Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Pflugers Arch ; 475(2): 181-202, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36260174

RESUMEN

We recorded spontaneous extracellular action potentials (eAPs) from rat chromaffin cells (CCs) at 37 °C using microelectrode arrays (MEAs) and compared them with intracellularly recorded APs (iAPs) through conventional patch clamp recordings at 22 °C. We show the existence of two distinct firing modes on MEAs: a ~ 4 Hz irregular continuous firing and a frequent intermittent firing mode where periods of high-intraburst frequency (~ 8 Hz) of ~ 7 s duration are interrupted by silent periods of ~ 12 s. eAPs occurred either as negative- or positive-going signals depending on the contact between cell and microelectrode: either predominantly controlled by junction-membrane ion channels (negative-going) or capacitive/ohmic coupling (positive-going). Negative-going eAPs were found to represent the trajectory of the Na+, Ca2+, and K+ currents passing through the cell area in tight contact with the microelectrode during an AP (point-contact junction). The inward Nav component of eAPs was blocked by TTX in a dose-dependent manner (IC50 ~ 10 nM) while the outward component was strongly attenuated by the BK channel blocker paxilline (200 nM) or TEA (5 mM). The SK channel blocker apamin (200 nM) had no effect on eAPs. Inward Nav and Cav currents were well-resolved after block of Kv and BK channels or in cells showing no evident outward K+ currents. Unexpectedly, on the same type of cells, we could also resolve inward L-type currents after adding nifedipine (3 µM). In conclusion, MEAs provide a direct way to record different firing modes of rat CCs and to estimate the Na+, Ca2+, and K+ currents that sustain cell firing and spontaneous catecholamines secretion.


Asunto(s)
Células Cromafines , Canales de Potasio de Gran Conductancia Activados por el Calcio , Ratas , Animales , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Microelectrodos , Células Cromafines/metabolismo , Potenciales de Acción/fisiología , Canales Iónicos/metabolismo
2.
Sensors (Basel) ; 23(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36679395

RESUMEN

An electrocardiograph records the periodic voltage generated by the heart over time. There is growing demand to continuously monitor the ECG for proactive health care and human performance optimization. To meet this demand, new conductive textile electrodes are being developed which offer an attractive alternative to adhesive gel electrodes but they come with their own challenges. The key challenge with textile electrodes is that the relationship between the manufacturing parameters and the ECG measurement is not well understood, making design an iterative process without the ability to prospectively develop woven electrodes with optimized performance. Here we address this challenge by applying the traditional skin-electrode interface circuit model to woven electrodes by constructing a parameterized model of the ECG system. Then the unknown parameters of the system are solved for with an iterative MATLAB optimizer using measured data captured with the woven electrodes. The results of this novel analysis confirm that yarn conductivity and total conductive area reduce skin electrode impedance. The results also indicate that electrode skin pressure and moisture require further investigation. By closing this gap in development, textile electrodes can be better designed and manufactured to meet the demands of long-term ECG capture.


Asunto(s)
Electrocardiografía , Textiles , Humanos , Electrodos , Conductividad Eléctrica , Impedancia Eléctrica
3.
Angew Chem Int Ed Engl ; 62(38): e202301435, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37246161

RESUMEN

CO2 reduction, two-electron O2 reduction, and N2 reduction are sustainable technologies to valorise common molecules. Their further development requires working electrode design to promote the multistep electrochemical processes from gas reactants to value-added products at the device level. This review proposes critical features of a desirable electrode based on the fundamental electrochemical processes and the development of scalable devices. A detailed discussion is made to approach such a desirable electrode, addressing the recent progress on critical electrode components, assembly strategies, and reaction interface engineering. Further, we highlight the electrode design tailored to reaction properties (e.g., its thermodynamics and kinetics) for performance optimisation. Finally, the opportunities and remaining challenges are presented, providing a framework for rational electrode design to push these gas reduction reactions towards an improved technology readiness level (TRL).

4.
Sensors (Basel) ; 21(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34372446

RESUMEN

A low and stable impedance at the skin-electrode interface is key to high-fidelity acquisition of biosignals, both acutely and in the long term. However, recording quality is highly variable due to the complex nature of human skin. Here, we present an experimental and modeling framework to investigate the interfacial impedance behavior, and describe how skin interventions affect its stability over time. To illustrate this approach, we report experimental measurements on the skin-electrode impedance using pre-gelled, clinical-grade electrodes in healthy human subjects recorded over 24 h following four skin treatments: (i) mechanical abrasion, (ii) chemical exfoliation, (iii) microporation, and (iv) no treatment. In the immediate post-treatment period, mechanical abrasion yields the lowest initial impedance, whereas the other treatments provide modest improvement compared to untreated skin. After 24 h, however, the impedance becomes more uniform across all groups (<20 kΩ at 10 Hz). The impedance data are fitted with an equivalent circuit model of the complete skin-electrode interface, clearly identifying skin-level versus electrode-level contributions to the overall impedance. Using this model, we systematically investigate how time and treatment affect the impedance response, and show that removal of the superficial epidermal layers is essential to achieving a low, long-term stable interface impedance.


Asunto(s)
Piel , Impedancia Eléctrica , Electrodos , Humanos
5.
Small ; 16(48): e2004720, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33155382

RESUMEN

Recent progress in addressing electrically driven single-molecule behaviors has opened up a path toward the controllable fabrication of molecular devices. Herein, the selective fabrication of single-molecule junctions is achieved by employing the external electric field. For molecular junctions with methylthio (-SMe), thioacetate (-SAc), amine (-NH2 ), and pyridyl (-PY), the evolution of their formation probabilities along with the electric field is extracted from the plateau analysis of individual single-molecule break junction traces. With the increase of the electric field, the SMe-anchored molecules show a different trend in the formation probability compared to the other molecular junctions, which is consistent with the density functional theory calculations. Furthermore, switching from an SMe-anchored junction to an SAc-anchored junction is realized by altering the electric field in a mixed solution. The results in this work provide a new approach to the controllable fabrication and modulation of single-molecule junctions and other bottom-up nanodevices at molecular scales.

6.
Nano Lett ; 19(9): 6173-6181, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31424942

RESUMEN

Micronanotechnology-based multielectrode arrays have led to remarkable progress in the field of transmembrane voltage recording of excitable cells. However, providing long-term optoporation- or electroporation-free intracellular access remains a considerable challenge. In this study, a novel type of nanopatterned volcano-shaped microelectrode (nanovolcano) is described that spontaneously fuses with the cell membrane and permits stable intracellular access. The complex nanostructure was manufactured following a simple and scalable fabrication process based on ion beam etching redeposition. The resulting ring-shaped structure provided passive intracellular access to neonatal rat cardiomyocytes. Intracellular action potentials were successfully recorded in vitro from different devices, and continuous recording for more than 1 h was achieved. By reporting transmembrane action potentials at potentially high spatial resolution without the need to apply physical triggers, the nanovolcanoes show distinct advantages over multielectrode arrays for the assessment of electrophysiological characteristics of cardiomyocyte networks at the transmembrane voltage level over time.


Asunto(s)
Potenciales de Acción/fisiología , Miocitos Cardíacos/química , Nanoestructuras/química , Neuronas/química , Animales , Membrana Celular/química , Membrana Celular/fisiología , Citoplasma/química , Técnicas Electrofisiológicas Cardíacas , Electroporación , Humanos , Microelectrodos , Miocitos Cardíacos/fisiología , Neuronas/fisiología , Ratas
7.
Mikrochim Acta ; 185(7): 337, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29946767

RESUMEN

Wiring the active site of an enzyme directly to an electrode is the key to ensuring efficient electron transfer for the proper performance of enzyme-based bioelectronic systems. Iron-sulfur complexes, the first link between proteins and mediating molecules in the biological electron transport chain(s), possess an intrinsic electron transport capability. The authors demonstrate the application of inorganic iron-sulfur clusters (Fe-S) viz. FeS, FeS2, Fe2S3, and Fe3S4, as molecular wires to mediate electron transport between a glucose-selective redox enzyme and the gold electrode. It is shown that Fe-S can emulate the functionality of the natural electron transport chain. Voltammetric studies indicate a significant improvement in electron transport, surface coverage, and resilience achieved by the Fe-S-based glucose anodes when compared to a conventional pyrroloquinoline quinone (PQQ)-based electrode. The Fe-S-based glucose anodes showed glucose oxidation at a potential of +0.5 V vs. Ag/AgCl with Tris-HCl buffer (pH 8) acting as a carrier. The current densities positively correlated with the concentrations of glucose in the range 0.1-100 mM displaying detection limits of 0.77 mM (FeS), 1.22 mM (FeS2), 2.95 mM (Fe2S3), and 14.57 mM (Fe3S4). The metal-anchorable sulfur atom, the strong π-coordinating iron atom, the favorable redox properties, low cost, and natural abundance make Fe-S an excellent electron-mediating relay capable of wiring redox active sites to electrode surfaces. Graphical abstract Schematic representation of inorganic iron-sulfur clusters used as molecular wires to facilitate direct electron transfer between NAD-glucose dehydrogenase and the gold electrode. The iron-sulfur based glucose anodes improve current response to selectively sense glucose concentrations in the range 0.1-100 mM.


Asunto(s)
Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Glucosa 1-Deshidrogenasa/química , Glucosa 1-Deshidrogenasa/metabolismo , Hierro/química , NAD/metabolismo , Azufre/química , Benzoquinonas/química , Dominio Catalítico , Electroquímica , Transporte de Electrón , Ferricianuros/química , Ferrocianuros/química , Potenciometría
8.
Angew Chem Int Ed Engl ; 57(29): 9069-9072, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29644778

RESUMEN

Developing Na metal anodes that can be deeply cycled with high efficiency for a long time is a prerequisite for rechargeable Na metal batteries to be practically useful despite their notable advantages in theoretical energy density and potential low cost. Their high chemical reactivity with the electrolyte and tendency for dendrite formation are two major issues limiting the reversibility of Na metal electrodes. In this work, we introduce for the first time potassium bis(trifluoromethylsulfonyl)imide (KTFSI) as a bifunctional electrolyte additive to stabilize Na metal electrodes, in which the TFSI- anions decompose into lithium nitride and oxynitrides to render a desirable solid electrolyte interphase layer while the K+ cations preferentially adsorb onto Na protrusions and provide electrostatic shielding to suppress dendritic deposition. Through the cooperation of the cations and anions, we have realized Na metal electrodes that can be deeply cycled at a capacity of 10 mAh cm-2 for hundreds of hours.

9.
Biochim Biophys Acta ; 1857(9): 1497-1505, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26946088

RESUMEN

We have investigated the nature of the photocurrent generated by Photosystem II (PSII), the water oxidizing enzyme, isolated from Thermosynechococcus elongatus, when immobilized on nanostructured titanium dioxide on an indium tin oxide electrode (TiO2/ITO). We investigated the properties of the photocurrent from PSII when immobilized as a monolayer versus multilayers, in the presence and absence of an inhibitor that binds to the site of the exchangeable quinone (QB) and in the presence and absence of exogenous mobile electron carriers (mediators). The findings indicate that electron transfer occurs from the first quinone (QA) directly to the electrode surface but that the electron transfer through the nanostructured metal oxide is the rate-limiting step. Redox mediators enhance the photocurrent by taking electrons from the nanostructured semiconductor surface to the ITO electrode surface not from PSII. This is demonstrated by photocurrent enhancement using a mediator incapable of accepting electrons from PSII. This model for electron transfer also explains anomalies reported in the literature using similar and related systems. The slow rate of the electron transfer step in the TiO2 is due to the energy level of electron injection into the semiconducting material being below the conduction band. This limits the usefulness of the present hybrid electrode. Strategies to overcome this kinetic limitation are discussed.


Asunto(s)
Complejo de Proteína del Fotosistema II/química , Compuestos de Estaño/química , Titanio/química , Electrodos , Transporte de Electrón , Quinonas/química
10.
Int J Mol Sci ; 18(2)2017 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-28165427

RESUMEN

Stroke leads to serious long-term disability. Electrical epidural cortical stimulation has made significant improvements in stroke rehabilitation therapy. We developed a preliminary wireless implantable passive interface, which consists of a stimulating surface electrode, receiving coil, and single flexible passive demodulated circuit printed by flexible printed circuit (FPC) technique and output pulse voltage stimulus by inductively coupling an external circuit. The wireless implantable board was implanted in cats' unilateral epidural space for electrical stimulation of the primary visual cortex (V1) while the evoked responses were recorded on the contralateral V1 using a needle electrode. The wireless implantable board output stable monophasic voltage stimuli. The amplitude of the monophasic voltage output could be adjusted by controlling the voltage of the transmitter circuit within a range of 5-20 V. In acute experiment, cortico-cortical evoked potential (CCEP) response was recorded on the contralateral V1. The amplitude of N2 in CCEP was modulated by adjusting the stimulation intensity of the wireless interface. These results demonstrated that a wireless interface based on a microcoil array can offer a valuable tool for researchers to explore electrical stimulation in research and the dura mater-electrode interface can effectively transmit electrical stimulation.


Asunto(s)
Estimulación Eléctrica/instrumentación , Estimulación Eléctrica/métodos , Espacio Epidural , Prótesis e Implantes , Corteza Visual , Tecnología Inalámbrica , Animales , Gatos , Electrodos , Potenciales Evocados
11.
ACS Appl Mater Interfaces ; 16(26): 33379-33387, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885040

RESUMEN

Electrode/electrolyte interfacial ion transfer is a fundamental process occurring during insertion-type redox reactions at battery electrodes. The rate at which ions move into and out of the electrode, as well as at interphase structures, directly impacts the power performance of the battery. However, measuring and quantifying these ion transfer phenomena can be difficult, especially at high electrolyte concentrations as found in batteries. Herein, we report a scanning electrochemical microscope method using a common ferri/ferrocyanide (FeCN) redox mediator dissolved in an aqueous electrolyte to track changes in alkali ions at high electrolyte concentrations (up to 3 mol dm-3). Using voltammetry at a platinum microelectrode, we observed a reversible E1/2 shift of ∼60 mV per decade change in K+ concentrations. The response showed high stability in sequential measurements and similar behavior in other aqueous electrolytes. From there, we used the same FeCN mediator to position the microelectrode at the surface of a potassium-insertion electrode. We demonstrate tracking of local changes in the K+ concentration during insertion and deinsertion processes. Using a 2D axisymmetric, finite element model, we further estimate the effective insertion rates. These developments enable characterization of a key parameter for improving batteries, the interfacial ion transfer kinetics, and future work may show mediators appropriate for molar concentrations in nonaqueous electrolytes and beyond.

12.
Adv Sci (Weinh) ; 11(35): e2404968, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39033539

RESUMEN

The feasibility of aqueous zinc-ion batteries for large-scale energy storage is hindered by the inherent challenges of Zn anode. Drawing inspiration from cellular mechanisms governing metal ion and nutrient transport, erythritol is introduced, a zincophilic additive, into the ZnSO4 electrolyte. This innovation stabilizes the Zn anode via chelation interactions between polysaccharides and Zn2+. Experimental tests in conjunction with theoretical calculation results verified that the erythritol additive can simultaneously regulate the solvation structure of hydrated Zn2+ and reconstruct the hydrogen bond network within the solution environment. Additionally, erythritol molecules preferentially adsorb onto the Zn anode, forming a dynamic protective layer. These modifications significantly mitigate undesirable side reactions, thus enhancing the Zn2+ transport and deposition behavior. Consequently, there is a notable increase in cumulative capacity, reaching 6000 mA h cm⁻2 at a current density of 5 mA cm-2. Specifically, a high average coulombic efficiency of 99.72% and long cycling stability of >500 cycles are obtained at 2 mA cm-2 and 1 mA h cm-2. Furthermore, full batteries comprised of MnO2 cathode and Zn anode in an erythritol-containing electrolyte deliver superior capacity retention. This work provides a strategy to promote the performance of Zn anodes toward practical applications.

13.
ACS Appl Mater Interfaces ; 16(4): 5278-5285, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38247120

RESUMEN

The electrochemical reaction kinetics, especially the oxygen reduction reaction (ORR) at the cathode, is crucial for the performance of a fuel cell. In this study, the electrochemical processes on a polycrystalline Pt electrode in the presence of protic ionic liquid (PIL) electrolyte diethylmethylammonium triflate [Dema][TfO] are investigated by means of cyclic voltammetry and electrochemical impedance spectroscopy. Since water is continually produced during fuel cell operation, the effect of the water content in the PIL has been intensively analyzed. In order to reveal the dependence of the interfacial reaction characteristics on the electrode potential, the impedance spectra were simulated by an equivalent circuit whose parameters can be related to both Faradaic and capacitive processes. Two interfacial resistances were identified, which differ by about 3 orders of magnitude. The larger one is a charge transfer resistance that can be associated with slow Faradaic processes like the ORR and platinum oxidation/oxide reduction. The smaller resistance is probably linked with fast processes that involve water molecules, such as hydrogen deposition and oxidation. The high- and midfrequency capacitive processes are attributed to "classical" double layer and pseudocapacitive behavior, similar to those identified under nitrogen atmosphere.

14.
ChemSusChem ; 17(3): e202301268, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37845180

RESUMEN

Solid-state batteries (SSBs) are considered to be one of the most promising candidates for next-generation energy storage systems due to the high safety, high energy density and wide operating temperature range of solid-state electrolytes (SSEs) they use. Unfortunately, the practical application of SSEs has rarely been successful, which is largely attributed to the low chemical stability and ionic conductivity, ineluctable solid-solid interface issues including limited ion transport channels, high energy barriers, and poor interface contact. A comprehensive understanding of ion transport mechanisms of various SSEs, interactions between fillers and polymer matrixes and the role of the interface in SSBs are indispensable for rational design and performance optimization of novel electrolytes. The categories, research advances and ion transport mechanism of inorganic glass/ceramic electrolytes, polymer-based electrolytes and corresponding composite electrolytes are detailly summarized and discussed. Moreover, interface contact and compatibility between electrolyte and cathode/anode are also briefly discussed. Furthermore, the electrochemical characterization methods of SSEs used in different types of SSBs are also introduced. On this basis, the principles and prospects of novel SSEs and interface design are curtly proposed according to the development requirements of SSBs. Moreover, the advanced characterizations for real-time monitoring of interface changes are also brought forward to promote the development of SSBs.

15.
ACS Appl Mater Interfaces ; 16(35): 46341-46350, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39171734

RESUMEN

Realization of a high-quality back electrode interface (BEI) with suppressed recombination is crucial for Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. To achieve this goal, the construction of a traditional chemical passivation effect has been widely adopted and investigated. However, there is currently a lack of reports concerning the construction of a field passivation effect (FPE) for the BEI. Herein, considering the characteristic of the negligible difference in ionic radius between Mo (0.65 Å) and V (0.64 Å) as well as the presence of one less valence electron compared to Mo, vanadium (V) was employed and in situ incorporated into the MoSe2 interfacial layer during the deposition of the Mo:V electrode and selenization process. This allowed for the establishment of a desirable in situ VI-FPE interface with p-MoSe2:V/p-CZTSSe at the BEI. The p-type characteristic in MoSe2:V is attributed to the presence of the VMo acceptor; notably, the Fermi energy level of MoSe2:V has shifted downward by 0.62 eV compared to MoSe2, thereby facilitating the formation of an optimized band alignment between MoSe2:V and the absorber. Consequently, the photovoltaic parameters of the cell-FPE have experienced a significant increase due to the enhanced carrier transportation efficiency compared to cell-ref, resulting in a remarkable improvement in efficiency from 8.28 to 11.11%.

16.
ACS Nano ; 18(33): 21779-21803, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39132720

RESUMEN

Aqueous zinc-ion batteries (AZIBs) are widely regarded as desirable energy storage devices due to their inherent safety and low cost. Hydrogel polymer electrolytes (HPEs) are cross-linked polymers filled with water and zinc salts. They are not only widely used in flexible batteries but also represent an ideal electrolyte candidate for addressing the issues associated with the Zn anode, including dendrite formation and side reactions. In HPEs, an abundance of hydrophilic groups can form strong hydrogen bonds with water molecules, reducing water activity and inhibiting water decomposition. At the same time, special Zn2+ transport channels can be constructed in HPEs to homogenize the Zn2+ flux and promote uniform Zn deposition. However, HPEs still face issues in practical applications, including poor ionic conductivity, low mechanical strength, poor interface stability, and narrow electrochemical stability windows. This Review discusses the issues associated with HPEs for advanced AZIBs, and the recent progresses are summarized. Finally, the Review outlines the opportunities and challenges for achieving high performance HPEs, facilitating the utilization of HPEs in AZIBs.

17.
Front Cell Dev Biol ; 12: 1438716, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39263323

RESUMEN

Background: Neural cell-electrode coupling is crucial for effective neural and retinal prostheses. Enhancing this coupling can be achieved through surface modification and geometrical design to increase neuron-electrode proximity. In the current research, we focused on designing and studying various biomolecules as a method to elicit neural cell-electrode adhesion via cell-specific integrin mechanisms. Methods: We designed extracellular matrix biomimetic molecules with different head sequences (RGD or YIGSR), structures (linear or cyclic), and spacer lengths (short or long). These molecules, anchored by a thiol (SH) group, were deposited onto gold surfaces at various concentrations. We assessed the modifications using contact angle measurements, fluorescence imaging, and X-ray Photoelectron Spectroscopy (XPS). We then analyzed the adhesion of retinal cells and HEK293 cells to the modified surfaces by measuring cell density, surface area, and focal adhesion spots, and examined changes in adhesion-related gene and integrin expression. Results: Results showed that YIGSR biomolecules significantly enhanced retinal cell adhesion, regardless of spacer length. For HEK293 cells, RGD biomolecules were more effective, especially with cyclic RGD and long spacers. Both cell types showed increased expression of specific adhesion integrins and proteins like vinculin and PTK2; these results were in agreement with the adhesion studies, confirming the cell-specific interactions with modified surfaces. Conclusion: This study highlights the importance of tailored biomolecules for improving neural cell adhesion to electrodes. By customizing biomolecules to foster specific and effective interactions with adhesion integrins, our study provides valuable insights for enhancing the integration and functionality of retinal prostheses and other neural implants.

18.
Sci Rep ; 14(1): 8882, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632263

RESUMEN

Wearable long-term monitoring applications are becoming more and more popular in both the consumer and the medical market. In wearable ECG monitoring, the data quality depends on the properties of the electrodes and on how they interface with the skin. Dry electrodes do not require any action from the user. They usually do not irritate the skin, and they provide sufficiently high-quality data for ECG monitoring purposes during low-intensity user activity. We investigated prospective motion artifact-resistant dry electrode materials for wearable ECG monitoring. The tested materials were (1) porous: conductive polymer, conductive silver fabric; and (2) solid: stainless steel, silver, and platinum. ECG was acquired from test subjects in a 10-min continuous settling test and in a 48-h intermittent long-term test. In the settling test, the electrodes were stationary, whereas both stationary and controlled motion artifact tests were included in the long-term test. The signal-to-noise ratio (SNR) was used as the figure of merit to quantify the results. Skin-electrode interface impedance was measured to quantify its effect on the ECG, as well as to leverage the dry electrode ECG amplifier design. The SNR of all electrode types increased during the settling test. In the long-term test, the SNR was generally elevated further. The introduction of electrode movement reduced the SNR markedly. Solid electrodes had a higher SNR and lower skin-electrode impedance than porous electrodes. In the stationary testing, stainless steel showed the highest SNR, followed by platinum, silver, conductive polymer, and conductive fabric. In the movement testing, the order was platinum, stainless steel, silver, conductive polymer, and conductive fabric.


Asunto(s)
Artefactos , Acero Inoxidable , Humanos , Platino (Metal) , Plata , Estudios Prospectivos , Electrocardiografía/métodos , Impedancia Eléctrica , Electrodos , Polímeros
19.
ACS Nano ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39401128

RESUMEN

Halide solid electrolytes (SEs) are attracting great attention, owing to their high ionic conductivity and excellent high-voltage compatibility. However, severe moisture sensitivity, poor thermal stability, and instability at the lithium metal anode interface with chloride and bromide SEs retard their applications in solid-state lithium metal batteries. Fluoride SEs are expected to solve these problems, but they are now plagued by inadequate room-temperature (RT) ionic conductivity. Herein, a low-temperature molten salt (LiCl+1.33AlCl3) ablation method is proposed to enhance the ionic conductivity of monoclinic Li3GaF6 by particle boundary doping. The RT ionic conductivity of Li3GaF6 is correspondingly increased by 2 orders of magnitude, and the conductivity reaches 10-4 S cm-1 at 60 °C. The improved ionic conductivity benefits from the enhancement of interfacial ion transport, with the formation of more conductive chlorine-doped Li3GaF6-xClx and in situ binder LiAlCl4 to cement surrounding nanoparticles. The as-synthesized Li3GaF6 demonstrates outstanding humidity tolerance without conductivity degradation after exposure to a relative humidity of up to 35%. It also exhibits the widest electrochemical stability window experimentally (close to 6 V) compared with other state-of-the-art SEs. The solid-state Li/Li3GaF6/LiFePO4 cell with a stable Li+-conductive polymer interface is successfully driven for at least 200 cycles at 0.5C. Our study provides a solution to various chemical and electrochemical stability issues encountered by the halide SE family.

20.
Polymers (Basel) ; 15(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37765706

RESUMEN

Skin has a dynamic surface and offers essential information through biological signals originating from internal organs, blood vessels, and muscles. Soft and stretchable bioelectronics can be used in wearable machines for long-term stability and to continuously obtain distinct bio-signals in conjunction with repeated expansion and contraction with physical activities. While monitoring bio-signals, the electrode and skin must be firmly attached for high signal quality. Furthermore, the signal-to-noise ratio (SNR) should be high enough, and accordingly, the ionic conductivity of an adhesive hydrogel needs to be improved. Here, we used a chitosan-alginate-chitosan (CAC) triple hydrogel layer as an interface between the electrodes and the skin to enhance ionic conductivity and skin adhesiveness and to minimize the mechanical mismatch. For development, thermoplastic elastomer Styrene-Ethylene-Butylene-Styrene (SEBS) dissolved in toluene was used as a substrate, and gold nanomembranes were thermally evaporated on SEBS. Subsequently, CAC triple layers were drop-casted onto the gold surface one by one and dried successively. Lastly, to demonstrate the performance of our electrodes, a human electrocardiogram signal was monitored. The electrodes coupled with our CAC triple hydrogel layer showed high SNR with clear PQRST peaks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA