Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 658
Filtrar
1.
Small ; 20(12): e2307005, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37940625

RESUMEN

Solar-driven interfacial desalination is widely considered to be a promising technology to address the global water crisis. This study proposes a novel electrospun nanofiber-based all-in-one vertically interfacial solar evaporator endowed with a high steam generation rate, steady omnidirectional evaporation, and enduring ultrahigh-salinity brine desalination. In particular, the electrospun nanofiber is collected into the tubular structure, followed by spraying with a dense crosslinked poly(vinyl alcohol) film, which renders them sufficiently strong for the preparation of a vertically array evaporator. The integrated evaporator made an individual capillary as a unit to form multiple thermal localization interfaces and steam dissipation channels, realizing zone heating of water. Thus a high steam generation rate exceeding 4.0 kg m-2 h-1 in pure water is demonstrated even under omnidirectional sunlight, and outperforms existing evaporators. Moreover, salt ions in the photothermal layer can be effectively transported to the water in capillaries and subsequently exchanged with the bulk water due to the strong action of capillary force, which ensures an ultrahigh desalination rate (≈12.5 kg m-2 h-1 under 3 sun) in 25 wt% concentration brine over 300 min. As such, this work provides a meaningful roadmap for the development of state-of-the-art solar-driven interfacial desalination.

2.
Appl Environ Microbiol ; 90(2): e0165523, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38231565

RESUMEN

Ten Gouda cheese wheels with an age of 31 weeks from six different batch productions were affected by a crack defect and displayed an unpleasant off-flavor. To unravel the causes of these defects, the concentrations of free amino acids, other organic acids, volatile organic compounds, and biogenic amines were quantified in zones around the cracks and in zones without cracks, and compared with those of similar Gouda cheeses without crack defect. The Gouda cheeses with cracks had a significantly different metabolome. The production of the non-proteinogenic amino acid γ-aminobutyric acid (GABA) could be unraveled as the key mechanism leading to crack formation, although the production of the biogenic amines cadaverine and putrescine contributed as well. High-throughput amplicon sequencing of the full-length 16S rRNA gene based on whole-community DNA revealed the presence of Loigolactobacillus rennini and Tetragenococcus halophilus as most abundant non-starter lactic acid bacteria in the zones with cracks. Shotgun metagenomic sequencing allowed to obtain a metagenome-assembled genome of both Loil. rennini and T. halophilus. However, only Loil. rennini contained genes necessary for the production of GABA, cadaverine, and putrescine. Metagenetics further revealed the brine and the rennet used during cheese manufacturing as the most plausible inoculation sources of both Loil. rennini and T. halophilus.IMPORTANCECrack defects in Gouda cheeses are still poorly understood, although they can lead to major economic losses in cheese companies. In this study, the bacterial cause of a crack defect in Gouda cheeses was identified, and the pathways involved in the crack formation were unraveled. Moreover, possible contamination sources were identified. The brine bath might be a major source of bacteria with the potential to deteriorate cheese quality, which suggests that cheese producers should regularly investigate the quality and microbial composition of their brines. This study illustrated how a multiphasic approach can understand and mitigate problems in a cheese company.


Asunto(s)
Carboxiliasas , Queso , Lactobacillales , Lactobacillus , Sales (Química) , Lactobacillales/genética , Queso/microbiología , ARN Ribosómico 16S/genética , Cadaverina , Putrescina , Bacterias/genética , Ácido gamma-Aminobutírico , Ácido Láctico , Microbiología de Alimentos
3.
Chemistry ; 30(4): e202302776, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37819870

RESUMEN

Worldwide lithium demand has surged in recent years due to increased production of Li-ion batteries for electric vehicles and stationary storage. Li supply and production will need to increase such that the transition towards increased electrification in the energy sector does not become cost prohibitive. Many countries have taken policy steps such as listing Li as a critical mineral. Current commercial Li mining is mostly from dedicated mine sources, including ores, clays, and brines. The conventional ways to extract Li+ from those resources are through chemical processing and includes steps of calcination, leaching, precipitation, and purification. The environmental and economic sustainability of conventional Li processing has recently received increased scrutiny. Routes such as direct Li+ extraction may provide advantages relative to conventional Li+ extraction technologies, and one possible route to direct Li+ extraction includes leveraging intercalation materials. Intercalation material processing has recently demonstrated high selectivity towards Li+ as opposed to other cations. Reviews and reports of direct Li+ extraction with intercalation materials are limited, even as this technology has started to show promise in smaller-scale demonstrations. This paper will review selective Li+ extraction via intercalation materials, including both electrochemical and chemical methods to drive Li+ in and out, and efforts to characterize the Li+ insertion/deinsertion processes.

4.
J Exp Biol ; 227(2)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099471

RESUMEN

Diapause exhibited by embryos of Artemia franciscana is accompanied by severe arrest of respiration. A large fraction of this depression is attributable to downregulation of trehalose catabolism that ultimately restricts fuel to mitochondria. This study now extends knowledge on the mechanism by revealing metabolic depression is heightened by inhibitions within mitochondria. Compared with that in embryo lysates during post-diapause, oxidative phosphorylation (OXPHOS) capacity P is depressed during diapause when either NADH-linked substrates (pyruvate and malate) for electron transfer (electron transfer capacity, E) through respiratory Complex I or the Complex II substrate succinate are used. When pyruvate, malate and succinate were combined, respiratory inhibition by the phosphorylation system in diapause lysates was discovered as judged by P/E flux control ratios (two-way ANOVA; F1,24=38.78; P<0.0001). Inhibition was eliminated as the diapause extract was diluted (significant interaction term; F2,24=9.866; P=0.0007), consistent with the presence of a diffusible inhibitor. One candidate is long-chain acyl-CoA esters known to inhibit the adenine nucleotide translocator. Addition of oleoyl-CoA to post-diapause lysates markedly decreased the P/E ratio to 0.40±0.07 (mean±s.d.; P=0.002) compared with 0.79±0.11 without oleoyl-CoA. Oleoyl-CoA inhibits the phosphorylation system and may be responsible for the depressed P/E in lysates from diapause embryos. With isolated mitochondria, depression of P/E by oleoyl-CoA was fully reversed by addition of l-carnitine (control versus recovery with l-carnitine, P=0.338), which facilitates oleoyl-CoA transport into the matrix and elimination by ß-oxidation. In conclusion, severe metabolic arrest during diapause promoted by restricting glycolytic carbon to mitochondria is reinforced by depression of OXPHOS capacity and the phosphorylation system.


Asunto(s)
Diapausa , Extremófilos , Animales , Fosforilación Oxidativa , Artemia/fisiología , Malatos , Piruvatos , Succinatos , Carnitina
5.
Nanotechnology ; 35(30)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38598248

RESUMEN

Membrane distillation technology could utilize low-grade heat to desalinate brine, but the membrane material often suffers from disadvantages of low permeation flux and weak robustness to contaminants. To address these issues, the commercial polytetrafluoroethylene (PTFE) membrane was modified by cost-effective chemicals of tannic acid and (3-Aminopropyl)-triethoxysilane (APTES) to construct hydrophilic/underwater superoleophobic nano-rough structures on the surface to enhance its flux and oil-fouling resistance in direct contact membrane distillation. The results show that a high underwater oil contact angle of 180° is observed to the membrane surface due to the rough nanostructures functionalized by abundant hydroxyl groups. Despite the additional mass transfer resistance provided by the rough nanostructures, the flux was increased noticeably. This is mainly attributed to the strong interactions between the abundant hydroxyl groups of hydrophilic layer surface and water molecules, leading to a part of free water staying at intermediate transition state (IW). The mass transfer resistance of the hydrophilic layer itself is reduced as a consequence of decreased evaporation enthalpy of water, thereby increasing the flux. Moreover, while the flux of the pristine membrane is reduced by 84.18%, the flux of Janus membrane remains the same when treating mineral oil brine emulsions with oil concentration up to 1500 ppm in comparison with the result for 35 g l-1brine solution, indicating that the Janus membrane is safe from the oil contamination. Our work provides a fine guidance for membrane distillation to treat high oily brine.

6.
Environ Sci Technol ; 58(11): 5139-5152, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38446791

RESUMEN

Plasma has been proposed as an alternative strategy to treat organic contaminants in brines. Chemical degradation in these systems is expected to be partially driven by halogen oxidants, which have been detected in halide-containing solutions exposed to plasma. In this study, we characterized specific mechanisms involving the formation and reactions of halogen oxidants during plasma treatment. We first demonstrated that addition of halides accelerated the degradation of a probe compound known to react quickly with halogen oxidants (i.e., para-hydroxybenzoate) but did not affect the degradation of a less reactive probe compound (i.e., benzoate). This effect was attributed to the degradation of para-hydroxybenzoate by hypohalous acids, which were produced via a mechanism involving halogen radicals as intermediates. We applied this mechanistic insight to investigate the impact of constituents in brines on reactions driven by halogen oxidants during plasma treatment. Bromide, which is expected to occur alongside chloride in brines, was required to enable halogen oxidant formation, consistent with the generation of halogen radicals from the oxidation of halides by hydroxyl radical. Other constituents typically present in brines (i.e., carbonates, organic matter) slowed the degradation of organic compounds, consistent with their ability to scavenge species involved during plasma treatment.


Asunto(s)
Oxidantes , Sales (Química) , Contaminantes Químicos del Agua , Compuestos Orgánicos , Radical Hidroxilo/química , Oxidación-Reducción , Halógenos/química , Hidroxibenzoatos , Contaminantes Químicos del Agua/química
7.
Environ Sci Technol ; 58(13): 5631-5645, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38516811

RESUMEN

Seawater reverse osmosis (SWRO) desalination facilities produce freshwater and, at the same time, discharge hypersaline brine that often includes various chemical additives such as antiscalants and coagulants. This dense brine can sink to the sea bottom and creep over the seabed, reaching up to 5 km from the discharge point. Previous reviews have discussed the effects of SWRO desalination brine on various marine ecosystems, yet little attention has been paid to the impacts on benthic habitats. This review comprehensibly discusses the effects of SWRO brine discharge on marine benthic fauna and flora. We review previous studies that indicated a suite of impacts by SWRO brine on benthic organisms, including bacteria, seagrasses, polychaetes, and corals. The effects within the discharge mixing zones range from impaired activities and morphological deformations to changes in the community composition. Recent modeling work demonstrated that brine could spread over the seabed, beyond the mixing zone, for up to several tens of kilometers and impair nutrient fluxes from the sediment to the water column. We also provide a possible perspective on brine's impact on the biogeochemical process within the mixing zone subsurface. Desalination brine can infiltrate into the sandy bottom around the discharge area due to gravity currents. Accumulation of brine and associated chemical additives, such as polyphosphonate-based antiscalants and ferric-based coagulants in the porewater, may change the redox zones and, hence, impact biogeochemical processes in sediments. With the demand for drinking water escalating worldwide, the volumes of brine discharge are predicted to triple during the current century. Future efforts should focus on the development and operation of viable technologies to minimize the volumes of brine discharged into marine environments, along with a change to environmentally friendly additives. However, the application of these technologies should be partly subsidized by governmental stakeholders to safeguard coastal ecosystems around desalination facilities.


Asunto(s)
Ecosistema , Sales (Química) , Purificación del Agua , Salinidad , Agua de Mar/química
8.
Environ Sci Technol ; 58(35): 15562-15574, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700697

RESUMEN

Current brine management strategies are based on the disposal of brine in nearby aquifers, representing a loss in potential water and mineral resources. Zero liquid discharge (ZLD) is a possible strategy to reduce brine rejection while increasing the resource recovery from desalination plants. However, ZLD substantially increases the energy consumption and carbon footprint of a desalination plant. The predominant strategy to reduce the energy consumption and carbon footprint of ZLD is through the use of a hybrid desalination technology that integrates renewable energy. Here, we built a computational thermodynamic model of the most mature electrified hybrid technology for ZLD powered by photovoltaic (PV). We examine the potential size and cost of ZLD plants in the US. This work explores the variables (geospatial and design) that most influence the levelized cost of water and the second law efficiency. There is a negative correlation between minimizing the LCOW and maximizing the second-law. And maximizing the second-law, the states that more brine produces, Texas is the location where the studied system achieves the lowest LCOW and high second-law efficiency, while California is the state where the studied system is less favorable. A multiobjective optimization study assesses the impact of considering a carbon tax in the cost of produced water and determines the best potential size for the studied plant.


Asunto(s)
Sales (Química)
9.
Environ Sci Technol ; 58(1): 3-16, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38193155

RESUMEN

Water reuse is rapidly becoming an integral feature of resilient water systems, where municipal wastewater undergoes advanced treatment, typically involving a sequence of ultrafiltration (UF), reverse osmosis (RO), and an advanced oxidation process (AOP). When RO is used, a concentrated waste stream is produced that is elevated in not only total dissolved solids but also metals, nutrients, and micropollutants that have passed through conventional wastewater treatment. Management of this RO concentrate─dubbed municipal wastewater reuse concentrate (MWRC)─will be critical to address, especially as water reuse practices become more widespread. Building on existing brine management practices, this review explores MWRC management options by identifying infrastructural needs and opportunities for multi-beneficial disposal. To safeguard environmental systems from the potential hazards of MWRC, disposal, monitoring, and regulatory techniques are discussed to promote the safety and affordability of implementing MWRC management. Furthermore, opportunities for resource recovery and valorization are differentiated, while economic techniques to revamp cost-benefit analysis for MWRC management are examined. The goal of this critical review is to create a common foundation for researchers, practitioners, and regulators by providing an interdisciplinary set of tools and frameworks to address the impending challenges and emerging opportunities of MWRC management.


Asunto(s)
Ultrafiltración , Aguas Residuales , Epiclorhidrina , Nutrientes , Agua
10.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710582

RESUMEN

AIMS: This study aimed to evaluate the efficiency of two phages [VB_VaC_TDDLMA (phage TDD) and VB_VaC_SRILMA (phage SRI)] alone and in a cocktail to control Vibrio alginolyticus in brine shrimp before their administration in larviculture. METHODS AND RESULTS: Phages were isolated from seawater samples and characterized by host spectrum, growth parameters, adsorption rate, genomic analysis, and inactivation efficiency. Both phages belong to the Caudoviricetes class and lack known virulence or antibiotic-resistance genes. They exhibit specificity, infecting only their host, V. alginolyticus CECT 521. Preliminary experiments in a culture medium showed that phage TDD (reduction of 5.8 log CFU ml-1 after 10 h) outperformed phage SRI (reduction of 4.6 log CFU ml-1 after 6 h) and the cocktail TDD/SRI (reduction of 5.2 log CFU ml-1 after 8 h). In artificial marine water experiments with Artemia franciscana, both single phage suspensions and the phage cocktail, effectively inactivated V. alginolyticus in culture water (reduction of 4.3, 2.1, and 1.9 log CFU ml-1 for phages TDD, SRI, and the phage cocktail, respectively, after 12 h) and in A. franciscana (reduction of 51.6%, 87.3%, and 85.3% for phages TDD, SRI, and the phage cocktail, respectively, after 24 h). The two phages and the phage cocktail did not affect A. franciscana natural microbiota or other Vibrio species in the brine shrimp. CONCLUSIONS: The results suggest that phages can safely and effectively control V. alginolyticus in A. franciscana prior to its administration in larviculture.


Asunto(s)
Acuicultura , Artemia , Bacteriófagos , Vibrio alginolyticus , Vibrio alginolyticus/virología , Animales , Artemia/microbiología , Artemia/virología , Alimentación Animal , Agua de Mar/microbiología , Larva/microbiología
11.
Environ Res ; 243: 117802, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38043891

RESUMEN

This investigation was designed and performed to compare the phytochemical profiling, activities of antibacterial, thrombolytic, anti-inflammatory, and cytotoxicity of methanol extract (ME-E) and aqueous extract (AQ-E) of aerial parts of Achyranthes aspera through in-vitro approach. Also characterize the functional groups of bioactive compounds in the ME-E through Fourier-transform infrared (FTIR) spectroscopy analysis. Interestingly, qualitative phytochemical screening proved that the ME-E contain more number of vital phytochemicals such as phenolics. saponins, tannins, alkaloids, flavonoids, cardiac glycosides, steroids, and phlobatannins than AQ-E. Similarly, the ME-E showed notable antibacterial activity as dose dependent manner against Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa at 1000 µg mL-1 concentration. ME-E also showed 75.2 ± 2% of clot lysis (thrombolytic activity) at 1000 µg mL-1 dosage and it followed by AQ-E 51.24 ± 3%. The ME-E showed moderate and AQ-E demonstrate poor anti-inflammatory activity evidenced by albumin denaturation inhibition and anti-lipoxygenase assays. Furthermore, the ME-E demonstrated a dose dependent cytotoxicity was noted against brine shrimp larvae. In support of this ME-E considerable activities, the Fourier transform infrared (FTIR) analysis confirmed that this extract contain more number peaks attributed to the stretch of various essential functional groups belongs to different bioactive compounds. Hence this ME-E of A. aspera can be considered for further in depth scientific investigations to validate their maximum biomedical potential.


Asunto(s)
Achyranthes , Extractos Vegetales , Extractos Vegetales/toxicidad , Antibacterianos/toxicidad , Antibacterianos/análisis , Metanol/análisis , Fitoquímicos/toxicidad , Fitoquímicos/análisis , Componentes Aéreos de las Plantas/química
12.
Environ Res ; 244: 117888, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38097060

RESUMEN

In the face of escalating environmental concerns, particularly the pervasive issue of non-biodegradable fast-food packaging waste, this study introduces a ground-breaking solution that not only addresses waste management but also advances biomedical technology. Utilizing the underexploited resource of Fucoidan, a sulfated polysaccharide from brown algae, we have innovatively transformed fast-food packaging waste into eco-friendly fluorescent carbon dots (FPCDs). These FPCDs were meticulously characterized through advanced techniques like FT-IR, TEM, and XRD, shedding light on their unique structure, morphology, and composition. A significant discovery of this study is the potent antimicrobial properties of these FPCDs, which demonstrate remarkable effectiveness against specific bacterial and fungal strains. This opens new avenues in the realm of biomedical applications, including imaging, drug delivery, and biosensing. Furthermore, extensive toxicity assessments, including the Brine shrimp lethality assay and Adult Artemia toxicity tests, underscore the safety of these nanoparticles, bolstering their applicability in sensitive medical scenarios. Our research presents a compelling dual approach, ingeniously tackling environmental sustainability issues by repurposing waste while simultaneously creating valuable materials for biomedical use. This dual benefit underscores the transformative potential of our approach, setting a precedent in both waste management and medical innovation.


Asunto(s)
Antiinfecciosos , Embalaje de Alimentos , Alimento Perdido y Desperdiciado , Carbono , Espectroscopía Infrarroja por Transformada de Fourier , Antiinfecciosos/toxicidad
13.
Ecotoxicol Environ Saf ; 282: 116760, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029223

RESUMEN

The study on the influence of Natural Organic Matter (NOM) over the individual and combined effects of different nanomaterials on marine species is pertinent. The current study explores the role of Extracellular Polymeric Substances (EPS) in influencing the individual and combined toxic effects of polystyrene nanoplastics (PSNPs) viz. aminated (NH2-PSNPs), carboxylated (COOH-PSNPs), and plain PSNPs and TiO2 NPs in the marine crustacean, Artemia salina. A. salina was interacted with pristine PSNPs, pristine TiO2 NPs, EPS incubated PSNPs, EPS incubated TiO2 NPs, binary mixture of PSNPs and TiO2 NPs, and EPS adsorbed binary mixture of PSNPs and TiO2 NPs for 48 h. The present study proves that, when compared to the pristine toxicity of PSNPs and TiO2 NPs, the coexposure of TiO2 NPs with PSNPs resulted in increased toxicity. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. It was observed that with an increase in the hydrodynamic diameter of the particles, the mortality, oxidative stress, and ingestion of the NMs by A. salina increased. The uptake of Ti by A. salina from 8 mg/L TiO2 NPs, EPS adsorbed 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs and the EPS adsorbed mixture of 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs was observed to be 0.043, 0.047, 0.186, and 0.307 mg/g of A. salina. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. The major outcomes from the current study highlight the role of EPS in exacerbating the toxicity of NMs in marine crustaceans.


Asunto(s)
Artemia , Poliestirenos , Titanio , Contaminantes Químicos del Agua , Animales , Artemia/efectos de los fármacos , Titanio/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Matriz Extracelular de Sustancias Poliméricas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Nanopartículas/toxicidad , Adsorción , Microplásticos/toxicidad
14.
Chem Biodivers ; 21(2): e202301367, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38151826

RESUMEN

The amphibian skin is an important source of bioactive compounds. Recently, our workgroup reported the bioactivity of new extracts from the Hylidae, Microhylidae and Leptodactylidae families against several pathways involved in Alzheimer's disease. However, since cytotoxicity can be a limiting factor for their applicability, we evaluated the toxicity of nine amphibian skin extracts with reported anticholinesterase activity, using the traditional MTT assay and an optimized Artemia salina test. The proposed improvement, guided by experimental design, aims to reduce the amount of biological sample needed. Overall, we proved that the active extracts were non-toxic at effective concentration against cholinesterases (AChE/BChE), positioning the amphibian skin as a promising and preliminary safe source of bioactive compounds in the anti-Alzheimer's treatment. Interestingly, we demonstrated that both toxicity assays can discriminate between toxic and non-toxic samples. We propose the A. salina bioassay as a reliable and cost-effective alternative for early toxicity screening.


Asunto(s)
Anfibios , Artemia , Animales , Humanos , Extractos Vegetales
15.
Altern Lab Anim ; 52(3): 142-148, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38578132

RESUMEN

The use of the brine shrimp Artemia salina (Leach) in acute toxicity assays has great potential due to its simplicity, low cost and reproducibility. In the current study, some of the variables that can influence the reliability of the assay in terms of test organism survival, were evaluated as part of its implementation in our laboratory. The quality and type of water used, the buffer components and other parameters (salinity, pH and dissolved oxygen level), were all evaluated for optimisation purposes. DMSO (dimethyl sulphoxide) was used as the test substance in the toxicity assay, to evaluate the concentration limits as a solvent in sample preparation. Regarding the buffer salinity, pH and dissolved oxygen level, we found that a 25% to 30% deviation from the standard values did not affect the survival of the nauplii (the first-instar larval stage) under assay conditions. In summary, we corroborate the potential use of this model for the prediction of the toxic potential of substances, to inform future testing strategies.


Asunto(s)
Artemia , Pruebas de Toxicidad Aguda , Animales , Artemia/efectos de los fármacos , Pruebas de Toxicidad Aguda/métodos , Concentración de Iones de Hidrógeno , Salinidad , Dimetilsulfóxido/toxicidad
16.
J Environ Manage ; 360: 121192, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38781880

RESUMEN

The global demand for valuable metals and minerals necessitates the exploration of alternative, sustainable approaches to mineral recovery. Seawater mining has emerged as a promising option, offering a vast reserve of minerals and an environmentally friendly alternative to land-based mining. Among the various techniques, Nanofiltration (NF) has gained significant attention as a preliminary treatment step in Minimum Liquid Discharge (MLD) and Zero Liquid Discharge (ZLD) schemes. This study focused on the potential of two underexplored commercial polyamide based NF membranes, Synder NFX and Vontron VNF1, with enhanced divalent over monovalent separation factors, in optimizing the extraction of magnesium hydroxide (Mg(OH)2) from seawater and seawater reverse osmosis (SWRO) brines. The research encompassed a thorough characterization of the membranes utilizing advanced physic-chemical analytical techniques, followed by rigorous experimental assessments using synthetic seawater and SWRO brine in concentration configuration. The findings highlighted the superior selectivity of NFX for magnesium recovery from SWRO brine and the promising concentration factors of VNF1 for seawater treatment. Cross-validation of experimental data with a mathematical model demonstrated the model's reliability as a process design tool in predicting membrane performance. A comprehensive techno-economic evaluation demonstrates the potential of NFX, operating optimally at 23 bar pressure and 70% permeate recovery rate, to yield an estimated annual revenue of 5.683 M€/yr through Mg(OH)2 production from SWRO brine for a plant with a nominal capacity of 0.8 Mm3/y. This research shed light on the promising role of NF membranes in enhancing mineral recovery taking benefit of their separation factors and emphasizes the economic viability of leveraging NF technology for maximizing magnesium recovery from seawater and SWRO brines.


Asunto(s)
Filtración , Magnesio , Agua de Mar , Agua de Mar/química , Magnesio/química , Filtración/métodos , Membranas Artificiales , Ósmosis , Sales (Química)
17.
J Environ Manage ; 359: 121057, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718606

RESUMEN

Brine, a by-product of desalination and industrial facilities, is becoming more and more of an environmental issue. This comprehensive techno-economic assessment (TEA), focusing on the technical and economic aspects, investigates the performance and viability of a novel hybrid desalination brine treatment system known as zero liquid discharge (ZLD). Notably, this research represents the first instance of evaluating the feasibility and effectiveness of integrating three distinct desalination processes, namely brine concentrator (BC), high-pressure reverse osmosis (HPRO), and membrane-promoted crystallization (MPC), within a ZLD framework. The findings of this study demonstrate an exceptional water recovery rate of 97.04%, while the energy requirements stand at a reasonable level of 17.53 kWh/m3. Financially, the ZLD system proves to be at least 3.28 times more cost-effective than conventional evaporation ponds and offers comparable cost efficiency to alternatives such as land application and deep-well injection. Moreover, the ZLD system exhibits profitability potential by marketing both drinking water and solid salt or solely desalinated water. The daily profit from the sale of generated water varies from US$194.08 to US$281.41, with Greece and Cyprus attaining the lowest and highest profit, respectively. When considering the sale of both salt and water, the profit rises by 8% across all locations.


Asunto(s)
Purificación del Agua , Purificación del Agua/métodos , Purificación del Agua/economía , Ósmosis , Sales (Química)/química
18.
J Environ Manage ; 367: 122039, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39094420

RESUMEN

Boron (B) is a crucial element for efficient plant growth and development; therefore, B-based fertilisers have been employed in agricultural applications. The need for B-based fertilisers for agricultural uses is continuously increasing as a result of the world's growing population. It is expected that the global market for B-based fertiliser will grow by around $6.3 billion by 2032; hence, demand for B sources will also increase. In addition to being used in fertiliser, B is also employed in the production of neodymium iron B (NdFeB) permanent magnets. The demand for NdFeB magnets is also continuously increasing. Hence, it is of the utmost importance to reclaim B from secondary resources due to the rising demand for B in a wide variety of applications. This review study addresses the recovery of B from various waste streams. The main focus is on the recovery of B from spent NdFeB magnets, borax sludge, and liquid streams such as brine water, seawater, sewage, industrial wastewater, and agricultural effluents. Different technologies for B recovery are discussed, such as sorption, solvent extraction, membrane processes, precipitation, and hydrometallurgical methods. Solvent extraction has been found to be a very effective approach for reclaiming B from spent NdFeB magnet waste and from liquid streams with high B concentration (>1-2 g/L). Further, the application of B-based fertiliser in agriculture application is reviewed. Challenges associated with B recovery from waste streams and future perspectives are also highlighted in this review.


Asunto(s)
Boro , Fertilizantes , Boro/análisis , Boro/química , Fertilizantes/análisis , Agricultura
19.
Artículo en Inglés | MEDLINE | ID: mdl-39087887

RESUMEN

Artemia is a brine shrimp genus adapted to extreme habitats like ranges salinity from 5-25 g/L and in temperatures from 9 to 35 °C. It is widely distributed and used as an environmental quality biomarker. Artemia franciscana and Artemia salina species are commonly used in ecotoxicological studies and genotoxicity assays due to their short life cycle, high fecundity rate, easy culture, and availability. Thus, considering the importance of these tests in ecotoxicological studies, the present study aimed to present Artemia genus as a biological model in genotoxicity research. To this end, we reviewed the literature, analyzing data published until July 2023 in the Web of Science, SCOPUS, Embase, and PubMed databases. After screening, we selected 34 studies in which the genotoxicity of Artemia for various substances. This review presents the variability of the experimental planning of assays and biomarkers in genotoxicity using Artemia genus as a biological model for ecotoxicological studies and show the possibility of monitoring biochemical alterations and genetic damage effects. Also highlight innovative technologies such as transcriptomic and metabolomic analysis, as well as studies over successive generations to identify changes in DNA and consequently in gene expression.


Asunto(s)
Artemia , Ecotoxicología , Pruebas de Mutagenicidad , Artemia/efectos de los fármacos , Animales , Daño del ADN , Contaminantes Químicos del Agua/toxicidad , Mutágenos/toxicidad
20.
Environ Geochem Health ; 46(2): 43, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227066

RESUMEN

In recent years, interest in natural therapeutic mud has been growing all over the world. This natural product has a positive therapeutic effect on the skin and has fewer side effects on the human body. There are more than 40 thousand salt lakes in Kazakhstan. Most of them have natural mud sources, the potential of which has not yet been fully explored. The review presents an analysis of the available information on the physical and chemical properties of the main sources of natural mud from salt lakes in Kazakhstan and Kazakh sanatoriums that use natural mud in the treatment. All available publications, presenting the systematic studies, were used for data analysis. A comparative analysis of the mineralization of water, brine, and silt in one reservoir shows that the mineralization of water is not always the least. The available data indicate a point and partial nature of peloid studies, e.g., inorganic composition of natural muds from Western and Southern Kazakhstan is well described in the literature. In turn, there is a lack of these data from Northern and Eastern Kazakhstan. Studies of peloids in these regions seem to be a promising direction of the future research for both local and world scientists. What is more, there is also a big gap in the analysis of organic matter of muds from the Kazakh lakes. Comparing the state of the art, i.e., the studies from other parts of Asia and Europe, the identification of the organic part of muds is another desirable direction as a potential source of biologically active compounds of natural origin.


Asunto(s)
Lagos , Agua , Humanos , Kazajstán , Asia , Europa (Continente)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA