Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Food Microbiol ; 83: 1-8, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31202399

RESUMEN

The role of killer yeasts of the species Debaryomyces hansenii and Wickerhamomyces anomalus in biocontrol of Monilinia fructicola, and their involvement in plant defence mechanisms against brown rot in apple fruits, were investigated. D. hansenii KI2a and W. anomalus BS91 strains showed the highest in vitro biocontrol activity, inhibiting mycelium growth by 69.53% and 66.08% respectively, as compared to control fungal cultures. Brown rot on apple fruits was significantly reduced by BS91 and two strains of D. hansenii KI2a and AII4b by 92.46%, 85.10% and 70.02%, respectively, in comparison to infected fruits, which did not receive any pre-treatment. In enzymatic tests, the most significant changes in peroxidase (POD) and catalase (CAT) activities were observed in fruits inoculated either with BS91 followed by M. fructicola infection or with AII4b yeast strain alone, where POD activities were significantly higher by 67% and 54%, respectively, and CAT activities were significantly lower by 65% and 68%, respectively, than in untreated control fruits. These results confirmed the ability of killer yeasts to influence host-defence related enzyme activities in apple fruit tissue and may suggest that AII4b killer strain has a potential as biocontrol agent prior to infection by triggering immune response mechanisms in plant tissue, whereas BS91 strain is the most effective during pathogen infection and could be used as biocontrol agent in postharvest disease onset. Accordingly, the antagonistic strains of W. anomalus BS91 and D. hansenii KI2a and AII4b could be proposed as active ingredients for the development of biofungicide against M. fructicola.


Asunto(s)
Antibiosis , Agentes de Control Biológico , Candida/patogenicidad , Frutas/microbiología , Malus/microbiología , Saccharomycetales/fisiología , Microbiología de Alimentos , Conservación de Alimentos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
2.
Foods ; 12(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37761216

RESUMEN

The aim of this work was to evaluate the efficacy of two antagonistic yeasts, Metschnikowia pulcherrima strain MPR3 and M. fructicola strain NRRL Y-27328 (commercial product NOLI), applied in addition to the "on-farm biological treatments" (BIO) carried out during the production season, for the containment of powdery mildew and grey mould diseases on organic table grapes 'Italia'. The yeast strains were applied in the field three times, and their efficacy was evaluated during the production season and under postharvest conditions. Overall, M. pulcherrima MPR3 combined with BIO treatments reduced disease incidence caused by Erysiphe necator and disease incidence and severity caused by Botrytis cinerea with values between 67.8% and 86.2%, showing higher efficacy than BIO treatments applied alone and in combination with NOLI. Field treatments based on BIO+MPR3 maintained their performance also during fruit storage, protecting grape berries from grey mould development to a greater extent than the other treatments (disease reduction of about 98%). Thus, the presence of M. pulcherrima MPR3 seems to improve disease management both in the field and in postharvest environments, without negative impacts on grape microbial communities. These findings highlight the potential of M. pulcherrima MPR3 as a promising alternative strategy for disease control in organic vineyards and in postharvest, providing sustainable solutions to improve food quality and safety.

3.
Foods ; 10(11)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34829022

RESUMEN

Three yeast strains, namely Cryptococcus albidus (Ca63), Cryptococcus albidus (Ca64), and Candida parapsilosis (Yett1006), and their combinations, including single yeast agent, two combined yeast strains, single yeast agent + NaHCO3, single yeast agent + chitosan, single yeast agent + ascorbic acid, and single yeast agent + konjac powder, were evaluated for their activity against Botrytis cinerea, the most economically important fungal pathogens causing postharvest disease of snap beans. In in vitro tests, no inhibition zone was observed in dual cultures of three yeast strains and B. cinerea. The mycelial growth inhibition rates of B. cinerea for Ca63, Ca64, and Yett1006 were 97%, 95%, and 97%, respectively. In in vivo tests, the optimal combination of the lowest disease index of snap beans with B. cinerea was Ca63 + Ca64, with a preventing effect of 75%. The decay rate and rust spots index of Ca64 + ascorbic acid combination were 25% and 20%, respectively, which were the lowest. The activities of defense-related enzymes increased, while malondialdehyde (MDA) content was suppressed in snap beans after different treatments. Our results highlight the potential of the three yeast strains and their combinations as new nonpolluting agents for the integrated control of B. cinerea on snap beans.

4.
Microbiol Insights ; 12: 1178636119837643, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30956526

RESUMEN

The biocontrol potential of four wild yeast strains (Meyerozyma guilliermondii - strain YS-1, Meyerozyma caribbica - strain YS-3, Cryptococcus albidus - strain YS-4, and Cryptococcus sp. - strain YS-5) against Penicillium expansum was studied in vivo (on Golden Delicious apples). The test yeasts were applied to the fruits alone as well as in combination with 2% CaCl2. Treated apples were stored at room temperature (~21°C) for up to 2 weeks or under refrigeration (3°C) for up to 2 months. Candida oleophila was used as positive biocontrol agent. Biocontrol activities were expressed as percentages of lesion size reduction caused by the test yeasts or by test yeasts + CaCl2 as compared with decays on apples treated with P. expansum alone. All strains tested during this study showed some degree of biocontrol activity against P. expansum. When the test yeasts were applied alone, they effected moderate pathogen inhibition reducing the decay size by 28% to 52% at day 7 and 11% to 27% at day 14 of incubation at room temperature. When the treated apples were stored at 3°C, lesion size reduction was between 48% and 63% after 1 month and 24% to 41% after 2 months of incubation. Addition of CaCl2 to yeast suspensions facilitated much higher pathogen inhibition. At room temperature, lesion size reduction ranged between 74% and 77% during the first week. After 2 weeks of incubation, decays on yeast + CaCl2-treated apples were still substantially smaller (49%-73% lower) than those on apples treated with P. expansum alone. At refrigeration, lesion size reduction ranged between 76% and 92% in the first month of storage and between 75% and 87% after 2 months of incubation. Decay incidence was 75% to 100% in apples stored at room temperature and 30% to 85% in those kept under refrigeration. The inhibitory activities of the wild yeast strains were similar to those exhibited by C. oleophila for the most part. These strains, when combined with CaCl2, showed high potential as biocontrol agents against P. expansum on stored apples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA