion of non-original articles, 20 were included in this review. Of these, all studies examined bacterial-type strains only. There were neither relevant in vivo nor clinical studies. The SYRCLE scores ranged from to 5 to 7, with an average of 5.9. This implies a moderate risk of bias. sRNAs influenced the antibiotics susceptibility through modulation of gene expression relevant to efflux pumps, cell wall synthesis, and membrane proteins. CONCLUSION: Preclinical studies on bacterial-type strains suggest that modulation of sRNAs could enhance bacterial susceptibility to antibiotics. Further studies on clinical isolates and in vivo models are needed to elucidate the therapeutic value of sRNA modulation on treatment of multidrug-resistant bacterial infection.

17.
Mem. Inst. Oswaldo Cruz ; 109(4): 502-505, 03/07/2014. tab
Artículo en Inglés | LILACS | ID: lil-716310

RESUMEN

Although analysis of toxin-antitoxin (TA) systems can be instructive, to date, there is no information on the prevalence and identity of TA systems based on a large panel of Acinetobacter baumannii clinical isolates. The aim of the current study was to screen for functional TA systems among clinical isolates of A. baumannii and to identify the systems’ locations. For this purpose, we screened 85 A. baumannii isolates collected from different clinical sources for the presence of the mazEF, relBE and higBA TA genes. The results revealed that the genes coding for the mazEF TA system were commonly present in all clinical isolates of A. baumannii. Reverse transcriptase-polymerase chain reaction analysis showed that transcripts were produced in the clinical isolates. Our findings showed that TA genes are prevalent, harboured by chromosomes and transcribed within A. baumannii. Hence, activation of the toxin proteins in the mazEF TA system should be investigated further as an effective antibacterial strategy against this bacterium.


Asunto(s)
Humanos , Acinetobacter baumannii/metabolismo , Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Acinetobacter baumannii/genética , Antitoxinas/genética , Toxinas Bacterianas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA