Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.106
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(27): e2304498120, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364121

RESUMEN

The attainment of both high strength and toughness is the ultimate goal for most structural materials. Although ceramic material has been considered for use as a structural material due to its high strength and good chemical stability, it suffers from the limitation of low toughness. For instance, although Y2O3-stabilized tetragonal ZrO2 polycrystals (Y-TZPs) exhibit remarkable toughness among ceramics due to their phase transformation toughening mechanism, this toughness is still much weaker than that of metals. Here, we report Y-TZP-based ceramic materials with toughnesses exceeding 20 MPa m1/2, which is comparable to those of metals, while maintaining strengths over 1,200 MPa. The superior mechanical properties are realized by reducing the phase stability of tetragonal zirconia by tailoring the microstructure and chemistry of the Y-TZP. The proposed ceramic materials can further advance the design and application of ceramic-based structural materials.

2.
Proc Natl Acad Sci U S A ; 120(9): e2217081120, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812199

RESUMEN

Carbon capture is one of the essential low-carbon technologies required to achieve societal climate goals at the lowest cost. Covalent organic frameworks (COFs) are promising adsorbents for CO2 capture because of their well-defined porosity, large surface area, and high stability. Current COF-based CO2 capture is mainly based on a physisorption mechanism, exhibiting smooth and reversible sorption isotherms. In the present study, we report unusual CO2 sorption isotherms featuring one or more tunable hysteresis steps with metal ion (Fe3+, Cr3+, or In3+)-doped Schiff-base two-dimensional (2D) COFs (Py-1P, Py-TT, and Py-Py) as adsorbents. Synchrotron X-ray diffraction, spectroscopic and computational studies indicate that the sharp adsorption steps in the isotherm originate from the insertion of CO2 between the metal ion and the N atom of the imine bond on the inner pore surface of the COFs as the CO2 pressure reaches threshold values. As a result, the CO2 adsorption capacity of the ion-doped Py-1P COF is increased by 89.5% compared with that of the undoped Py-1P COF. This CO2 sorption mechanism provides an efficient and straightforward approach to enhancing the CO2 capture capacity of COF-based adsorbents, yielding insights into developing chemistry for CO2 capture and conversion.

3.
Proc Natl Acad Sci U S A ; 120(8): e2218997120, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36787357

RESUMEN

Electronic structure calculations indicate that the Sr2FeSbO6 double perovskite has a flat-band set just above the Fermi level that includes contributions from ordinary subbands with weak kinetic electron hopping plus a flat subband that can be attributed to the lattice geometry and orbital interference. To place the Fermi energy in that flat band, electron-doped samples with formulas Sr2-xLaxFeSbO6 (0 ≤ x ≤ 0.3) were synthesized, and their magnetism and ambient temperature crystal structures were determined by high-resolution synchrotron X-ray powder diffraction. All materials appear to display an antiferromagnetic-like maximum in the magnetic susceptibility, but the dominant spin coupling evolves from antiferromagnetic to ferromagnetic on electron doping. Which of the three subbands or combinations is responsible for the behavior has not been determined.

4.
Proc Natl Acad Sci U S A ; 120(13): e2220792120, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36940321

RESUMEN

Selenium sulfide (SeS2) features higher electronic conductivity than sulfur and higher theoretical capacity and lower cost than selenium, attracting considerable interest in energy storage field. Although nonaqueous Li/Na/K-SeS2 batteries are attractive for their high energy density, the notorious shuttle effect of polysulfides/polyselenides and the intrinsic limitations of organic electrolyte have hindered the deployment of this technology. To circumvent these issues, here we design an aqueous Cu-SeS2 battery by encapsulating SeS2 in a defect-enriched nitrogen-doped porous carbon monolith. Except the intrinsic synergistic effect between Se and S in SeS2, the porous structure of carbon matrix has sufficient internal voids to buffer the volume change of SeS2 and provides abundant pathways for both electrons and ions. In addition, the synergistic effect of nitrogen doping and topological defect not only enhances the chemical affinity between reactants and carbon matrix but also offers catalytic active sites for electrochemical reactions. Benefiting from these merits, the Cu-SeS2 battery delivers superior initial reversible capacity of 1,905.1 mAh g-1 at 0.2 A g-1 and outstanding long-span cycling performance over 1,000 cycles at 5 A g-1. This work applies variable valence charge carriers to aqueous metal-SeS2 batteries, providing valuable inspiration for the construction of metal-chalcogen batteries.

5.
Proc Natl Acad Sci U S A ; 120(16): e2219923120, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37040400

RESUMEN

The high-valent cobalt-oxo species (Co(IV)=O) is being increasingly investigated for water purification because of its high redox potential, long half-life, and antiinterference properties. However, generation of Co(IV)=O is inefficient and unsustainable. Here, a cobalt-single-atom catalyst with N/O dual coordination was synthesized by O-doping engineering. The O-doped catalyst (Co-OCN) greatly activated peroxymonosulfate (PMS) and achieved a pollutant degradation kinetic constant of 73.12 min-1 g-2, which was 4.9 times higher than that of Co-CN (catalyst without O-doping) and higher than those of most reported single-atom catalytic PMS systems. Co-OCN/PMS realized Co(IV)=O dominant oxidation of pollutants by increasing the steady-state concentration of Co(IV)=O (1.03 × 10-10 M) by 5.9 times compared with Co-CN/PMS. A competitive kinetics calculation showed that the oxidation contribution of Co(IV)=O to micropollutant degradation was 97.5% during the Co-OCN/PMS process. Density functional theory calculations showed that O-doping influenced the charge density (increased the Bader charge transfer from 0.68 to 0.85 e), optimized the electron distribution of the Co center (increased the d-band center from -1.14 to -1.06 eV), enhanced the PMS adsorption energy from -2.46 to -3.03 eV, and lowered the energy barrier for generation of the key reaction intermediate (*O*H2O) during Co(IV)=O formation from 1.12 to 0.98 eV. The Co-OCN catalyst was fabricated on carbon felt for a flow-through device, which achieved continuous and efficient removal of micropollutants (degradation efficiency of >85% after 36 h operation). This study provides a new protocol for PMS activation and pollutant elimination through single-atom catalyst heteroatom-doping and high-valent metal-oxo formation during water purification.

6.
Proc Natl Acad Sci U S A ; 120(42): e2312091120, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812706

RESUMEN

Metal-sulfur batteries have received great attention for electrochemical energy storage due to high theoretical capacity and low cost, but their further development is impeded by low sulfur utilization, poor electrochemical kinetics, and serious shuttle effect of the sulfur cathode. To avoid these problems, herein, a triple-synergistic small-molecule sulfur cathode is designed by employing N, S co-doped hierarchical porous bamboo charcoal as a sulfur host in an aqueous Cu-S battery. Expect the enhanced conductivity and chemisorption induced by N, S synergistic co-doping, the intrinsic synergy of macro-/meso-/microporous triple structure also ensures space-confined small-molecule sulfur as high utilization reactant and effectively alleviates the volume expansion during conversion reaction. Under a further joint synergy between hierarchical structure and heteroatom doping, the resulting sulfur cathode endows the Cu-S battery with outstanding electrochemical performance. Cycled at 5 A g-1, it can deliver a high reversible capacity of 2,509.8 mAh g-1 with a good capacity retention of 97.9% after 800 cycles. In addition, a flexible hybrid pouch cell built by a small-molecule sulfur cathode, Zn anode, and gel electrolytes can firmly deliver high average operating voltage of about 1.3 V with a reversible capacity of over 2,500 mAh g-1 under various destructive conditions, suggesting that the triple-synergistic small-molecule sulfur cathode promises energetic metal-sulfur batteries.

7.
Proc Natl Acad Sci U S A ; 119(23): e2202487119, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35653570

RESUMEN

SignificanceNatural photochromic minerals have been reported by geologists for decades. However, the understanding of the photochromism mechanism has a key question still unanswered: What in their structure gives rise to the photochromism's reversibility? By combining experimental and computational methods specifically developed to investigate this photochromism, this work provides the answer to this fundamental question. The specific crystal structure of these minerals allows an unusual motion of the sodium atoms stabilizing the electronic states associated to the colored forms. With a complete understanding of the photochromism mechanism in hand, it is now possible to design new families of stable and tunable photochromic inorganic materials-based devices.

8.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35017300

RESUMEN

The Fenton-like process catalyzed by metal-free materials presents one of the most promising strategies to deal with the ever-growing environmental pollution. However, to develop improved catalysts with adequate activity, complicated preparation/modification processes and harsh conditions are always needed. Herein, we proposed an ultrafast and facile strategy to convert various inefficient commercial nanocarbons into highly active catalysts by noncovalent functionalization with polyethylenimine (PEI). The modified catalysts could be in situ fabricated by direct addition of PEI aqueous solution into the nanocarbon suspensions within 30 s and without any tedious treatment. The unexpectedly high catalytic activity is even superior to that of the single-atom catalyst and could reach as high as 400 times higher than the pristine carbon material. Theoretical and experimental results reveal that PEI creates net negative charge via intermolecular charge transfer, rendering the catalyst higher persulfate activation efficiency.

9.
Proc Natl Acad Sci U S A ; 119(23): e2122252119, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35658081

RESUMEN

SignificanceThe present work might be significant for exploring advanced K-ion batteries with superb rate capability and cycle stability toward practical applications. The as-assembled K-ion half cell exhibits an excellent rate capability of 428 mA h g-1 at 100 mA g-1 and a high reversible specific capacity of 330 mA h g-1 with 120% specific capacity retention after 2,000 cycles at 2,000 mA g-1, which is the best among those based on carbon materials. The as-constructed full cell delivers 98% specific capacity retention over 750 cycles at 500 mA g-1, superior to most of those based on carbon materials that have been reported thus far.

10.
Nano Lett ; 24(27): 8303-8310, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38934420

RESUMEN

The discovery of interfacial superconductivity in monolayer FeSe/oxides has spurred intensive research interest. Here we not only extend the FeSe/FeOx superconducting interface to FeSe/NdFeO3 but also establish robust interface-enhanced superconductivity at a very low doping level. Specifically, well-annealed FeSe/NdFeO3 exhibits a low doping level of 0.038-0.046 e-/Fe with a larger superconducting pairing gap without a nematic gap, indicating an enhancement of the enhanced superconducting pairing strength and suppression of nematicity by the FeSe/FeOx interface compared with those of thick FeSe films. These results improve our understanding of the roles of the oxide interface in the low-electron-doped regime.

11.
Nano Lett ; 24(22): 6545-6552, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38781416

RESUMEN

Extracting interior photoinduced species to the surface before their recombination is of great importance in pursuing high-efficiency semiconductor-based photocatalysis. Traditional strategies toward charge-carrier extraction, mostly relying on the construction of an electric field gradient, would be invalid toward the neutral-exciton counterpart in low-dimensional systems. In this work, by taking bismuth oxybromide (BiOBr) as an example, we manipulate interior exciton extraction to the surface by implementing iodine doping at the edges of BiOBr plates. Spatial- and time-resolved spectroscopic analyses verified the accumulation of excitons and charge carriers at the edges of iodine-doped BiOBr (BiOBr-I) plates. This phenomenon could be associated with interior exciton extraction, driven by an energy-level gradient between interior and edge exciton states, and the following exciton dissociation processes. As such, BiOBr-I shows remarkable performance in photocatalytic C-H fluorination, mediated by both energy- and charge-transfer processes. This work uncovers the importance of spatial regulation of excitonic properties in low-dimensional semiconductor-based photocatalysis.

12.
Nano Lett ; 24(4): 1176-1183, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38240634

RESUMEN

Metal oxide semiconductor (MOS)-based complementary thin-film transistor (TFT) circuits have broad application prospects in large-scale flexible electronics. To simplify circuit design and increase integration density, basic complementary circuits require both p- and n-channel transistors based on an individual semiconductor. However, until now, no MOSs that can simultaneously show p- and n-type conduction behavior have been reported. Herein, we demonstrate for the first time that Cu-doped SnO (Cu:SnO) with HfO2 capping can be employed for high-performance p- and n-channel TFTs. The interstitial Cu+ can induce an n-doping effect while restraining electron-electron scatterings by removing conduction band minimum degeneracy. As a result, the Cu3 atom %:SnO TFTs exhibit a record high electron mobility of 43.8 cm2 V-1 s-1. Meanwhile, the p-channel devices show an ultrahigh hole mobility of 2.4 cm2 V-1 s-1. Flexible complementary logics are then established, including an inverter, NAND gates, and NOR gates. Impressively, the inverter exhibits an ultrahigh gain of 302.4 and excellent operational stability and bending reliability.

13.
Nano Lett ; 24(27): 8386-8393, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38934731

RESUMEN

Auger recombination is a pivotal process for semiconductor nanocrystals (NCs), significantly affecting charge carrier generation and collection in optoelectronic devices. This process depends mainly on the NCs' electronic structures. In our study, we investigated Auger recombination dynamics in manganese (Mn2+)-doped CsPbI3 NCs using transient absorption (TA) spectroscopy combined with theoretical and experimental structural characterization. Our results show that Mn2+ doping accelerates Auger recombination, reducing the biexciton lifetime from 146 to 74 ps with increasing Mn doping concentration up to 10%. This accelerated Auger recombination in Mn-doped NCs is attributed to increased band edge wave function overlap of excitons and a larger density of final states of Auger recombination due to Mn orbital involvement. Moreover, Mn doping reduces the dielectric screening of the excitons, which also contributes to the accelerated Auger recombination. Our study demonstrates the potential of element doping to regulate Auger recombination rates by modifying the materials' electronic structure.

14.
Nano Lett ; 24(26): 8008-8016, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912749

RESUMEN

Piezoelectric dynamic therapy (PzDT) is an effective method of tumor treatment by using piezoelectric polarization to generate reactive oxygen species. In this paper, two-dimensional Cu-doped BiOCl nanosheets with surface vacancies are produced by the photoetching strategy. Under ultrasound, a built-in electric field is generated to promote the electron and hole separation. The separated carriers achieve O2 reduction and GSH oxidation, inducing oxidative stress. The bandgap of BiOCl is narrowed by introducing surface oxygen vacancies, which act as charge traps and facilitate the electron and hole separation. Meanwhile, Cu doping induces chemodynamic therapy and depletes GSH via the transformation from Cu(II) to Cu(I). Both in vivo and in vitro results confirmed that oxidative stress can be enhanced by exogenous ultrasound stimulation, which can cause severe damage to tumor cells. This work emphasizes the efficient strategy of doping engineering and defect engineering for US-activated PzDT under exogenous stimulation.


Asunto(s)
Cobre , Nanoestructuras , Oxígeno , Oxígeno/química , Cobre/química , Humanos , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Animales , Ratones , Neoplasias/terapia , Estrés Oxidativo/efectos de los fármacos , Línea Celular Tumoral , Bismuto/química , Especies Reactivas de Oxígeno/metabolismo , Glutatión/química
15.
Nano Lett ; 24(15): 4610-4617, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564191

RESUMEN

The intricate protonation process in carbon dioxide reduction usually makes the product unpredictable. Thus, it is significant to control the reactive intermediates to manipulate the reaction steps. Here, we propose that the synergistic La-Ti active sites in the N-La2Ti2O7 nanosheets enable the highly selective carbon dioxide photoreduction into methane. In the photoreduction of CO2 over N-La2Ti2O7 nanosheets, in situ Fourier transform infrared spectra are utilized to monitor the *CH3O intermediate, pivotal for methane production, whereas such monitoring is not conducted for La2Ti2O7 nanosheets. Also, theoretical calculations testify to the increased charge densities on the Ti and La atoms and the regulated formation energy barrier of *CO and *CH3O intermediates by the constructed synergistic active sites. Accordingly, the methane formation rate of 7.97 µL h-1 exhibited by the N-La2Ti2O7 nanosheets, along with an electron selectivity of 96.6%, exceeds that of most previously reported catalysts under similar conditions.

16.
Nano Lett ; 24(20): 6084-6091, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717110

RESUMEN

Chiral perovskites play a pivotal role in spintronics and optoelectronic systems attributed to their chiral-induced spin selectivity (CISS) effect. Specifically, they allow for spin-polarized charge transport in spin light-emitting diodes (LEDs), yielding circularly polarized electroluminescence at room temperature without external magnetic fields. However, chiral lead bromide-based perovskites have yet to achieve high-performance green emissive spin-LEDs, owing to limited CISS effects and charge transport. Herein, we employ dimensional regulation and Sn2+-doping to optimize chiral bromide-based perovskite architecture for green emissive spin-LEDs. The optimized (PEA)x(S/R-PRDA)2-xSn0.1Pb0.9Br4 chiral perovskite film exhibits an enhanced CISS effect, higher hole mobility, and better energy level alignment with the emissive layer. These improvements allow us to fabricate green emissive spin-LEDs with an external quantum efficiency (EQE) of 5.7% and an asymmetry factor |gCP-EL| of 1.1 × 10-3. This work highlights the importance of tailored perovskite architectures and doping strategies in advancing spintronics for optoelectronic applications.

17.
Nano Lett ; 24(5): 1776-1783, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38284760

RESUMEN

Donor-acceptor (D-A) copolymers doped with n-type dopants are widely sought after for their potential in organic thermoelectric devices. However, the existing structural disorder significantly hampers their charge transport and thermoelectric performance. In this Letter, we propose a mechanism to mitigate this disorder through side chain engineering. Utilizing molecular dynamics simulations, we demonstrate that strong Coulomb interactions between counterions and charged polymer backbones induce a transition in the stacking arrangement of the polymer backbones from a slipped to a vertical configuration. However, the presence of side chain steric hindrance impedes the formation of closely packed and ordered vertical stacking arrangements, resulting in greater distances between adjacent backbones and a higher level of structural disorder in the doped films. Therefore, we propose minimizing side chain steric hindrance to enhance the structural order in doped films. Our findings provide essential insights for advancing high-performance thermoelectric polymers.

18.
Nano Lett ; 24(8): 2503-2510, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38258747

RESUMEN

X-ray scintillators have utility in radiation detection, therapy, and imaging. Various materials, such as halide perovskites, organic illuminators, and metal clusters, have been developed to replace conventional scintillators due to their ease of fabrication, improved performance, and adaptability. However, they suffer from self-absorption, chemical instability, and weak X-ray stopping power. Addressing these limitations, we employ alkali metal doping to turn nonemissive CsPb2Br5 into scintillators. Introducing alkali metal dopants causes lattice distortion and enhances electron-phonon coupling, which creates transient potential energy wells capable of trapping photogenerated or X-ray-generated electrons and holes to form self-trapped excitons. These self-trapped excitons undergo radiative recombination, resulting in a photoluminescence quantum yield of 55.92%. The CsPb2Br5-based X-ray scintillator offers strong X-ray stopping power, high resistance to self-absorption, and enhanced stability when exposed to the atmosphere, chemical solvents, and intense irradiation. It exhibits a detection limit of 162.3 nGyair s-1 and an imaging resolution of 21 lp mm-1.

19.
Nano Lett ; 24(7): 2226-2233, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38251911

RESUMEN

Atomically precise doping of metal nanoclusters provides excellent opportunities not only for subtly tailoring their properties but also for in-depth understanding of composition (structure)-property correlation of metal nanoclusters and has attracted increasing interest partly due to its significance for fundamental research and practical applications. Although single and multiple metal atom doping of metal nanoclusters (NCs) has been achieved, sequential single-to-multiple metal atom doping is still a big challenge and has not yet been reported. Herein, by introducing a second ligand, a novel multistep synthesis method was developed, controlled sequential single-to-multiple metal atom doping was successfully achieved for the first time, and three doped NCs Au25Cd1(p-MBT)17(PPh3)2, Au18Cd2(p-MBT)14(PPh3)2, and [Au19Cd3(p-MBT)18]- (p-MBTH: para-methylbenzenethiol) were obtained, including two novel NCs that were precisely characterized via mass spectrometry, single-crystal X-ray crystallography, and so forth. Furthermore, sequential doping-induced evolutions in the atomic and crystallographic structures and optical and catalytic properties of NCs were revealed.

20.
J Proteome Res ; 23(5): 1779-1787, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38655860

RESUMEN

To prevent doping practices in sports, the World Anti-Doping Agency implemented the Athlete Biological Passport (ABP) program, monitoring biological variables over time to indirectly reveal the effects of doping rather than detect the doping substance or the method itself. In the context of this program, a highly multiplexed mass spectrometry-based proteomics assay for 319 peptides corresponding to 250 proteins was developed, including proteins associated with blood-doping practices. "Baseline" expression profiles of these potential biomarkers in capillary blood (dried blood spots (DBS)) were established using multiple reaction monitoring (MRM). Combining DBS microsampling with highly multiplexed MRM assays is the best-suited technology to enhance the effectiveness of the ABP program, as it represents a cost-effective and robust alternative analytical method with high specificity and selectivity of targets in the attomole range. DBS data were collected from 10 healthy athlete volunteers over a period of 140 days (28 time points per participant). These comprehensive findings provide a personalized targeted blood proteome "fingerprint" showcasing that the targeted proteome is unique to an individual and likely comparable to a DNA fingerprint. The results can serve as a baseline for future studies investigating doping-related perturbations.


Asunto(s)
Proteínas Sanguíneas , Doping en los Deportes , Pruebas con Sangre Seca , Proteómica , Humanos , Doping en los Deportes/prevención & control , Proteómica/métodos , Proteínas Sanguíneas/análisis , Pruebas con Sangre Seca/métodos , Pruebas con Sangre Seca/normas , Masculino , Valores de Referencia , Adulto , Biomarcadores/sangre , Espectrometría de Masas/métodos , Detección de Abuso de Sustancias/métodos , Proteoma/análisis , Atletas , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA