Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 577
Filtrar
1.
Mar Drugs ; 22(3)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38535475

RESUMEN

3D bioprinting is a disruptive, computer-aided, and additive manufacturing technology that allows the obtention, layer-by-layer, of 3D complex structures. This technology is believed to offer tremendous opportunities in several fields including biomedical, pharmaceutical, and food industries. Several bioprinting processes and bio-ink materials have emerged recently. However, there is still a pressing need to develop low-cost sustainable bio-ink materials with superior qualities (excellent mechanical, viscoelastic and thermal properties, biocompatibility, and biodegradability). Marine-derived biomaterials, including polysaccharides and proteins, represent a viable and renewable source for bio-ink formulations. Therefore, the focus of this review centers around the use of marine-derived biomaterials in the formulations of bio-ink. It starts with a general overview of 3D bioprinting processes followed by a description of the most commonly used marine-derived biomaterials for 3D bioprinting, with a special attention paid to chitosan, glycosaminoglycans, alginate, carrageenan, collagen, and gelatin. The challenges facing the application of marine-derived biomaterials in 3D bioprinting within the biomedical and pharmaceutical fields along with future directions are also discussed.


Asunto(s)
Bioimpresión , Quitosano , Materiales Biocompatibles , Tinta
2.
Bioprocess Biosyst Eng ; 47(4): 443-461, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38296889

RESUMEN

In recent years, the ability to create intricate, live tissues and organs has been made possible thanks to three-dimensional (3D) bioprinting. Although tissue engineering has received a lot of attention, there is growing interest in the use of 3D bioprinting for microorganisms. Microorganisms like bacteria, fungi, and algae, are essential to many industrial bioprocesses, such as bioremediation as well as the manufacture of chemicals, biomaterials, and pharmaceuticals. This review covers current developments in 3D bioprinting methods for microorganisms. We go over the bioink compositions designed to promote microbial viability and growth, taking into account factors like nutrient delivery, oxygen supply, and waste elimination. Additionally, we investigate the most important bioprinting techniques, including extrusion-based, inkjet, and laser-assisted approaches, as well as their suitability with various kinds of microorganisms. We also investigate the possible applications of 3D bioprinted microbes. These range from constructing synthetic microbial consortia for improved metabolic pathway combinations to designing spatially patterned microbial communities for enhanced bioremediation and bioprocessing. We also look at the potential for 3D bioprinting to advance microbial research, including the creation of defined microenvironments to observe microbial behavior. In conclusion, the 3D bioprinting of microorganisms marks a paradigm leap in microbial bioprocess engineering and has the potential to transform many application areas. The ability to design the spatial arrangement of various microorganisms in functional structures offers unprecedented possibilities and ultimately will drive innovation.


Asunto(s)
Bioimpresión , Bioimpresión/métodos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Materiales Biocompatibles , Andamios del Tejido/química
3.
Small ; 19(50): e2205078, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36587991

RESUMEN

Three-dimensional (3D) bioprinting is driving significant innovations in biomedicine over recent years. Under certain scenarios such as in intraoperative bioprinting, the bioinks used should exhibit not only cyto/biocompatibility but also adhesiveness in wet conditions. Herein, an adhesive bioink composed of gelatin methacryloyl, gelatin, methacrylated hyaluronic acid, and skin secretion of Andrias davidianus is designed. The bioink exhibits favorable cohesion to allow faithful extrusion bioprinting in wet conditions, while simultaneously showing good adhesion to a variety of surfaces of different chemical properties, possibly achieved through the diverse bonds presented in the bioink formulation. As such, this bioink is able to fabricate sophisticated planar and volumetric constructs using extrusion bioprinting, where the dexterity is further enhanced using ergonomic handheld bioprinters to realize in situ bioprinting. In vitro experiments reveal that cells maintain high viability; further in vivo studies demonstrate good integration and immediate injury sealing. The characteristics of the bioink indicate its potential widespread utility in extrusion bioprinting and will likely broaden the applications of bioprinting toward situations such as in situ dressing and minimally invasive tissue regeneration.


Asunto(s)
Bioimpresión , Andamios del Tejido , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Adhesivos , Gelatina/química , Piel , Cicatrización de Heridas , Impresión Tridimensional , Hidrogeles/química , Bioimpresión/métodos
4.
Methods ; 205: 191-199, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810960

RESUMEN

This century is blessed with enhanced medical facilities on the grounds of the development of smart biomaterials. The rise of the four-dimensional (4D) bioprinting technology is a shining example. Using inert biomaterials as the bioinks for the three-dimensional (3D) printing process, static objects that might not be able to mimic the dynamic nature of tissues would be fabricated; by contrast, 4D bioprinting can be used for the fabrication of stimuli-responsive cell-laden structures that can evolve with time and enable engineered tissues to undergo morphological changes in a pre-planned way. For all the aptitude of 4D bioprinting technology in tissue engineering, it is imperative to select suitable stimuli-responsive biomaterials with cell-supporting functionalities and responsiveness; as a result, in this article, recent advances and challenges in smart biomaterials for 4D bioprinting are briefly discussed. An overview perspective concerning the latest developments in 4D-bioprinting is also provided.


Asunto(s)
Bioimpresión , Materiales Biocompatibles/química , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
5.
J Artif Organs ; 26(4): 255-274, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37119315

RESUMEN

In recent years, due to the increase in diseases that require organ/tissue transplantation and the limited donor, on the other hand, patients have lost hope of recovery and organ transplantation. Regenerative medicine is one of the new sciences that promises a bright future for these patients by providing solutions to repair, improve function, and replace tissue. One of the technologies used in regenerative medicine is three-dimensional (3D) bioprinters. Bioprinting is a new strategy that is the basis for starting a global revolution in the field of medical sciences and has attracted much attention. 3D bioprinters use a combination of advanced biology and cell science, computer science, and materials science to create complex bio-hybrid structures for various applications. The capacity to use this technology can be demonstrated in regenerative medicine to make various connective tissues, such as skin, cartilage, and bone. One of the essential parts of a 3D bioprinter is the bio-ink. Bio-ink is a combination of biologically active molecules, cells, and biomaterials that make the printed product. In this review, we examine the main bioprinting strategies, such as inkjet printing, laser, and extrusion-based bioprinting, as well as some of their applications.


Asunto(s)
Bioimpresión , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Bioimpresión/métodos , Medicina Regenerativa/métodos , Materiales Biocompatibles , Tecnología , Impresión Tridimensional , Andamios del Tejido
6.
Curr Cardiol Rep ; 25(6): 505-514, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37129759

RESUMEN

PURPOSE OF REVIEW: Bioengineering of functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. 3D bioprinting was developed to create cardiac tissue in hydrogels that can mimic the structural, physiological, and functional features of native myocardium. Through a detailed review of the 3D printing technologies and bioink materials used in the creation of a heart tissue, this article discusses the potential of engineered heart tissues in biomedical applications. RECENT FINDINGS: In this review, we discussed the recent progress in 3D bioprinting strategies for cardiac tissue engineering, including bioink and 3D bioprinting methods as well as examples of engineered cardiac tissue such as in vitro cardiac models and vascular channels. 3D printing is a powerful tool for creating in vitro cardiac tissues that are structurally and functionally similar to real tissues. The use of human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) enables the generation of patient-specific tissues. These tissues have the potential to be used for regenerative therapies, disease modeling, and drug testing.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocardio , Humanos , Ingeniería de Tejidos , Miocitos Cardíacos/fisiología , Impresión Tridimensional , Andamios del Tejido/química
7.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37629064

RESUMEN

Three-dimensional (3D) bioprinting is a unique combination of technological advances in 3D printing and tissue engineering. It has emerged as a promising approach to address the dilemma in current dental treatments faced by clinicians in order to repair or replace injured and diseased tissues. The exploration of 3D bioprinting technology provides high reproducibility and precise control of the bioink containing the desired cells and biomaterial over the architectural and dimensional features of the scaffolds in fabricating functional tissue constructs that are specific to the patient treatment need. In recent years, the dental applications of different 3D bioprinting techniques, types of novel bioinks, and the types of cells used have been extensively explored. Most of the findings noted significant challenges compared to the non-biological 3D printing approach in constructing the bioscaffolds that mimic native tissues. Hence, this review focuses solely on the implementation of 3D bioprinting techniques and strategies based on cell-laden bioinks. It discusses the in vitro applications of 3D-bioprinted scaffolds on cell viabilities, cell functionalities, differentiation ability, and expression of the markers as well as the in vivo evaluations of the implanted bioscaffolds on the animal models for bone, periodontal, dentin, and pulp tissue regeneration. Finally, it outlines some perspectives for future developments in dental applications.


Asunto(s)
Materiales Biocompatibles , Bioimpresión , Animales , Reproducibilidad de los Resultados , Diferenciación Celular , Supervivencia Celular
8.
Molecules ; 28(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175094

RESUMEN

In recent decades, significant progress has been made in liver tissue engineering through the use of 3D bioprinting technology. This technology offers the ability to create personalized biological structures with precise geometric design capabilities. The complex and multifaceted nature of liver diseases underscores the need for advanced technologies to accurately mimic the physiological and mechanical characteristics, as well as organ-level functions, of liver tissue in vitro. Bioprinting stands out as a superior option over traditional two-dimensional cell culture models and animal models due to its stronger biomimetic advantages. Through the use of bioprinting, it is possible to create liver tissue with a level of structural and functional complexity that more closely resembles the real organ, allowing for more accurate disease modeling and drug testing. As a result, it is a promising tool for restoring and replacing damaged tissue and organs in the field of liver tissue engineering and drug research. This article aims to present a comprehensive overview of the progress made in liver tissue engineering using bioprinting technology to provide valuable insights for researchers. The paper provides a detailed account of the history of liver tissue engineering, highlights the current 3D bioprinting methods and bioinks that are widely used, and accentuates the importance of existing in vitro liver tissue models based on 3D bioprinting and their biomedical applications. Additionally, the article explores the challenges faced by 3D bioprinting and predicts future trends in the field. The progress of 3D bioprinting technology is poised to bring new approaches to printing liver tissue in vitro, while offering powerful tools for drug development, testing, liver disease modeling, transplantation, and regeneration, which hold great academic and practical significance.


Asunto(s)
Bioimpresión , Animales , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Tecnología , Hígado , Andamios del Tejido
9.
Mater Des ; 2332023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37854951

RESUMEN

Bioinks for cell-based bioprinting face availability limitations. Furthermore, the bioink development process needs comprehensive printability assessment methods and a thorough understanding of rheological factors' influence on printing outcomes. To bridge this gap, our study aimed to investigate the relationship between rheological properties and printing outcomes. We developed a specialized bioink artifact specifically designed to improve the quantification of printability assessment. This bioink artifact adhered to established criteria from extrusion-based bioprinting approaches. Seven hydrogel-based bioinks were selected and tested using the bioink artifact and rheological measurement. Rheological analysis revealed that the high-performing bioinks exhibited notable characteristics such as high storage modulus, low tan(δ), high shear-thinning capabilities, high yield stress, and fast, near-complete recovery abilities. Although rheological data alone cannot fully explain printing outcomes, certain metrics like storage modulus and tan(δ) correlated well (R2 > 0.9) with specific printing outcomes, such as gap-spanning capability and turn accuracy. This study provides a comprehensive examination of bioink shape fidelity across a wide range of bioinks, rheological measures, and printing outcomes. The results highlight the importance of considering the holistic view of bioink's rheological properties and directly measuring printing outcomes. These findings underscore the need to enhance bioink availability and establish standardized methods for assessing printability.

10.
Mar Drugs ; 20(6)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35736169

RESUMEN

Collagens from a wide array of animals have been explored for use in tissue engineering in an effort to replicate the native extracellular environment of the body. Marine-derived biomaterials offer promise over their conventional mammalian counterparts due to lower risk of disease transfer as well as being compatible with more religious and ethical groups within society. Here, collagen type I derived from a marine source (Macruronus novaezelandiae, Blue Grenadier) is compared with the more established porcine collagen type I and its potential in tissue engineering examined. Both collagens were methacrylated, to allow for UV crosslinking during extrusion 3D printing. The materials were shown to be highly cytocompatible with L929 fibroblasts. The mechanical properties of the marine-derived collagen were generally lower than those of the porcine-derived collagen; however, the Young's modulus for both collagens was shown to be tunable over a wide range. The marine-derived collagen was seen to be a potential biomaterial in tissue engineering; however, this may be limited due to its lower thermal stability at which point it degrades to gelatin.


Asunto(s)
Bioimpresión , Animales , Materiales Biocompatibles , Colágeno , Colágeno Tipo I , Gelatina , Hidrogeles , Mamíferos , Porcinos , Ingeniería de Tejidos , Andamios del Tejido
11.
Differentiation ; 121: 25-34, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34454348

RESUMEN

The native extracellular matrix (ECM) provides a matrix to hold tissue/organ, defines the cellular fate and function, and retains growth factors. Such a matrix is considered as a most biomimetic scaffold for tissue engineering due to the biochemical and biological components, 3D hierarchical structure, and physicomechanical properties. Several attempts have been performed to decellularize allo- or xeno-graft tissues and used them for bone repairing and regeneration. Decellularized ECM (dECM) technology has been developed to create an in vivo-like microenvironment to promote cell adhesion, growth, and differentiation for tissue repair and regeneration. Decellularization is mediated through physical, chemical, and enzymatic methods. In this review, we describe the recent progress in bone decellularization and their applications as a scaffold, hydrogel, bioink, or particles in bone tissue engineering. Furthermore, we address the native dECM limitations and the potential of non-bone dECM, cell-based ECM, and engineered ECM (eECM) for in vitro osteogenic differentiation and in vivo bone regeneration.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Matriz Extracelular Descelularizada , Matriz Extracelular , Osteogénesis , Tecnología
12.
Cell Tissue Bank ; 23(3): 441-457, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35103863

RESUMEN

Auricular deformities (Microtia) can cause physical, social as well as psychological impacts on a patient's wellbeing. Biofabrication of a complex structure such as ear pinna is not precise with currently available techniques. These limitations can be overcome with the help of tissue engineering. In this article, the authors presented molding and three dimensional (3D) printing to generate a flexible, human size ear pinna. The decellularization of goat ear cartilage protocol and bioink alkaline digestion protocol was followed to yield complete removal of all cellular components without changing the properties of the Extra Cellular Matrix (ECM). Decellularized scaffold used in molding technology and 3D printing technology Computer-Aided Design /Stereolithography (CAD/STL) uses bioink to construct the patient-specific ear. In vivo biocompatibility of the both ear pinnae showed demonstrable recellularization. Histology and scanning electron microscopy analysis revealed the recellularization of cartilage-specific cells and the development of ECM in molded and 3D printed ear pinna after transplantation. Both the techniques provided ideal results for mechanical properties such as elasticity. Vascular Associated Protein expression revealed specific vasculogenic pattern (angiogenesis) in transplanted molded pinna. Chondrocyte specific progenitor cells express CD90+ which highlighted newly developed chondrocytes in both the grafts which indicated that the xenograft was accepted by the rat. Transplantation of molded as well as 3D ear pinna was successful in an animal model and can be available for clinical treatments as a medical object to cure auricular deformities.


Asunto(s)
Pabellón Auricular , Ingeniería de Tejidos , Animales , Cartílago Auricular , Matriz Extracelular/química , Humanos , Impresión Tridimensional , Ratas , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
13.
Int J Mol Sci ; 23(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35628238

RESUMEN

Digital-light-processing (DLP) three-dimensional (3D) bioprinting, which has a rapid printing speed and high precision, requires optimized biomaterial ink to ensure photocrosslinking for successful printing. However, optimization studies on DLP bioprinting have yet to sufficiently explore the measurement of light exposure energy and biomaterial ink absorbance controls to improve the printability. In this study, we synchronized the light wavelength of the projection base printer with the absorption wavelength of the biomaterial ink. In this paper, we provide a stepwise explanation of the challenges associated with unsynchronized absorption wavelengths and provide appropriate examples. In addition to biomaterial ink wavelength synchronization, we introduce photorheological measurements, which can provide optimized light exposure conditions. The photorheological measurements provide precise numerical data on light exposure time and, therefore, are an effective alternative to the expendable and inaccurate conventional measurement methods for light exposure energy. Using both photorheological measurements and bioink wavelength synchronization, we identified essential printability optimization conditions for DLP bioprinting that can be applied to various fields of biological sciences.


Asunto(s)
Bioimpresión , Materiales Biocompatibles , Bioimpresión/métodos , Impresión Tridimensional
14.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35269850

RESUMEN

The aim of this study was to verify the applicability of high-concentration collagen-based bioink with MSC (ADSC) and decellularized ECM granules for the formation of cartilage tissue de novo after subcutaneous implantation of the scaffolds in rats. The printability of the bioink (4% collagen, 2.5% decellularized ECM granules, derived via 280 µm sieve) was shown. Three collagen-based compositions were studied: (1) with ECM; (2) with MSC; (3) with ECM and MSC. It has been established that decellularized ECM granules are able to stimulate chondrogenesis both in cell-free and MSC-laden scaffolds. Undesirable effects have been identified: bone formation as well as cartilage formation outside of the scaffold area. The key perspectives and limitations of ECM granules (powder) application have been discussed.


Asunto(s)
Bioimpresión , Condrogénesis , Animales , Cartílago , Colágeno , Matriz Extracelular Descelularizada , Matriz Extracelular , Impresión Tridimensional , Ratas , Ingeniería de Tejidos , Andamios del Tejido
15.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269885

RESUMEN

Cartilage lesions are difficult to repair due to low vascular distribution and may progress into osteoarthritis. Despite numerous attempts in the past, there is no proven method to regenerate hyaline cartilage. The purpose of this study was to investigate the ability to use a 3D printed biomatrix to repair a critical size femoral chondral defect using a canine weight-bearing model. The biomatrix was comprised of human costal-derived cartilage powder, micronized adipose tissue, and fibrin glue. Bilateral femoral condyle defects were treated on 12 mature beagles staged 12 weeks apart. Four groups, one control and three experimental, were used. Animals were euthanized at 32 weeks to collect samples. Significant differences between control and experimental groups were found in both regeneration pattern and tissue composition. In results, we observed that the experimental group with the treatment with cartilage powder and adipose tissue alleviated the inflammatory response. Moreover, it was found that the MOCART score was higher, and cartilage repair was more organized than in the other groups, suggesting that a combination of cartilage powder and adipose tissue has the potential to repair cartilage with a similarity to normal cartilage. Microscopically, there was a well-defined cartilage-like structure in which the mid junction below the surface layer was surrounded by a matrix composed of collagen type I, II, and proteoglycans. MRI examination revealed significant reduction of the inflammation level and progression of a cartilage-like growth in the experimental group. This canine study suggests a promising new surgical treatment for cartilage lesions.


Asunto(s)
Cartílago Articular , Animales , Cartílago Articular/cirugía , Perros , Fémur/cirugía , Humanos , Cartílago Hialino , Articulación de la Rodilla/cirugía , Polvos
16.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055092

RESUMEN

This paper describes the use of silk protein, including fibroin and sericin, from an alkaline solution of Ca(OH)2 for the clean degumming of silk, which is neutralized by sulfuric acid to create calcium salt precipitation. The whole sericin (WS) can not only be recycled, but completely degummed silk fibroin (SF) is also obtained in this process. The inner layers of sericin (ILS) were also prepared from the degummed silk in boiling water by 120 °C water treatment. When the three silk proteins (SPs) were individually grafted with glycidyl methacrylate (GMA), three grafted silk proteins (G-SF, G-WS, G-ILS) were obtained. After adding I2959 (a photoinitiator), the SP bioinks were prepared with phosphate buffer (PBS) and subsequently bioprinted into various SP scaffolds with a 3D network structure. The compressive strength of the SF/ILS (20%) scaffold added to G-ILS was 45% higher than that of the SF scaffold alone. The thermal decomposition temperatures of the SF/WS (10%) and SF/ILS (20%) scaffolds, mainly composed of a ß-sheet structures, were 3 °C and 2 °C higher than that of the SF scaffold alone, respectively. The swelling properties and resistance to protease hydrolysis of the SP scaffolds containing sericin were improved. The bovine insulin release rates reached 61% and 56% after 5 days. The L929 cells adhered, stretched, and proliferated well on the SP composite scaffold. Thus, the SP bioinks obtained could be used to print different types of SP composite scaffolds adapted to a variety of applications, including cells, drugs, tissues, etc. The techniques described here provide potential new applications for the recycling and utilization of sericin, which is a waste product of silk processing.


Asunto(s)
Materiales Biocompatibles/química , Bioimpresión , Tinta , Impresión Tridimensional , Proteínas/química , Seda/química , Andamios del Tejido/química , Animales , Supervivencia Celular , Células Cultivadas , Sistemas de Liberación de Medicamentos , Fibroínas , Ensayo de Materiales , Fenómenos Mecánicos , Ratones , Sericinas , Análisis Espectral , Ingeniería de Tejidos
17.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408789

RESUMEN

Tumor cells evolve in a complex and heterogeneous environment composed of different cell types and an extracellular matrix. Current 2D culture methods are very limited in their ability to mimic the cancer cell environment. In recent years, various 3D models of cancer cells have been developed, notably in the form of spheroids/organoids, using scaffold or cancer-on-chip devices. However, these models have the disadvantage of not being able to precisely control the organization of multiple cell types in complex architecture and are sometimes not very reproducible in their production, and this is especially true for spheroids. Three-dimensional bioprinting can produce complex, multi-cellular, and reproducible constructs in which the matrix composition and rigidity can be adapted locally or globally to the tumor model studied. For these reasons, 3D bioprinting seems to be the technique of choice to mimic the tumor microenvironment in vivo as closely as possible. In this review, we discuss different 3D-bioprinting technologies, including bioinks and crosslinkers that can be used for in vitro cancer models and the techniques used to study cells grown in hydrogels; finally, we provide some applications of bioprinted cancer models.


Asunto(s)
Bioimpresión , Neoplasias , Bioimpresión/métodos , Humanos , Hidrogeles , Medicina de Precisión , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido , Microambiente Tumoral
18.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955720

RESUMEN

Among advanced therapy medicinal products, tissue-engineered products have the potential to address the current critical shortage of donor organs and provide future alternative options in organ replacement therapy. The clinically available tissue-engineered products comprise bradytrophic tissue such as skin, cornea, and cartilage. A sufficient macro- and microvascular network to support the viability and function of effector cells has been identified as one of the main challenges in developing bioartificial parenchymal tissue. Three-dimensional bioprinting is an emerging technology that might overcome this challenge by precise spatial bioink deposition for the generation of a predefined architecture. Bioinks are printing substrates that may contain cells, matrix compounds, and signaling molecules within support materials such as hydrogels. Bioinks can provide cues to promote vascularization, including proangiogenic signaling molecules and cocultured cells. Both of these strategies are reported to enhance vascularization. We review pre-, intra-, and postprinting strategies such as bioink composition, bioprinting platforms, and material deposition strategies for building vascularized tissue. In addition, bioconvergence approaches such as computer simulation and artificial intelligence can support current experimental designs. Imaging-derived vascular trees can serve as blueprints. While acknowledging that a lack of structured evidence inhibits further meta-analysis, this review discusses an end-to-end process for the fabrication of vascularized, parenchymal tissue.


Asunto(s)
Bioimpresión , Inteligencia Artificial , Bioimpresión/métodos , Simulación por Computador , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
19.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35055112

RESUMEN

In 3D bioprinting for cartilage regeneration, bioinks that support chondrogenic development are of key importance. Growth factors covalently bound in non-printable hydrogels have been shown to effectively promote chondrogenesis. However, studies that investigate the functionality of tethered growth factors within 3D printable bioinks are still lacking. Therefore, in this study, we established a dual-stage crosslinked hyaluronic acid-based bioink that enabled covalent tethering of transforming growth factor-beta 1 (TGF-ß1). Bone marrow-derived mesenchymal stromal cells (MSCs) were cultured over three weeks in vitro, and chondrogenic differentiation of MSCs within bioink constructs with tethered TGF-ß1 was markedly enhanced, as compared to constructs with non-covalently incorporated TGF-ß1. This was substantiated with regard to early TGF-ß1 signaling, chondrogenic gene expression, qualitative and quantitative ECM deposition and distribution, and resulting construct stiffness. Furthermore, it was successfully demonstrated, in a comparative analysis of cast and printed bioinks, that covalently tethered TGF-ß1 maintained its functionality after 3D printing. Taken together, the presented ink composition enabled the generation of high-quality cartilaginous tissues without the need for continuous exogenous growth factor supply and, thus, bears great potential for future investigation towards cartilage regeneration. Furthermore, growth factor tethering within bioinks, potentially leading to superior tissue development, may also be explored for other biofabrication applications.


Asunto(s)
Bioimpresión/métodos , Cartílago Articular/citología , Ácido Hialurónico/química , Células Madre Mesenquimatosas/citología , Factor de Crecimiento Transformador beta1/farmacología , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Diferenciación Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Humanos , Hidrogeles , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido , Factor de Crecimiento Transformador beta1/química
20.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269978

RESUMEN

In patients with comorbidities, a large number of wounds become chronic, representing an overwhelming economic burden for healthcare systems. Engineering the microenvironment is a paramount trend to activate cells and burst-healing mechanisms. The extrusion bioprinting of advanced dressings was performed with novel composite bioinks made by blending adipose decellularized extracellular matrix with plasma and human dermal fibroblasts. Rheological and microstructural assessments of the composite hydrogels supported post-printing cell viability and proliferation over time. Embedded fibroblasts expressed steady concentrations of extracellular matrix proteins, including type 1, 3 and 4 collagens and fibronectin. ELISA assessments, multiplex protein arrays and ensuing bioinformatic analyses revealed paracrine activities corresponding to wound-healing activation through the modulation of inflammation and angiogenesis. The two modalities of advanced dressings, differing in platelet number, showed differences in the release of inflammatory and angiogenic cytokines, including interleukin 8 (IL-8), monocyte chemotactic protein 1 (MCP-1), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF). The conditioned media stimulated human-dermal-cell proliferation over time. Our findings open the door to engineering the microenvironment as a strategy to enhance healing.


Asunto(s)
Bioimpresión , Vendajes , Matriz Extracelular/metabolismo , Humanos , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido/química , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA