Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.398
Filtrar
1.
Mol Cell Proteomics ; 23(2): 100723, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38253182

RESUMEN

Cerebral stroke is one of the leading causes of mortality and disability worldwide. Restoring the cerebral circulation following a period of occlusion and subsequent tissue oxygenation leads to reperfusion injury. Cerebral ischemic reperfusion (I/R) injury triggers immune and inflammatory responses, apoptosis, neuronal damage, and even death. However, the cellular function and molecular mechanisms underlying cerebral I/R-induced neuronal injury are incompletely understood. By integrating proteomic, phosphoproteomic, and transcriptomic profiling in mouse hippocampi after cerebral I/R, we revealed that the differentially expressed genes and proteins mainly fall into several immune inflammatory response-related pathways. We identified that Annexin 2 (Anxa2) was exclusively upregulated in microglial cells in response to cerebral I/R in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. RNA-seq analysis revealed a critical role of Anxa2 in the expression of inflammation-related genes in microglia via the NF-κB signaling. Mechanistically, microglial Anxa2 is required for nuclear translocation of the p65 subunit of NF-κB and its transcriptional activity upon OGD/R in BV2 microglial cells. Anxa2 knockdown inhibited the OGD/R-induced microglia activation and markedly reduced the expression of pro-inflammatory factors, including TNF-α, IL-1ß, and IL-6. Interestingly, conditional medium derived from Anxa2-depleted BV2 cell cultures with OGD/R treatment alleviated neuronal death in vitro. Altogether, our findings revealed that microglia Anxa2 plays a critical role in I/R injury by regulating NF-κB inflammatory responses in a non-cell-autonomous manner, which might be a potential target for the neuroprotection against cerebral I/R injury.


Asunto(s)
Anexina A2 , Microglía , Daño por Reperfusión , Animales , Ratones , Anexina A2/metabolismo , Microglía/metabolismo , Multiómica , FN-kappa B/metabolismo , Proteómica , Daño por Reperfusión/metabolismo
2.
Mol Med ; 30(1): 77, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840035

RESUMEN

BACKGROUND: Ischemic stroke presents a significant threat to human health due to its high disability rate and mortality. Currently, the clinical treatment drug, rt-PA, has a narrow therapeutic window and carries a high risk of bleeding. There is an urgent need to find new effective therapeutic drugs for ischemic stroke. Icariin (ICA), a key ingredient in the traditional Chinese medicine Epimedium, undergoes metabolism in vivo to produce Icaritin (ICT). While ICA has been reported to inhibit neuronal apoptosis after cerebral ischemia-reperfusion (I/R), yet its underlying mechanism remains unclear. METHODS: PC-12 cells were treated with 200 µM H2O2 for 8 h to establish a vitro model of oxidative damage. After administration of ICT, cell viability was detected by Thiazolyl blue tetrazolium Bromide (MTT) assay, reactive oxygen species (ROS) and apoptosis level, mPTP status and mitochondrial membrane potential (MMP) were detected by flow cytometry and immunofluorescence. Apoptosis and mitochondrial permeability transition pore (mPTP) related proteins were assessed by Western blotting. Middle cerebral artery occlusion (MCAO) model was used to establish I/R injury in vivo. After the treatment of ICA, the neurological function was scored by ZeaLonga socres; the infarct volume was observed by 2,3,5-Triphenyltetrazolium chloride (TTC) staining; HE and Nissl staining were used to detect the pathological state of the ischemic cortex; the expression changes of mPTP and apoptosis related proteins were detected by Western blotting. RESULTS: In vitro: ICT effectively improved H2O2-induced oxidative injury through decreasing the ROS level, inhibiting mPTP opening and apoptosis. In addition, the protective effects of ICT were not enhanced when it was co-treated with mPTP inhibitor Cyclosporin A (CsA), but reversed when combined with mPTP activator Lonidamine (LND). In vivo: Rats after MCAO shown cortical infarct volume of 32-40%, severe neurological impairment, while mPTP opening and apoptosis were obviously increased. Those damage caused was improved by the administration of ICA and CsA. CONCLUSIONS: ICA improves cerebral ischemia-reperfusion injury by inhibiting mPTP opening, making it a potential candidate drug for the treatment of ischemic stroke.


Asunto(s)
Apoptosis , Flavonoides , Accidente Cerebrovascular Isquémico , Potencial de la Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Estrés Oxidativo , Especies Reactivas de Oxígeno , Animales , Estrés Oxidativo/efectos de los fármacos , Ratas , Flavonoides/farmacología , Flavonoides/uso terapéutico , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Apoptosis/efectos de los fármacos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/etiología , Células PC12 , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Masculino , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Modelos Animales de Enfermedad , Peróxido de Hidrógeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas Sprague-Dawley
3.
Mol Med ; 30(1): 106, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039432

RESUMEN

BACKGROUND: Investigating immune cell infiltration in the brain post-ischemia-reperfusion (I/R) injury is crucial for understanding and managing the resultant inflammatory responses. This study aims to unravel the role of the RPS27A-mediated PSMD12/NF-κB axis in controlling immune cell infiltration in the context of cerebral I/R injury. METHODS: To identify genes associated with cerebral I/R injury, high-throughput sequencing was employed. The potential downstream genes were further analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) analyses. For experimental models, primary microglia and neurons were extracted from the cortical tissues of mouse brains. An in vitro cerebral I/R injury model was established in microglia using the oxygen-glucose deprivation/reoxygenation (OGD/R) technique. In vivo models involved inducing cerebral I/R injury in mice through the middle cerebral artery occlusion (MCAO) method. These models were used to assess neurological function, immune cell infiltration, and inflammatory factor release. RESULTS: The study identified RPS27A as a key player in cerebral I/R injury, with PSMD12 likely acting as its downstream regulator. Silencing RPS27A in OGD/R-induced microglia decreased the release of inflammatory factors and reduced neuron apoptosis. Additionally, RPS27A silencing in cerebral cortex tissues mediated the PSMD12/NF-κB axis, resulting in decreased inflammatory factor release, reduced neutrophil infiltration, and improved cerebral injury outcomes in I/R-injured mice. CONCLUSION: RPS27A regulates the expression of the PSMD12/NF-κB signaling axis, leading to the induction of inflammatory factors in microglial cells, promoting immune cell infiltration in brain tissue, and exacerbating brain damage in I/R mice. This study introduces novel insights and theoretical foundations for the treatment of nerve damage caused by I/R, suggesting that targeting the RPS27A and downstream PSMD12/NF-κB signaling axis for drug development could represent a new direction in I/R therapy.


Asunto(s)
FN-kappa B , Daño por Reperfusión , Proteínas Ribosómicas , Transducción de Señal , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/inmunología , Daño por Reperfusión/genética , Ratones , FN-kappa B/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Masculino , Modelos Animales de Enfermedad , Microglía/metabolismo , Microglía/inmunología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/inmunología , Neuronas/metabolismo , Ratones Endogámicos C57BL , Mapas de Interacción de Proteínas
4.
Biochem Biophys Res Commun ; 704: 149712, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38408414

RESUMEN

Astrocytes transfer extracellular functional mitochondria into neurons to rescue injured neurons after a stroke. However, there are no reports on drugs that interfere with intercellular mitochondrial transfer. Chrysophanol (CHR) was an effective drug for the treatment of cerebral ischemia-reperfusion injury (CIRI) and was selected as the test drug. The oxygen-glucose deprivation/reoxygenation (OGD/R) cell model and the middle cerebral artery occlusion animal model were established to investigate the effect of CHR on CIRI. The result showed that astrocytes could act as mitochondrial donors to ameliorate neuronal injury. Additionally, the neuroprotective effect of astrocytes was enhanced by CHR, the CHR improved the neuronal mitochondrial function, decreased the neurological deficit score and infarction volume, recovered cell morphology in ischemic penumbra. The mitochondrial fluorescence probe labeling technique has shown that the protective effect of CHR is associated with accelerated astrocytic mitochondrial transfer to neurons. The intercellular mitochondrial transfer may be an important way to ameliorate ischemic brain injury and be used as a key target for drug treatment.


Asunto(s)
Antraquinonas , Isquemia Encefálica , Daño por Reperfusión , Ratas , Animales , Isquemia Encefálica/metabolismo , Astrocitos/metabolismo , Daño por Reperfusión/metabolismo , Neuronas/metabolismo , Mitocondrias
5.
Microcirculation ; : e12880, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120967

RESUMEN

OBJECTIVE: Intragastric administration of ninjin'yoeito (NYT), a traditional Japanese herbal medicine, reportedly prevents the decrease in baseline cerebral blood flow (CBF) in the cortex following gastric administration of water. We investigated the effect of NYT on baseline and dynamic changes in cerebral cortical arteriole diameter. METHODS: Urethane-anesthetized mice were intragastrically administered 1 g/kg NYT or distilled water (DW). The artery in the left parietal cortex was imaged using two-photon microscopy. The baseline diameter of penetrating arterioles was measured before and 50-60 min after administration. Dynamic CBF and arteriole diameter changes before, during, and after transient occlusion of the left common carotid artery were measured approximately 10 min after administration. RESULTS: DW decreased the baseline diameter of the penetrating arterioles, whereas NYT did not. During occlusion, the increase in penetrating arteriole diameter was comparable for DW and NYT; however, during reperfusion, the return to preocclusion diameter was slower for NYT than DW. Laser-speckle contrast imaging confirmed that CBF, although comparable during occlusion, was higher during reperfusion for NYT than DW. CONCLUSIONS: These results suggest that NYT attenuates vasoconstriction in penetrating arterioles after intragastric administration and during cerebral reperfusion, contributing to CBF regulation.

6.
Mamm Genome ; 35(3): 346-361, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39115562

RESUMEN

Pyroptosis has been regarded as caspase-1-mediated monocyte death that induces inflammation, showing a critical and detrimental role in the development of cerebral ischemia-reperfusion injury (IRI). MARCH1 is an E3 ubiquitin ligase that exerts potential anti-inflammatory functions. Therefore, the study probed into the significance of MARCH1 in inflammation and pyroptosis elicited by cerebral IRI. Middle cerebral artery occlusion/reperfusion (MCAO/R)-treated mice and oxygen glucose deprivation/reoxygenation (OGD/R)-treated hippocampal neurons were established to simulate cerebral IRI in vivo and in vitro. MARCH1 and PCSK9 expression was tested in MCAO/R-operated mice, and their interaction was identified by means of the cycloheximide assay and co-immunoprecipitation. The functional roles of MARCH1 and PCSK9 in cerebral IRI were subsequently determined by examining the neurological function, brain tissue changes, neuronal viability, inflammation, and pyroptosis through ectopic expression and knockdown experiments. PCSK9 expression was increased in the brain tissues of MCAO/R mice, while PCSK9 knockdown reduced brain damage and neurological deficits. Additionally, inflammation and pyroptosis were inhibited in OGD/R-exposed hippocampal neurons upon PCSK9 knockdown, accompanied by LDLR upregulation and NLRP3 inflammasome inactivation. Mechanistic experiments revealed that MARCH1 mediated ubiquitination and degradation of PCSK9, lowering PCSK9 protein expression. Furthermore, it was demonstrated that MARCH1 suppressed inflammation and pyroptosis after cerebral IRI by downregulating PCSK9 both in vivo and in vitro. Taken together, the present study demonstrate the protective effect of MARCH1 against cerebral IRI through PCSK9 downregulation, which might contribute to the discovery of new therapies for improving cerebral IRI.


Asunto(s)
Inflamación , Proproteína Convertasa 9 , Piroptosis , Daño por Reperfusión , Ubiquitina-Proteína Ligasas , Animales , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Piroptosis/genética , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Ratones , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Neuronas/metabolismo , Neuronas/patología , Masculino , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Regulación hacia Abajo , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Hipocampo/metabolismo , Hipocampo/patología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
7.
J Transl Med ; 22(1): 771, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148053

RESUMEN

BACKGROUND: Stroke is a globally dangerous disease capable of causing irreversible neuronal damage with limited therapeutic options. Meldonium, an inhibitor of carnitine-dependent metabolism, is considered an anti-ischemic drug. However, the mechanisms through which meldonium improves ischemic injury and its potential to protect neurons remain largely unknown. METHODS: A rat model with middle cerebral artery occlusion (MCAO) was used to investigate meldonium's neuroprotective efficacy in vivo. Infarct volume, neurological deficit score, histopathology, neuronal apoptosis, motor function, morphological alteration and antioxidant capacity were explored via 2,3,5-Triphenyltetrazolium chloride staining, Longa scoring method, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay, rotarod test, transmission electron microscopy and Oxidative stress index related kit. A primary rat hippocampal neuron model subjected to oxygen-glucose deprivation reperfusion was used to study meldonium's protective ability in vitro. Neuronal viability, mitochondrial membrane potential, mitochondrial morphology, respiratory function, ATP production, and its potential mechanism were assayed by MTT cell proliferation and cytotoxicity assay kit, cell-permeant MitoTracker® probes, mitochondrial stress, real-time ATP rate and western blotting. RESULTS: Meldonium markedly reduced the infarct size, improved neurological function and motor ability, and inhibited neuronal apoptosis in vivo. Meldonium enhanced the morphology, antioxidant capacity, and ATP production of mitochondria and inhibited the opening of the mitochondrial permeability transition pore in the cerebral cortex and hippocampus during cerebral ischemia-reperfusion injury (CIRI) in rats. Additionally, meldonium improved the damaged fusion process and respiratory function of neuronal mitochondria in vitro. Further investigation revealed that meldonium activated the Akt/GSK-3ß signaling pathway to inhibit mitochondria-dependent neuronal apoptosis. CONCLUSION: Our study demonstrated that meldonium shows a neuroprotective function during CIRI by preserving the mitochondrial function, thus prevented neurons from apoptosis.


Asunto(s)
Apoptosis , Supervivencia Celular , Metilhidrazinas , Mitocondrias , Neuronas , Fármacos Neuroprotectores , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Fármacos Neuroprotectores/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Daño por Reperfusión/patología , Daño por Reperfusión/tratamiento farmacológico , Masculino , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Metilhidrazinas/farmacología , Metilhidrazinas/uso terapéutico , Isquemia Encefálica/patología , Isquemia Encefálica/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas
8.
J Bioenerg Biomembr ; 56(3): 193-204, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38446318

RESUMEN

Blood-brain barrier breakdown and ROS overproduction are important events during the progression of ischemic stroke aggravating brain damage. Geraniol, a natural monoterpenoid, possesses anti-apoptotic, cytoprotective, anti-oxidant, and anti-inflammatory activities. Our study aimed to investigate the effect and underlying mechanisms of geraniol in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced human brain microvascular endothelial cells (HBMECs). Apoptosis, caspase-3 activity, and cytotoxicity of HBMECs were evaluated using TUNEL, caspase-3 activity, and CCK-8 assays, respectively. The permeability of HBMECs was examined using FITC-dextran assay. Reactive oxygen species (ROS) production was measured using the fluorescent probe DCFH-DA. The protein levels of zonula occludens-1 (ZO-1), occludin, claudin-5, ß-catenin, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were determined by western blotting. Geraniol showed no cytotoxicity in HBMECs. Geraniol and ROS scavenger N-acetylcysteine (NAC) both attenuated OGD/R-induced apoptosis and increase of caspase-3 activity and the permeability to FITC-dextran in HBMECs. Geraniol relieved OGD/R-induced ROS accumulation and decrease of expression of ZO-1, occludin, claudin-5, and ß-catenin in HBMECs. Furthermore, we found that geraniol activated Nrf2/HO-1 pathway to inhibit ROS in HBMECs. In conclusion, geraniol attenuated OGD/R-induced ROS-dependent apoptosis and permeability in HBMECs through activating the Nrf2/HO-1 pathway.


Asunto(s)
Monoterpenos Acíclicos , Apoptosis , Células Endoteliales , Glucosa , Hemo-Oxigenasa 1 , Factor 2 Relacionado con NF-E2 , Especies Reactivas de Oxígeno , Humanos , Apoptosis/efectos de los fármacos , Monoterpenos Acíclicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Glucosa/metabolismo , Hemo-Oxigenasa 1/metabolismo , Oxígeno/metabolismo , Encéfalo/metabolismo , Encéfalo/irrigación sanguínea , Microvasos/metabolismo , Microvasos/patología , Microvasos/efectos de los fármacos
9.
Toxicol Appl Pharmacol ; 483: 116829, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38246288

RESUMEN

Aucubin (AU) is a naturally occurring iridoid glycoside known to possess a wide range of pharmacological properties and exhibit a notable protective effect against various pathological conditions. Studies have shown that AU has neuroprotective properties in different neurological diseases. However, its potential protective effects against cerebral ischemia-reperfusion (CIR) injury have not been thoroughly investigated. This study aimed to investigate the impact of AU on CIR injury and explore the underlying mechanism. Cultured neurons treated with AU showed a significant reduction in apoptosis, oxidative stress, and inflammation caused by oxygen-glucose deprivation and reoxygenation (OGD/R). In a rat model of CIR, treatment with AU resulted in a significant decrease in cerebral infarct size and neurological deficits. AU treatment also reversed the increased apoptosis, oxidative stress, and inflammation in the brains of CIR rats. Furthermore, AU was found to enhance the activation of nuclear factor-erythroid 2-related factor 2 (Nrf2), accompanied by increased phosphorylation of serine/threonine-protein kinase AKT and glycogen synthase kinase-3 beta (GSK-3ß). The activation of Nrf2 induced by AU was reversed when the AKT-GSK-3ß cascade was blocked. Additionally, the neuroprotective effect of AU was significantly reduced when Nrf2 was pharmacologically suppressed. In conclusion, these findings suggest that AU exerts a neuroprotective effect on CIR injury, and this effect is mediated by the activation of Nrf2 through the AKT-GSK-3ß axis. This work highlights the potential of AU as a drug candidate for the treatment of CIR injury.


Asunto(s)
Glucósidos Iridoides , Fármacos Neuroprotectores , Daño por Reperfusión , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta , Transducción de Señal , Estrés Oxidativo , Apoptosis , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Daño por Reperfusión/patología , Inflamación/tratamiento farmacológico , Inflamación/prevención & control
10.
Cell Mol Neurobiol ; 44(1): 49, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836960

RESUMEN

Mild hypothermia (MH) is an effective measure to alleviate cerebral ischemia-reperfusion (I/R) injury. However, the underlying biological mechanisms remain unclear. This study set out to investigate dynamic changes in urinary proteome due to MH in rats with cerebral I/R injury and explore the neuroprotective mechanisms of MH. A Pulsinelli's four-vessel occlusion (4-VO) rat model was used to mimic global cerebral I/R injury. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to profile the urinary proteome of rats with/without MH (32 °C) treatment after I/R injury. Representative differentially expressed proteins (DEPs) associated with MH were validated by western blotting in hippocampus. A total of 597 urinary proteins were identified, among which 119 demonstrated significant changes associated with MH. Gene Ontology (GO) annotation of the DEPs revealed that MH significantly enriched in endopeptidase activity, inflammatory response, aging, response to oxidative stress and reactive oxygen species, blood coagulation, and cell adhesion. Notably, changes in 12 DEPs were significantly reversed by MH treatment. Among them, 8 differential urinary proteins were previously reported to be closely associated with brain disease, including NP, FZD1, B2M, EPCR, ATRN, MB, CA1and VPS4A. Two representative proteins (FZD1, B2M) were further validated by western blotting in the hippocampus and the results were shown to be consistent with urinary proteomic analysis. Overall, this study strengthens the idea that urinary proteome can sensitively reflect pathophysiological changes in the brain, and appears to be the first study to explore the neuroprotective effects of MH by urinary proteomic analysis. FZD1 and B2M may be involved in the most fundamental molecular biological mechanisms of MH neuroprotection.


Asunto(s)
Isquemia Encefálica , Hipotermia Inducida , Proteómica , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/orina , Proteómica/métodos , Masculino , Hipotermia Inducida/métodos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/orina , Proteoma/metabolismo , Ratas , Hipocampo/metabolismo
11.
FASEB J ; 37(3): e22733, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36723877

RESUMEN

Accumulating evidence suggests that human umbilical cord mesenchymal stem cell-derived exosomes (hUC-MSCs-Exos) are a promising therapeutic strategy for cerebral ischemia-reperfusion injury (CIRI). However, the underlying mechanism remains unclear. hUC-MSCs-Exos were identified by electron microscopy, NTA, and Western blotting. In the hypoxia/reoxygenation (H/R) cell model, human brain microvascular endothelial cells (HBMECs) were cocultured with hUC-MSCs-Exos. Then, cell viability, migration, apoptosis, and tube formation were measured by MTT, flow cytometry, transwell, and tube formation assays. RT-qPCR and Western blotting were used to detect the changes in RNA and protein. RNA pull-down and dual luciferase reporter assays confirmed the relationship between circDLGAP4, miR-320, and KLF5. Ischemia-reperfusion (I/R) rat model was established for in vivo experiments. hUC-MSCs-Exos increased the expression levels of circDLGAP4 and KLF5 but decreased miR-320 in H/R-treated HBMECs by transferring exosomal circDLGAP4. Knockdown of circDLGAP4 in hUC-MSCs-Exos reversed the promoting effects of hUC-MSCs-Exos on cell viability, migration, and tube formation in H/R-treated HBMECs in vitro and also abolished the protective effects of hUC-MSCs-Exos on cerebrovascular injury in I/R rats. Mechanistically, exosomal circDLGAP4 negatively regulated miR-320 in HBMECs, which directly bound to KLF5. In addition, the downregulation of miR-320 could reverse the regulatory effect of exosomal shcircDLGAL5 in H/R-treated HBMECs by upregulating KLF5. hUC-MSCs-Exos-derived circDLGAP4 reduced cerebrovascular injury by regulating miR-320/KLF5 signaling. These results provide a stem cell-based approach to treat CIRI.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Daño por Reperfusión , Humanos , Ratas , Animales , MicroARNs/genética , MicroARNs/metabolismo , Células Endoteliales/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical/metabolismo , Exosomas/genética , Exosomas/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
12.
Neurochem Res ; 49(8): 1965-1979, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38834843

RESUMEN

Cerebral ischemia-reperfusion injury (CIRI) is the second leading cause of death worldwide, posing a huge risk to human life and health. Therefore, investigating the pathogenesis underlying CIRI and developing effective treatments are essential. Ferroptosis is an iron-dependent mode of cell death, which is caused by disorders in iron metabolism and lipid peroxidation. Previous studies demonstrated that ferroptosis is also a form of autophagic cell death, and nuclear receptor coactivator 4(NCOA4) mediated ferritinophagy was found to regulate ferroptosis by interfering with iron metabolism. Ferritinophagy and ferroptosis are important pathogenic mechanisms in CIRI. This review mainly summarizes the link and regulation between ferritinophagy and ferroptosis and further discusses their mechanisms in CIRI. In addition, the potential treatment methods targeting ferritinophagy and ferroptosis for CIRI are presented, providing new ideas for the prevention and treatment of clinical CIRI in the future.


Asunto(s)
Ferritinas , Ferroptosis , Daño por Reperfusión , Ferroptosis/fisiología , Humanos , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Animales , Ferritinas/metabolismo , Hierro/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Coactivadores de Receptor Nuclear/metabolismo , Muerte Celular Autofágica , Peroxidación de Lípido/fisiología
13.
Neurochem Res ; 49(8): 2105-2119, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38819696

RESUMEN

Ischemic stroke involves various pathological processes, among which ferroptosis is crucial. Previous studies by our group have indicated that electroacupuncture (EA) mitigates ferroptosis after ischemic stroke; however, the precise mechanism underlying this effect remains unclear. In the present study, we developed a rat model of middle cerebral artery occlusion/reperfusion. We chose the main acupoint of the treatment methods of the "Awakening and Opening of the Brain". Rats' neurological function and motor coordination were evaluated by neurological function score and the rotarod test, respectively, and the volume of cerebral infarction was analyzed by 2,3,5-triphenyltetrazolium chloride Staining. The cerebrovascular conditions were visualized by time-of-flight magentic resonance angiography. In addition, we detected changes in lipid peroxidation and endogenous antioxidant activity by measuring the malondialdehyde, glutathione, superoxide dismutase activities, glutathione/oxidized glutathione and reduced nicotinamide adenine dinucleotide phosphate/oxidized nicotinamide adenine dinucleotide phosphate ratios. Inductively coupled plasma-mass spectrometry, western blot, reverse transcription-polymerase chain reaction, fluoro-jade B staining, immunofluorescence analysis, and transmission electron microscopy were utilized to examine the influence of EA. The results indicate that EA treatment was effective in reversing neurological impairment, neuronal damage, and protecting mitochondrial morphology and decreasing the cerebral infarct volume in the middle cerebral artery occlusion/reperfusion rat model. EA reduced iron levels, inhibited lipid peroxidation, increased endogenous antioxidant activity, modulated the expression of several ferroptosis-related proteins, and promoted nuclear factor-E2-related factor 2 (Nrf2) nuclear translocation. However, the protective effect of EA was hindered by the Nrf2 inhibitor ML385. These findings suggest that EA can suppress ferroptosis and decrease damage caused by cerebral ischemia/reperfusion by activating Nrf2 and increasing the protein expression of solute carrier family 7 member 11 and glutathione peroxidase 4.


Asunto(s)
Electroacupuntura , Ferroptosis , Infarto de la Arteria Cerebral Media , Factor 2 Relacionado con NF-E2 , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Ratas Sprague-Dawley , Animales , Ferroptosis/fisiología , Electroacupuntura/métodos , Factor 2 Relacionado con NF-E2/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Masculino , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/terapia , Daño por Reperfusión/metabolismo , Ratas , Neuronas/metabolismo , Regulación hacia Abajo/fisiología
14.
Neurochem Res ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167346

RESUMEN

Cerebral ischemia reperfusion injury is a severe neurological impairment that occurs after blood flow reconstruction in stroke, and microglia cell pyroptosis is one of its important mechanisms. Electroacupuncture has been shown to be effective in mitigating and alleviating cerebral ischemia reperfusion injury by inhibiting neuroinflammation, reducing cellular pyroptosis, and improving neurological function. In this experiment, we divided the rats into three groups, including the sham operation (Sham) group, the middle cerebral artery occlusion/reperfusion (MCAO/R) group, and the pre-electroacupuncture (EAC) group. Pre-electroacupuncture group was stimulated with electroacupuncture of a certain intensity on the Baihui (GV 20) and Dazhui (GV 14) of the rat once a day from the 7th day to the 1st day before the MCAO/R operation. The extent of cerebral infarction was detected by TTC staining. A modified Zea-Longa five-point scale scoring system was used to determine neurologic function in MCAO rats. The number of neurons and morphological changes were accessed by Nissl staining and HE staining. The cellular damage was detected by TUNEL staining. In addition, the expression levels of RhoA, pyrin, GSDMD, Caspase1, cleaved-Caspase1, Iba-1, CD206, and ROCK2 were examined by western blotting and immunofluorescence. The results found that pre-electroacupuncture significantly attenuated neurological impairment and cerebral infarction compared to the post-MCAO/R rats. In addition, pre-electroacupuncture therapy promoted polarization of microglia to the neuroprotective (M2) phenotype. In addition, pre-electroacupuncture inhibited microglia pyroptosis by inhibiting RhoA/pyrin/GSDMD signaling pathway, thereby reducing neuronal injury and increasing neuronal survival in the MCAO/R rats. Taken together, these results demonstrated that pre-acupuncture could attenuate cerebral ischemia-reperfusion injury by inhibiting microglial pyroptosis. Therefore, pre-electroacupuncture might be a potential preventive strategy for ischemic stroke patients.

15.
Cell Biol Toxicol ; 40(1): 31, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767771

RESUMEN

Mitochondrial dysfunction contributes to cerebral ischemia-reperfusion (CI/R) injury, which can be ameliorated by Sirtuin-3 (SIRT3). Under stress conditions, the SIRT3-promoted mitochondrial functional recovery depends on both its activity and expression. However, the approach to enhance SIRT3 activity after CI/R injury remains unelucidated. In this study, Sprague-Dawley (SD) rats were intracranially injected with either adeno-associated viral Sirtuin-1 (AAV-SIRT1) or AAV-sh_SIRT1 before undergoing transient middle cerebral artery occlusion (tMCAO). Primary cortical neurons were cultured and transfected with lentiviral SIRT1 (LV-SIRT1) and LV-sh_SIRT1 respectively before oxygen-glucose deprivation/reoxygenation (OGD/R). Afterwards, rats and neurons were respectively treated with a selective SIRT3 inhibitor, 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP). The expression, function, and related mechanism of SIRT1 were investigated by Western Blot, flow cytometry, immunofluorescence staining, etc. After CI/R injury, SIRT1 expression decreased in vivo and in vitro. The simulation and immune-analyses reported strong interaction between SIRT1 and SIRT3 in the cerebral mitochondria before and after CI/R. SIRT1 overexpression enhanced SIRT3 activity by increasing the deacetylation of SIRT3, which ameliorated CI/R-induced cerebral infarction, neuronal apoptosis, oxidative stress, neurological and motor dysfunction, and mitochondrial respiratory chain dysfunction, promoted mitochondrial biogenesis, and retained mitochondrial integrity and mitochondrial morphology. Meanwhile, SIRT1 overexpression alleviated OGD/R-induced neuronal death and mitochondrial bioenergetic deficits. These effects were reversed by AAV-sh_SIRT1 and the neuroprotective effects of SIRT1 were partially offset by 3-TYP. These results suggest that SIRT1 restores the structure and function of mitochondria by activating SIRT3, offering neuroprotection against CI/R injury, which signifies a potential approach for the clinical management of cerebral ischemia.


Asunto(s)
Isquemia Encefálica , Mitocondrias , Neuronas , Daño por Reperfusión , Sirtuina 1 , Sirtuina 3 , Animales , Masculino , Ratas , Apoptosis , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuronas/patología , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Sirtuina 1/metabolismo , Sirtuina 1/genética , Sirtuina 3/metabolismo , Sirtuina 3/genética , Sirtuinas
16.
Immunol Invest ; 53(6): 872-890, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38809063

RESUMEN

BACKGROUND: Cerebral ischemia/reperfusion injury (CIRI) is still a complicated disease with high fatality rates worldwide. Transmembrane Protein 79 (TMEM79) regulates inflammation and oxidative stress in some other diseases. METHODS: CIRI mouse model was established using C57BL/6J mice through middle cerebral artery occlusion-reperfusion (MCAO/R), and BV2 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R) to simulate CIRI. Brain tissue or BV2 cells were transfected or injected with lentivirus-carried TMEM79 overexpression vector. The impact of TMEM79 on CIRI-triggered oxidative stress was ascertained by dihydroethidium (DHE) staining and examination of oxidative stress indicators. Regulation of TMEM79 in neuronal apoptosis and inflammation was determined using TUNEL staining and ELISA. RESULTS: TMEM79 overexpression mitigated neurological deficit induced by MCAO/R and decreased the extent of cerebral infarct. TMEM79 prevented neuronal death in brain tissue of MCAO/R mouse model and suppressed inflammatory response by reducing inflammatory cytokines levels. Moreover, TMEM79 significantly attenuated inflammation and oxidative stress caused by OGD/R in BV2 cells. TMEM79 facilitated the activation of Nrf2 and inhibited NLRP3 and caspase-1 expressions. Rescue experiments indicated that the Nrf2/NLRP3 signaling pathway mediated the mitigative effect of TMEM79 on CIRI in vivo and in vitro. CONCLUSION: Overall, TMEM79 was confirmed to attenuate CIRI via regulating the Nrf2/NLRP3 signaling pathway.


Asunto(s)
Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media , Proteínas de la Membrana , Factor 2 Relacionado con NF-E2 , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Daño por Reperfusión , Animales , Humanos , Masculino , Ratones , Apoptosis , Isquemia Encefálica/metabolismo , Línea Celular , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Inflamación/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Daño por Reperfusión/metabolismo , Transducción de Señal
17.
Exp Cell Res ; 422(1): 113432, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442518

RESUMEN

Cerebral ischemia-reperfusion injury (CIRI) is a brain injury that usually occurs during thrombolytic therapy for acute ischemic stroke and impacts human health. Oxidative stress is one of the major causative factors of CIRI. DhHP-3 is a novel peroxidase-mimicking enzyme that exhibits robust reactive oxygen species (ROS) scavenging ability in vitro. Here, we established in vitro and in vivo models of cerebral ischemia-reperfusion to mechanistically investigate whether DhHP-3 can alleviate CIRI. DhHP-3 could reduce ROS, down-regulate apoptotic proteins, suppress p53 phosphorylation, attenuate the DNA damage response (DDR), and inhibit apoptosis in SH-SY5Y cells subjected to oxygen-glucose deprivation/re-oxygenation (OGD/R) and in the brain of Sprague Dawley rats subjected to transient middle cerebral artery occlusion. In conclusion, DhHP-3 has bioactivity of CIRI inhibition through suppression of the ROS-induced apoptosis.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Neuroblastoma , Daño por Reperfusión , Ratas , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Daño por Reperfusión/genética , Isquemia Encefálica/metabolismo , Estrés Oxidativo , Apoptosis , Péptidos/metabolismo
18.
Bioorg Chem ; 153: 107791, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39244974

RESUMEN

Resveratrol (Res) has long been discovered to have antioxidant effects to prevent such as oxidation, inflammation, neurodegeneration and age-related diseases. However, its poor water solubility, low bioavailability and instability have become a barrier to its pharmaceutical application. In order to improve the neuroprotective effects and develop more potential usage of Res, three Res derivatives containing one or two glucose groups, i.e., Res-Glu1, Res-Glu2 and Res-Glu3, were designed and synthesized through click reaction. Res-Glu1, Res-Glu2 and Res-Glu3 were tested being better water solubility and stability compared to Res. Res derivatives reduced •OH radicals-induced DNA damage. PC12 assays indicated that glucosylated Res derivatives could alleviate H2O2-induced neurotoxicity and reduce intracellular ROS generation, demonstrating their neuroprotective effects. In addition, Res derivatives enhanced the protective effects on cerebral ischemia-reperfusion injury in rats. Res-Glu3 displayed the best neuroprotective effects among the three derivatives.

19.
Nutr Neurosci ; : 1-11, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808704

RESUMEN

OBJECTIVES: The two flavonoids kaempferol and chrysin are known to possess anti-inflammatory and antioxidant activities. In addition, these two flavonoids were reported to display synergistic effects against inflammation. The present study aims to provide an analysis of the combined effects of kaempferol and chrysin on ischemic rat brain induced by endothelin-1. METHODS: The neurological deficit score and infarct area of the brain were determined post drug treatment. Histopathological sections displayed the morphological changes in the brain tissue. The brain tissues were processed for assessing the antioxidant and anti-inflammatory activity by measuring superoxide dismutase activity, catalase activity, level of reduced glutathione, brain malondialdehyde, and amount of calcium. The expression level of inflammatory molecules was analyzed by western blotting and immunohistochemistry. RESULTS: The infarct area, neurological score and NF-κB and STAT3 expression levels were significantly reduced. DISCUSSION: The analysis of neuroprotective synergistic activity of kaempferol and chrysin indicated the therapeutic potential of the combination in alleviating cerebral ischemia by controlling expression of proinflammatory mediators.

20.
J Toxicol Environ Health A ; 87(10): 448-456, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38557302

RESUMEN

Cerebral ischemia-reperfusion injury (CIRI) occurs frequently clinically as a complication following cardiovascular resuscitation resulting in neuronal damage specifically to the hippocampal CA1 region with consequent cognitive impairment. Apoptosis and oxidative stress were proposed as major risk factors associated with CIRI development. Previously, glycosides obtained from Cistanche deserticola (CGs) were shown to play a key role in counteracting CIRI; however, the underlying mechanisms remain to be determined. This study aimed to investigate the neuroprotective effect of CGs on subsequent CIRI in rats. The model of CIRI was established for 2 hr and reperfusion for 24 hr by middle cerebral artery occlusion (MCAO) model. The MCAO rats were used to measure the antioxidant and anti-apoptotic effects of CGs on CIRI. Neurological function was evaluated by the Longa neurological function score test. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to detect the area of cerebral infarction. Nissl staining was employed to observe neuronal morphology. TUNEL staining was used to detect neuronal apoptosis, while Western blot determined protein expression levels of factors for apoptosis-related and PI3K/AKT/Nrf2 signaling pathway. Data demonstrated that CGs treatment improved behavioral performance, brain injury, and enhanced antioxidant and anti-apoptosis in CIRI rats. In addition, CGs induced activation of PI3K/AKT/Nrf2 signaling pathway accompanied by inhibition of the expression of apoptosis-related factors. Evidence indicates that CGs amelioration of CIRI involves activation of the PI3K/AKT/Nrf2 signaling pathway associated with increased cellular viability suggesting these glycosides may be considered as an alternative compound for CIRI treatment.


Asunto(s)
Isquemia Encefálica , Cistanche , Fármacos Neuroprotectores , Daño por Reperfusión , Ratas , Animales , Ratas Sprague-Dawley , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antioxidantes/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/farmacología , Glicósidos/farmacología , Glicósidos/uso terapéutico , Factor 2 Relacionado con NF-E2/farmacología , Apoptosis , Isquemia Encefálica/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Fármacos Neuroprotectores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA