Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.424
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Biol Chem ; : 107705, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39178948

RESUMEN

The cell signaling molecules nitric oxide (NO) and Ca2+ regulate diverse biological processes through their closely coordinated activities directed by signaling protein complexes. However, it remains unclear how dynamically the multi-component protein assemblies behave within the signaling complexes upon the interplay between NO and Ca2+ signals. Here we demonstrate that TRPC5 channels activated by stimulation of G-protein-coupled ATP receptors mediate Ca2+ influx, that triggers NO production from endothelial NO synthase (eNOS), inducing secondary activation of TRPC5 via cysteine S-nitrosylation and eNOS in vascular endothelial cells. Mutations in the caveolin-1-binding domains of TRPC5 disrupt its association with caveolin-1 and impair Ca2+ influx and NO production, suggesting that caveolin-1 serves primarily as the scaffold for TRPC5 and eNOS to assemble into the signal complex. Interestingly, during ATP receptor activation, eNOS is dissociated from caveolin-1 and in turn directly associates with TRPC5, which accumulates at the plasma membrane dependently on Ca2+ influx and calmodulin (CaM). This protein reassembly likely results in a relief of eNOS from the inhibitory action of caveolin-1 and an enhanced TRPC5 S-nitrosylation by eNOS localized in the proximity, thereby facilitating the secondary activation of Ca2+ influx and NO production. In isolated rat aorta, vasodilation induced by acetylcholine was significantly suppressed by the TRPC5 inhibitor AC1903. Thus, our study provides evidence that dynamic remodeling of the protein assemblies among TRPC5, eNOS, caveolin-1, and CaM determines the ensemble of Ca2+ mobilization and NO production in vascular endothelial cells.

2.
FASEB J ; 38(1): e23362, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38102979

RESUMEN

Endothelial dysfunction (ED) is commonly considered a crucial initiating step in the pathogenesis of numerous cardiovascular diseases. The coupling of endothelial nitric oxide synthase (eNOS) is important in maintaining normal endothelial functions. However, it still remains elusive whether and how eNOS SUMOylation affects the eNOS coupling. In the study, we investigate the roles and possible action mechanisms of protein inhibitor of activated STAT 1 (PIAS1) in ED. Human umbilical vein endothelial cells (HUVECs) treated with palmitate acid (PA) in vitro and ApoE-/- mice fed with high-fat diet (HFD) in vivo were constructed as the ED models. Our in vivo data show that PIAS1 alleviates the dysfunction of vascular endothelium by increasing nitric oxide (NO) level, reducing malondialdehyde (MDA) level, and activating the phosphatidylinositol 3-kinase-protein kinase B-endothelial nitric oxide synthase (PI3K-AKT-eNOS) signaling in ApoE-/- mice. Our in vitro data also show that PIAS1 can SUMOylate eNOS under endogenous conditions; moreover, it antagonizes the eNOS uncoupling induced by PA. The findings demonstrate that PIAS1 alleviates the dysfunction of vascular endothelium by promoting the SUMOylation and inhibiting the uncoupling of eNOS, suggesting that PIAS1 would become an early predictor of atherosclerosis and a new potential target of the hyperlipidemia-related cardiovascular diseases.


Asunto(s)
Homeostasis , Animales , Humanos , Ratones , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Enfermedades Cardiovasculares/metabolismo , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación
3.
FASEB J ; 38(16): e70005, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39171967

RESUMEN

Endothelial dysfunction, prevalent in cardiovascular diseases (CVDs) and linked to conditions like diabetes, hypertension, obesity, renal failure, or hypercholesterolemia, is characterized by diminished nitric oxide (NO) bioavailability-a key signaling molecule for vascular homeostasis. Current two-dimensional (2D) in vitro studies on NO synthesis by endothelial cells (ECs) lack the crucial laminar shear stress, a vital factor in modulating the NO-generating enzyme, endothelial nitric oxide synthase (eNOS), under physiological conditions. Here we developed a tracer-based metabolomics approach to measure NO-specific metabolites with mass spectrometry (MS) and show the impact of fluid flow on metabolic parameters associated with NO synthesis using 2D and 3D platforms. Specifically, we tracked the conversion of stable-isotope labeled NO substrate L-Arginine to L-Citrulline and L-Ornithine to determine eNOS activity. We demonstrated clear responses in human coronary artery endothelial cells (HCAECs) cultured with 13C6, 15N4-L-Arginine, and treated with eNOS stimulator, eNOS inhibitor, and arginase inhibitor. Analysis of downstream metabolites, 13C6, 15N3 L-Citrulline and 13C5, 15N2 L-Ornithine, revealed distinct outcomes. Additionally, we evaluated the NO metabolic status in static 2D culture and 3D microvessel models with bidirectional and unidirectional fluid flow. Our 3D model exhibited significant effects, particularly in microvessels exposed to the eNOS stimulator, as indicated by the 13C6, 15N3 L-Citrulline/13C5, 15N2 L-Ornithine ratio, compared to the 2D culture. The obtained results indicate that the 2D static culture mimics an endothelial dysfunction status, while the 3D model with a unidirectional fluid flow provides a more representative physiological environment that provides a better model to study endothelial dysfunction.


Asunto(s)
Células Endoteliales , Metabolómica , Microvasos , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Metabolómica/métodos , Microvasos/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Células Endoteliales/metabolismo , Arginina/metabolismo , Dispositivos Laboratorio en un Chip , Células Cultivadas , Citrulina/metabolismo
4.
Am J Physiol Cell Physiol ; 327(2): C477-C486, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38981608

RESUMEN

Diabetic kidney disease (DKD) is a microvascular complication of diabetes, and glomerular endothelial cell (GEC) dysfunction is a key driver of DKD pathogenesis. Krüppel-like factor 2 (KLF2), a shear stress-induced transcription factor, is among the highly regulated genes in early DKD. In the kidney, KLF2 expression is mostly restricted to endothelial cells, but its expression is also found in immune cell subsets. KLF2 expression is upregulated in response to increased shear stress by the activation of mechanosensory receptors but suppressed by inflammatory cytokines, both of which characterize the early diabetic kidney milieu. KLF2 expression is reduced in progressive DKD and hypertensive nephropathy in humans and mice, likely due to high glucose and inflammatory cytokines such as TNF-α. However, KLF2 expression is increased in glomerular hyperfiltration-induced shear stress without metabolic dysregulation, such as in settings of unilateral nephrectomy. Lower KLF2 expression is associated with CKD progression in patients with unilateral nephrectomy, consistent with its endoprotective role. KLF2 confers endoprotection by inhibition of inflammation, thrombotic activation, and angiogenesis, and thus KLF2 is considered a protective factor for cardiovascular disease (CVD). Based on similar mechanisms, KLF2 also exhibits renoprotection, and its reduced expression in endothelial cells worsens glomerular injury and albuminuria in settings of diabetes or unilateral nephrectomy. Thus KLF2 confers endoprotective effects in both CVD and DKD, and its activators could potentially be developed as a novel class of drugs for cardiorenal protection in diabetic patients.


Asunto(s)
Nefropatías Diabéticas , Factores de Transcripción de Tipo Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Humanos , Animales , Células Endoteliales/metabolismo , Células Endoteliales/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Riñón/metabolismo , Riñón/patología
5.
J Biol Chem ; 299(3): 102932, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36690276

RESUMEN

The nitric oxide synthase interacting protein (NOSIP), an E3-ubiquitin ligase, is involved in various processes like neuronal development, craniofacial development, granulopoiesis, mitogenic signaling, apoptosis, and cell proliferation. The best-characterized function of NOSIP is the regulation of endothelial nitric oxide synthase activity by translocating the membrane-bound enzyme to the cytoskeleton, specifically in the G2 phase of the cell cycle. For this, NOSIP itself has to be translocated from its prominent localization, the nucleus, to the cytoplasm. Nuclear import of NOSIP was suggested to be mediated by the canonical transport receptors importin α/ß. Recently, we found NOSIP in a proteomic screen as a potential importin 13 cargo. Here, we describe the nuclear shuttling characteristics of NOSIP in living cells and in vitro and show that it does not interact directly with importin α. Instead, it formed stable complexes with several importins (-ß, -7, -ß/7, -13, and transportin 1) and was also imported into the nucleus in digitonin-permeabilized cells by these factors. In living HeLa cells, transportin 1 seems to be the major nuclear import receptor for NOSIP. A detailed analysis of the NOSIP-transportin 1 interaction revealed a high affinity and an unusual binding mode, involving the N-terminal half of transportin 1. In contrast to nuclear import, nuclear export of NOSIP seems to occur mostly by passive diffusion. Thus, our results uncover additional layers in the larger process of endothelial nitric oxide synthase regulation.


Asunto(s)
Ubiquitina-Proteína Ligasas , beta Carioferinas , Transporte Activo de Núcleo Celular/genética , Células HeLa , Humanos , Unión Proteica , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteoma , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , beta Carioferinas/metabolismo
6.
Curr Issues Mol Biol ; 46(4): 3460-3469, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38666947

RESUMEN

Recurrent pregnancy loss (RPL) affects around 2% of women of reproductive age. Primary RPL is defined by ≥2 pregnancy losses and no normal birth delivery. In secondary RPL, the losses are after a normal pregnancy and delivery. Most cases have no clear aetiology, although primary cases are the most complex. Several gene single nucleotide polymorphisms (SNPs) have been associated with RPL. The frequency of some SNPs is increased in women suffering from RLP from Asian or Caucasian races; however, in admixed populations, the information on possible genetic links is scarce and contradictory. This study aimed to assess the frequency of two SNPs present in two different enzymes involved in medical conditions observed during pregnancy. It is a case-control study. Microsomal epoxy hydrolase (mEPH) is involved in detoxifying xenobiotics, is present in the ovaries, and is hormonally regulated. The endothelial nitric oxide synthase (NOS3) that forms nitric is involved in vascular tone. Two SNPs, rs1051740 (mEPH) and rs1799983 (NOS3), were assessed. The study included 50 controls and 63 primary RPL patients. The frequency of mutated alleles in both SNPs was significantly higher in patients (p < 0.05). Double-mutated homozygotes were encountered only in RPL patients (p < 0.05). Genetic polymorphisms rs1051740 and rs1799983 may be involved in primary RPL in the Venezuelan admix population. Genetic studies could provide crucial information on the aetiology of primary RPL.

7.
Kidney Int ; 106(3): 419-432, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38797325

RESUMEN

ZFYVE21 is an ancient, endosome-associated protein that is highly expressed in endothelial cells (ECs) but whose function(s) in vivo are undefined. Here, we identified ZFYVE21 as an essential regulator of vascular barrier function in the aging kidney. ZFYVE21 levels significantly decline in ECs in aged human and mouse kidneys. To investigate attendant effects, we generated EC-specific Zfyve21-/- reporter mice. These knockout mice developed accelerated aging phenotypes including reduced endothelial nitric oxide (ENOS) activity, failure to thrive, and kidney insufficiency. Kidneys from Zfyve21 EC-/- mice showed interstitial edema and glomerular EC injury. ZFYVE21-mediated phenotypes were not programmed developmentally as loss of ZFYVE21 in ECs during adulthood phenocopied its loss prenatally, and a nitric oxide donor normalized kidney function in adult hosts. Using live cell imaging and human kidney organ cultures, we found that in a GTPase Rab5- and protein kinase Akt-dependent manner, ZFYVE21 reduced vesicular levels of inhibitory caveolin-1 and promoted transfer of Golgi-derived ENOS to a perinuclear Rab5+ vesicular population to functionally sustain ENOS activity. Thus, our work defines a ZFYVE21- mediated trafficking mechanism sustaining ENOS activity and demonstrates the relevance of this pathway for maintaining kidney function with aging.


Asunto(s)
Envejecimiento , Caveolina 1 , Células Endoteliales , Riñón , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Envejecimiento/metabolismo , Envejecimiento/fisiología , Caveolina 1/metabolismo , Caveolina 1/genética , Células Endoteliales/metabolismo , Aparato de Golgi/metabolismo , Riñón/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Fenotipo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión al GTP rab5/genética , Insuficiencia Renal/metabolismo , Insuficiencia Renal/fisiopatología , Insuficiencia Renal/genética
8.
Am J Physiol Heart Circ Physiol ; 326(1): H190-H202, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37921665

RESUMEN

Myoendothelial feedback (MEF), the endothelium-dependent vasodilation following sympathetic vasoconstriction (mediated by smooth muscle to endothelium gap junction communication), has been well studied in resistance arteries of males, but not females. We hypothesized that MEF responses would be similar between the sexes, but different in the relative contribution of the underlying nitric oxide and hyperpolarization mechanisms, given that these mechanisms differ between the sexes in agonist-induced endothelium-dependent dilation. We measured MEF responses (diameter changes) of male and female first- to second-order mouse mesenteric arteries to phenylephrine (10 µM) over 30 min using isolated pressure myography ± blinded inhibition of nitric oxide synthase (NOS) using Nω-nitro-l-arginine methyl ester (l-NAME; 0.1-1.0 mM), hyperpolarization using 35 mM KCl, or transient receptor potential vanilloid 4 (TRPV4) channels using GSK219 (0.1-1.0 µM) or RN-1734 (30 µM). MEF was similar [%dilation (means ± SE): males = 26.7 ± 2.0 and females = 26.1 ± 1.9 at 15 min] and significantly inhibited by l-NAME (1.0 mM) at 15 min [%dilation (means ± SE): males = 8.2 ± 3.3, P < 0.01; females = 6.8 ± 1.9, P < 0.001] and over time (P < 0.01) in both sexes. l-NAME (0.1 mM) + 35 mM KCl nearly eliminated MEF in both sexes (P < 0.001-0.0001). Activation of TRPV4 with GSK101 (0.1-10 µM) induced similar dilation between the sexes. Inhibition of TRPV4, which is reportedly involved in the hyperpolarization mechanism, did not inhibit MEF in either sex. Similar expression of eNOS was found between the sexes with Western blot. Thus, MEF is prominent and similar in murine first- and second-order mesenteric resistance arteries of both sexes, and reliant primarily on NOS and secondarily on hyperpolarization, but not TRPV4.NEW & NOTEWORTHY We found that female mesenteric resistance arteries have similar postconstriction dilatory responses (i.e., myoendothelial feedback) to a sympathetic neurotransmitter analog as male arteries. Both sexes use nitric oxide synthase (NOS) and hyperpolarization, but not TRPV4, in this response. Moreover, the key protein involved in this pathway (eNOS) is similarly expressed in these arteries between the sexes. These similarities are surprising given that agonist-induced endothelium-dependent dilatory mechanisms differ in these arteries between the sexes.


Asunto(s)
Óxido Nítrico Sintasa , Canales Catiónicos TRPV , Ratones , Masculino , Femenino , Animales , NG-Nitroarginina Metil Éster/farmacología , Retroalimentación , Canales Catiónicos TRPV/metabolismo , Arterias Mesentéricas/metabolismo , Vasodilatación , Óxido Nítrico/metabolismo , Endotelio Vascular/metabolismo
9.
Biol Reprod ; 110(1): 185-197, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37823770

RESUMEN

Obstructive sleep apnea is a recognized risk factor for gestational hypertension, yet the exact mechanism behind this association remains unclear. Here, we tested the hypothesis that intermittent hypoxia, a hallmark of obstructive sleep apnea, induces gestational hypertension through perturbed endothelin-1 signaling. Pregnant Sprague-Dawley rats were subjected to normoxia (control), mild intermittent hypoxia (10.5% O2), or severe intermittent hypoxia (6.5% O2) from gestational days 10-21. Blood pressure was monitored. Plasma was collected and mesenteric arteries were isolated for myograph and protein analyses. The mild and severe intermittent hypoxia groups demonstrated elevated blood pressure, reduced plasma nitrate/nitrite, and unchanged endothelin-1 levels compared to the control group. Western blot analysis revealed decreased expression of endothelin type B receptor and phosphorylated endothelial nitric oxide synthase, while the levels of endothelin type A receptor and total endothelial nitric oxide synthase remained unchanged following intermittent hypoxia exposure. The contractile responses to potassium chloride, phenylephrine, and endothelin-1 were unaffected in endothelium-denuded arteries from mild and severe intermittent hypoxia rats. However, mild and severe intermittent hypoxia rats exhibited impaired endothelium-dependent vasorelaxation responses to endothelin type B receptor agonist IRL-1620 and acetylcholine compared to controls. Endothelium denudation abolished IRL-1620-induced vasorelaxation, supporting the involvement of endothelium in endothelin type B receptor-mediated relaxation. Treatment with IRL-1620 during intermittent hypoxia exposure significantly attenuated intermittent hypoxia-induced hypertension in pregnant rats. This was associated with elevated circulating nitrate/nitrite levels, enhanced endothelin type B receptor expression, increased endothelial nitric oxide synthase activation, and improved vasodilation responses. Our data suggested that intermittent hypoxia exposure during gestation increases blood pressure in pregnant rats by suppressing endothelin type B receptor-mediated signaling, providing a molecular mechanism linking intermittent hypoxia and gestational hypertension.


Asunto(s)
Hipertensión Inducida en el Embarazo , Apnea Obstructiva del Sueño , Humanos , Embarazo , Femenino , Ratas , Animales , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas Sprague-Dawley , Endotelina-1/metabolismo , Endotelina-1/farmacología , Hipertensión Inducida en el Embarazo/etiología , Hipertensión Inducida en el Embarazo/metabolismo , Nitratos/metabolismo , Nitratos/farmacología , Nitritos/metabolismo , Nitritos/farmacología , Vasodilatación , Endotelinas/metabolismo , Endotelinas/farmacología , Hipoxia/metabolismo , Receptor de Endotelina A/metabolismo , Arterias Mesentéricas , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacología , Endotelio Vascular
10.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664801

RESUMEN

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Asunto(s)
Caveolina 1 , Dieta Alta en Grasa , Células Endoteliales , Endotelio Vascular , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III , Vasodilatación , Animales , Masculino , Ratones , Aorta/enzimología , Aorta/fisiopatología , Aorta/metabolismo , Aorta/efectos de los fármacos , Aorta/patología , Caveolina 1/metabolismo , Caveolina 1/deficiencia , Caveolina 1/genética , Células Cultivadas , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/fisiopatología , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/fisiopatología , Endotelio Vascular/metabolismo , Endotelio Vascular/enzimología , Endotelio Vascular/efectos de los fármacos , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/enzimología , Obesidad/fisiopatología , Obesidad/metabolismo , Transducción de Señal , Esterol Esterasa/metabolismo , Esterol Esterasa/genética , Ubiquitinación , Vasodilatación/efectos de los fármacos
11.
Arch Biochem Biophys ; 758: 110059, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936683

RESUMEN

BACKGROUND: It has been previously demonstrated that the maintenance of ischemic acidic pH or the delay of intracellular pH recovery at the onset of reperfusion decreases ischemic-induced cardiomyocyte death. OBJECTIVE: To examine the role played by nitric oxide synthase (NOS)/NO-dependent pathways in the effects of acidic reperfusion in a regional ischemia model. METHODS: Isolated rat hearts perfused by Langendorff technique were submitted to 40 min of left coronary artery occlusion followed by 60 min of reperfusion (IC). A group of hearts received an acid solution (pH = 6.4) during the first 2 min of reperfusion (AR) in absence or in presence of l-NAME (NOS inhibitor). Infarct size (IS) and myocardial function were determined. In cardiac homogenates, the expression of P-Akt, P-endothelial and inducible isoforms of NOS (P-eNOS and iNOS) and the level of 3-nitrotyrosine were measured. In isolated cardiomyocytes, the intracellular NO production was assessed by confocal microscopy, under control and acidic conditions. Mitochondrial swelling after Ca2+ addition and mitochondrial membrane potential (Δψ) were also determined under control and acidosis. RESULTS: AR decreased IS, improved postischemic myocardial function recovery, increased P-Akt and P-eNOS, and decreased iNOS and 3-nitrotyrosine. NO production increased while mitochondrial swelling and Δψ decreased in acidic conditions. l-NAME prevented the beneficial effects of AR. CONCLUSIONS: Our data strongly supports that a brief acidic reperfusion protects the myocardium against the ischemia-reperfusion injury through eNOS/NO-dependent pathways.


Asunto(s)
Óxido Nítrico , Animales , Concentración de Iones de Hidrógeno , Óxido Nítrico/metabolismo , Masculino , Ratas , Ratas Wistar , Óxido Nítrico Sintasa de Tipo III/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/tratamiento farmacológico , NG-Nitroarginina Metil Éster/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Óxido Nítrico Sintasa/metabolismo
12.
J Sex Med ; 21(8): 663-670, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38972662

RESUMEN

BACKGROUND: The mechanism by which a state of low testosterone leads to erectile dysfunction (ED) has not been determined. Endocan is a novel marker of endothelial function. However, whether endocan is involved in the regulation of erectile function under low testosterone levels remains unclear. AIM: In this study we sought to determine whether a low-testosterone state inhibits erectile function by regulating endocan expression in the endothelial cells of the rat penile corpus cavernosum. METHODS: Thirty-six male Sprague-Dawley rats aged 8 weeks were randomly assigned to 6 groups (n = 6 per group) as follows: (1) control, (2) castration, (3) castration + testosterone treatment (treated with 3 mg/kg testosterone propionate per 2 days), (4) control + transfection (4 weeks after castration, injected with lentiviral vector (1 × 108 transduction units/mL, 10 µL), (5) castration + transfection, or (6) castration + empty transfection. One week after the injection, we measured the maximal intracavernous pressure/mean arterial pressure (ICPmax/MAP), serum testosterone and nitric oxide (NO) levels, and the expression of endocan, phospho-endothelial NO synthase (p-eNOS), eNOS, phospho-protein kinase B (p-AKT), and AKT in the rat penile corpus cavernosum. OUTCOMES: Under a low-androgen state, the expression of endocan in the rat penile corpus cavernosum was significantly increased, which inhibited the AKT/eNOS/NO signaling pathway and resulted in ED. RESULTS: In the castration group, the expression of endocan in the rat penile corpus cavernosum was significantly higher than that in the control group (P < .05). Additionally, the levels of p-AKT/AKT, p-eNOS/eNOS, and NO in the rat penile corpus cavernosum and ICPmax/MAP were significantly lower in the castration group than in the control group (P < .05). In the castration + transfection group compared with the castration group there was a significant decrease in the expression of endocan (P < .05) and an increase in the ratios of p-AKT/AKT, p-eNOS/eNOS, and ICPmax/MAP (P < .05) in the rat penile corpus cavernosum. CLINICAL IMPLICATIONS: Downregulating the expression of endocan in the penile corpus cavernosum may be a feasible approach for treating ED caused by hypoandrogenism. STRENGTHS AND LIMITATIONS: The results of this study indicte that endocan may affect NO levels and erectile function through multiple signaling pathways, but further experiments are needed to clarify the relationship between endocan and androgens. CONCLUSION: A low-testosterone state inhibits the AKT/eNOS/NO signaling pathway by increasing the expression of endocan in the rat penile corpus cavernosum and impairing erectile function in rats. Decreasing the expression of endocan in the penile corpus cavernosum can improve erectile function in rats with low testosterone levels.


Asunto(s)
Disfunción Eréctil , Óxido Nítrico Sintasa de Tipo III , Pene , Proteoglicanos , Ratas Sprague-Dawley , Testosterona , Animales , Masculino , Pene/metabolismo , Disfunción Eréctil/etiología , Disfunción Eréctil/metabolismo , Ratas , Testosterona/sangre , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteoglicanos/metabolismo , Erección Peniana/fisiología , Erección Peniana/efectos de los fármacos , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Endoteliales/metabolismo
13.
J Pineal Res ; 76(1): e12925, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37986632

RESUMEN

Stroke is the leading cause of death and disability worldwide. Novel and effective therapies for ischemic stroke are urgently needed. Here, we report that melatonin receptor 1A (MT1) agonist ramelteon is a neuroprotective drug candidate as demonstrated by comprehensive experimental models of ischemic stroke, including a middle cerebral artery occlusion (MCAO) mouse model of cerebral ischemia in vivo, organotypic hippocampal slice cultures ex vivo, and cultured neurons in vitro; the neuroprotective effects of ramelteon are diminished in MT1-knockout (KO) mice and MT1-KO cultured neurons. For the first time, we report that the MT1 receptor is significantly depleted in the brain of MCAO mice, and ramelteon treatment significantly recovers the brain MT1 losses in MCAO mice, which is further explained by the Connectivity Map L1000 bioinformatic analysis that shows gene-expression signatures of MCAO mice are negatively connected to melatonin receptor agonist like Ramelteon. We demonstrate that ramelteon improves the cerebral blood flow signals in ischemic stroke that is potentially mediated, at least, partly by mechanisms of activating endothelial nitric oxide synthase. Our results also show that the neuroprotection of ramelteon counteracts reactive oxygen species-induced oxidative stress and activates the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway. Ramelteon inhibits the mitochondrial and autophagic death pathways in MCAO mice and cultured neurons, consistent with gene set enrichment analysis from a bioinformatics perspective angle. Our data suggest that Ramelteon is a potential neuroprotective drug candidate, and MT1 is the neuroprotective target for ischemic stroke, which provides new insights into stroke therapy. MT1-KO mice and cultured neurons may provide animal and cellular models of accelerated ischemic damage and neuronal cell death.


Asunto(s)
Isquemia Encefálica , Indenos , Accidente Cerebrovascular Isquémico , Melatonina , Fármacos Neuroprotectores , Accidente Cerebrovascular , Animales , Ratones , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Receptor de Melatonina MT1/agonistas , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Transducción de Señal , Melatonina/farmacología , Isquemia Encefálica/tratamiento farmacológico , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/genética , Ratones Noqueados , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo
14.
Mol Biol Rep ; 51(1): 825, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023749

RESUMEN

BACKGROUND: Systemic inflammation causes several organ damage by activating the intracellular signaling mechanisms. Heart and aorta tissues are the structures mostly affected by this situation. By examining underlying processes, this study sought to determine whether cannabidiol (CBD) may have protective effects against the cardiovascular damage brought on by lipopolysaccharide (LPS). MATERIALS AND METHODS: A total of 32 female rats were randomly allocated to one of four groups: control, lipopolysaccharide (LPS) (5 mg/kg, i.p., single dose), LPS + CBD (5 mg/kg, i.p., single dose), and CBD groups. The rats were killed six hours after receiving LPS, and tissues from the heart and aorta were taken. Histopathological and immunohistochemical analyzes were performed. Oxidative stress was evaluated biochemically by spectrophotometric method. Expression levels of genes were studied by RT-qPCR method. RESULTS: Histopathological analysis of the LPS group showed moderate hyperemia, hemorrhages, edema, inflammation, and myocardial cell damage. There was a slight to moderate increase in Cox-1, G-CSF, and IL-3 immunoexpressions, along with enhanced expressions of IL-6, Hif1α, and STAT3 genes, and decreased expressions of eNOS genes. Additionally, there were increased levels of TOS and decreased TAS levels observed biochemically. CBD treatment effectively reversed and improved all of these observed changes. CONCLUSIONS: CBD protects the heart and aorta against systemic inflammation through its antioxidant and anti-inflammatory activity via regulating IL-6, Hif1α, STAT3, and eNOS intracellular pathways.


Asunto(s)
Antiinflamatorios , Antioxidantes , Cannabidiol , Lipopolisacáridos , Estrés Oxidativo , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Femenino , Ratas , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Aorta/efectos de los fármacos , Aorta/patología , Aorta/metabolismo , Cannabidiol/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Lipopolisacáridos/toxicidad , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo
15.
BMC Cardiovasc Disord ; 24(1): 176, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519897

RESUMEN

BACKGROUND: The endothelial nitric oxide synthase (eNOS) gene deficiency is known to cause impaired coronary vasodilating capability in animal models. In the general clinical population, the eNOS gene polymorphisms, able to affect eNOS activity, were associated with cardiometabolic risk features and prevalence of coronary artery disease (CAD). AIM: To investigate the association of eNOS Glu298Asp gene polymorphism, cardiometabolic profile, obstructive CAD and inducible myocardial ischemia in patients with suspected stable CAD. METHODS: A total of 506 patients (314 males; mean age 62 ± 9 years) referred for suspected CAD was enrolled. Among these, 325 patients underwent stress ECG or cardiac imaging to assess the presence of inducible myocardial ischemia and 436 patients underwent non-invasive computerized tomography or invasive coronary angiography to assess the presence of obstructive CAD. Clinical characteristics and blood samples were collected for each patient. RESULTS: In the whole population, 49.6% of patients were homozygous for the Glu298 genotype (Glu/Glu), 40.9% heterozygotes (Glu/Asp) and 9.5% homozygous for the 298Asp genotype (Asp/Asp). Obstructive CAD was documented in 178/436 (40.8%) patients undergoing coronary angiography while myocardial ischemia in 160/325 (49.2%) patients undergoing stress testing. Patients with eNOS Asp genotype (Glu/Asp + Asp/Asp) had no significant differences in clinical risk factors and in circulating markers. Independent predictors of obstructive CAD were age, gender, obesity, and low HDL-C. Independent predictors of myocardial ischemia were gender, obesity, low HDL-C and Asp genotype. In the subpopulation in which both stress tests and coronary angiography were performed, the Asp genotype remained associated with increased myocardial ischemia risk after adjustment for obstructive CAD. CONCLUSION: In this population, low-HDL cholesterol was the only cardiometabolic risk determinant of obstructive CAD. The eNOS Glu298Asp gene polymorphism was significantly associated with inducible myocardial ischemia independently of other risk factors and presence of obstructive CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Isquemia Miocárdica , Anciano , Humanos , Masculino , Persona de Mediana Edad , Arterias , HDL-Colesterol , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/genética , Genotipo , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/epidemiología , Isquemia Miocárdica/genética , Óxido Nítrico Sintasa de Tipo III/genética , Obesidad , Polimorfismo Genético , Factores de Riesgo
16.
Acta Pharmacol Sin ; 45(3): 545-557, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37932403

RESUMEN

The matrix glycoprotein thrombospondin-1 (THBS1) modulates nitric oxide (NO) signaling in endothelial cells. A high-salt diet induces deficiencies of NO production and bioavailability, thereby leading to endothelial dysfunction. In this study we investigated the changes of THBS1 expression and its pathological role in the dysfunction of mesenteric artery endothelial cells (MAECs) induced by a high-salt diet. Wild-type rats, and wild-type and Thbs1-/- mice were fed chow containing 8% w/w NaCl for 4 weeks. We showed that a high salt diet significantly increased THBS1 expression and secretion in plasma and MAECs, and damaged endothelium-dependent vasodilation of mesenteric resistance arteries in wild-type animals, but not in Thbs1-/- mice. In rat MAECs, we demonstrated that a high salt environment (10-40 mM) dose-dependently increased THBS1 expression accompanied by suppressed endothelial nitric oxide synthase (eNOS) and phospho-eNOS S1177 production as well as NO release. Blockade of transforming growth factor-ß1 (TGF-ß1) activity by a TGF-ß1 inhibitor SB 431542 reversed THBS1 up-regulation, rescued the eNOS decrease, enhanced phospho-eNOS S1177 expression, and inhibited Smad4 translocation to the nucleus. By conducting dual-luciferase reporter experiments in HEK293T cells, we demonstrated that Smad4, a transcription promoter, upregulated Thbs1 transcription. We conclude that THBS1 contributes to endothelial dysfunction in a high-salt environment and may be a potential target for treatment of high-salt-induced endothelium dysfunction.


Asunto(s)
Células Endoteliales , Cloruro de Sodio , Humanos , Ratas , Ratones , Animales , Cloruro de Sodio/metabolismo , Células Endoteliales/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Células HEK293 , Endotelio Vascular/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Vasodilatación , Arterias Mesentéricas , Trombospondinas/metabolismo , Óxido Nítrico/metabolismo
17.
Cell Mol Life Sci ; 80(8): 210, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37460898

RESUMEN

Dysregulated autophagy is associated with cardiovascular and metabolic diseases, where impaired flow-mediated endothelial cell responses promote cardiovascular risk. The mechanism by which the autophagy machinery regulates endothelial functions is complex. We applied multi-omics approaches and in vitro and in vivo functional assays to decipher the diverse roles of autophagy in endothelial cells. We demonstrate that autophagy regulates VEGF-dependent VEGFR signaling and VEGFR-mediated and flow-mediated eNOS activation. Endothelial ATG5 deficiency in vivo results in selective loss of flow-induced vasodilation in mesenteric arteries and kidneys and increased cerebral and renal vascular resistance in vivo. We found a crucial pathophysiological role for autophagy in endothelial cells in flow-mediated outward arterial remodeling, prevention of neointima formation following wire injury, and recovery after myocardial infarction. Together, these findings unravel a fundamental role of autophagy in endothelial function, linking cell proteostasis to mechanosensing.


Asunto(s)
Células Endoteliales , Infarto del Miocardio , Humanos , Autofagia , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Arterias Mesentéricas/metabolismo , Infarto del Miocardio/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Transducción de Señal , Vasodilatación , Animales , Ratones
18.
Heart Vessels ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38797744

RESUMEN

It remains to be elucidated whether Ca2+ antagonists induce pharmacological preconditioning to protect the heart against ischemia/reperfusion injury. The aim of this study was to determine whether and how pretreatment with a Ca2+ antagonist, azelnidipine, could protect cardiomyocytes against hypoxia/reoxygenation (H/R) injury in vitro. Using HL-1 cardiomyocytes, we studied effects of azelnidipine on NO synthase (NOS) expression, NO production, cell death and apoptosis during H/R. Action potential durations (APDs) were determined by the whole-cell patch-clamp technique. Azelnidipine enhanced endothelial NOS phosphorylation and NO production in HL-1 cells under normoxia, which was abolished by a heat shock protein 90 inhibitor, geldanamycin, and an antioxidant, N-acetylcysteine. Pretreatment with azelnidipine reduced cell death and shortened APDs during H/R. These effects of azelnidipine were diminished by a NOS inhibitor, L-NAME, but were influenced by neither a T-type Ca2+ channel inhibitor, NiCl2, nor a N-type Ca2+ channel inhibitor, ω-conotoxin. The azelnidipine-induced reduction in cell death was not significantly enhanced by either additional azelnidipine treatment during H/R or increasing extracellular Ca2+ concentrations. RNA sequence (RNA-seq) data indicated that azelnidipine-induced attenuation of cell death, which depended on enhanced NO production, did not involve any significant modifications of gene expression responsible for the NO/cGMP/PKG pathway. We conclude that pretreatment with azelnidipine protects HL-1 cardiomyocytes against H/R injury via NO-dependent APD shortening and L-type Ca2+ channel blockade independently of effects on gene expression.

19.
BMC Musculoskelet Disord ; 25(1): 45, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200474

RESUMEN

BACKGROUND: Alamandine is a newly characterized peptide of renin angiotensin system. Our study aims to investigate the osteo-preservative effects of alamandine, explore underlying mechanism and bring a potential preventive strategy for postmenopausal osteoporosis in the future. METHODS: An ovariectomy (OVX)-induced rat osteoporosis model was established for in vivo experiments. Micro-computed tomography and three-point bending test were used to evaluate bone strength. Histological femur slices were processed for immunohistochemistry (IHC). Bone turnover markers and nitric oxide (NO) concentrations in serum were determined with enzyme-linked immunosorbent assay (ELISA). The mouse embryo osteoblast precursor (MC3T3-E1) cells were used for in vitro experiments. The cell viability was analysed with a Cell Counting Kit­8. We performed Alizarin Red S staining and alkaline phosphatase (ALP) activity assay to observe the differentiation status of osteoblasts. Western blotting was adopted to detect the expression of osteogenesis related proteins and AMP-activated protein kinase/endothelial nitric oxide synthase (AMPK/eNOS) in osteoblasts. DAF-FM diacetate was used for semi-quantitation of intracellular NO. RESULTS: In OVX rats, alamandine alleviated osteoporosis and maintained bone strength. The IHC showed alamandine increased osteocalcin and collagen type I α1 (COL1A1) expression. The ELISA revealed alamandine decreased bone turnover markers and restored NO level in serum. In MC3T3-E1 cells, alamandine promoted osteogenic differentiation. Western blotting demonstrated that alamandine upregulated the expression of osteopontin, Runt-related transcription factor 2 and COL1A1. The intracellular NO was also raised by alamandine. Additionally, the activation of AMPK/eNOS axis mediated the effects of alamandine on MC3T3-E1 cells and bone tissue. PD123319 and dorsomorphin could repress the regulating effect of alamandine on bone metabolism. CONCLUSION: Alamandine attenuates ovariectomy-induced osteoporosis by promoting osteogenic differentiation via AMPK/eNOS axis.


Asunto(s)
Oligopéptidos , Osteogénesis , Osteoporosis , Ratones , Femenino , Animales , Ratas , Proteínas Quinasas Activadas por AMP , Óxido Nítrico Sintasa de Tipo III , Microtomografía por Rayos X , Osteoporosis/tratamiento farmacológico , Osteoporosis/etiología , Osteoporosis/prevención & control
20.
Chem Biodivers ; 21(5): e202400300, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430215

RESUMEN

Sea buckthorn, a traditional medicinal plant, has been used for several years in China for the prevention and treatment of various diseases, a practice closely associated with its significant antioxidant activity. The aim of this study was to investigate the protective effects of sea buckthorn flavonoids on vascular endothelial cells in an oxidative stress environment. We isolated and extracted active compounds from sea buckthorn and investigated their impact on endothelial nitric oxide synthase (eNOS) activity through the PI3K/AKT-eNOS signaling pathway through a combination of network pharmacology and cellular experiments, elucidating the regulatory effects of these compounds on endothelial cell functions. Three flavonoids, named Fr.4-2-1, Fr.4-2-2 and Fr.4-2-3, were obtained from sea buckthorn. The results of network pharmacology indicated that they might exert their effects by regulating the PI3K-AKT signaling pathway. In vitro results showed that all three flavonoids were effective in alleviating the degree of oxidative stress in cells, among which Fr.4-2-1 exerted its antioxidant effects by modulating the PI3K/AKT-eNOS pathway. Flavonoids in sea buckthorn can effectively inhibit oxidative stress-induced cellular damage, preserving the integrity and functionality of endothelial cells, which is crucial for maintaining vascular health and function.


Asunto(s)
Flavonoides , Hippophae , Óxido Nítrico Sintasa de Tipo III , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Hippophae/química , Óxido Nítrico Sintasa de Tipo III/metabolismo , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Flavonoides/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Supervivencia Celular/efectos de los fármacos , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Sustancias Protectoras/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA