Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52.941
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(9): 2269-2287.e16, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38608703

RESUMEN

Knudson's "two-hit" paradigm posits that carcinogenesis requires inactivation of both copies of an autosomal tumor suppressor gene. Here, we report that the glycolytic metabolite methylglyoxal (MGO) transiently bypasses Knudson's paradigm by inactivating the breast cancer suppressor protein BRCA2 to elicit a cancer-associated, mutational single-base substitution (SBS) signature in nonmalignant mammary cells or patient-derived organoids. Germline monoallelic BRCA2 mutations predispose to these changes. An analogous SBS signature, again without biallelic BRCA2 inactivation, accompanies MGO accumulation and DNA damage in Kras-driven, Brca2-mutant murine pancreatic cancers and human breast cancers. MGO triggers BRCA2 proteolysis, temporarily disabling BRCA2's tumor suppressive functions in DNA repair and replication, causing functional haploinsufficiency. Intermittent MGO exposure incites episodic SBS mutations without permanent BRCA2 inactivation. Thus, a metabolic mechanism wherein MGO-induced BRCA2 haploinsufficiency transiently bypasses Knudson's two-hit requirement could link glycolysis activation by oncogenes, metabolic disorders, or dietary challenges to mutational signatures implicated in cancer evolution.


Asunto(s)
Proteína BRCA2 , Neoplasias de la Mama , Glucólisis , Piruvaldehído , Animales , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Ratones , Humanos , Femenino , Piruvaldehído/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Haploinsuficiencia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Mutación , Daño del ADN , Reparación del ADN , Línea Celular Tumoral
2.
Cell ; 186(6): 1279-1294.e19, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36868220

RESUMEN

Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.


Asunto(s)
Euphausiacea , Genoma , Animales , Relojes Circadianos/genética , Ecosistema , Euphausiacea/genética , Euphausiacea/fisiología , Genómica , Análisis de Secuencia de ADN , Elementos Transponibles de ADN , Evolución Biológica , Adaptación Fisiológica
3.
Cell ; 186(4): 803-820.e25, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36738734

RESUMEN

Complex diseases often involve the interplay between genetic and environmental factors. Charcot-Marie-Tooth type 2 neuropathies (CMT2) are a group of genetically heterogeneous disorders, in which similar peripheral neuropathology is inexplicably caused by various mutated genes. Their possible molecular links remain elusive. Here, we found that upon environmental stress, many CMT2-causing mutant proteins adopt similar properties by entering stress granules (SGs), where they aberrantly interact with G3BP and integrate into SG pathways. For example, glycyl-tRNA synthetase (GlyRS) is translocated from the cytoplasm into SGs upon stress, where the mutant GlyRS perturbs the G3BP-centric SG network by aberrantly binding to G3BP. This disrupts SG-mediated stress responses, leading to increased stress vulnerability in motoneurons. Disrupting this aberrant interaction rescues SG abnormalities and alleviates motor deficits in CMT2D mice. These findings reveal a stress-dependent molecular link across diverse CMT2 mutants and provide a conceptual framework for understanding genetic heterogeneity in light of environmental stress.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , Animales , Ratones , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Citoplasma , Neuronas Motoras , Proteínas con Motivos de Reconocimiento de ARN/metabolismo
4.
Cell ; 177(4): 821-836.e16, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982602

RESUMEN

Whole-genome-sequencing (WGS) of human tumors has revealed distinct mutation patterns that hint at the causative origins of cancer. We examined mutational signatures in 324 WGS human-induced pluripotent stem cells exposed to 79 known or suspected environmental carcinogens. Forty-one yielded characteristic substitution mutational signatures. Some were similar to signatures found in human tumors. Additionally, six agents produced double-substitution signatures and eight produced indel signatures. Investigating mutation asymmetries across genome topography revealed fully functional mismatch and transcription-coupled repair pathways. DNA damage induced by environmental mutagens can be resolved by disparate repair and/or replicative pathways, resulting in an assortment of signature outcomes even for a single agent. This compendium of experimentally induced mutational signatures permits further exploration of roles of environmental agents in cancer etiology and underscores how human stem cell DNA is directly vulnerable to environmental agents. VIDEO ABSTRACT.


Asunto(s)
Carcinógenos Ambientales/clasificación , Neoplasias/genética , Carcinógenos Ambientales/efectos adversos , Daño del ADN/genética , Análisis Mutacional de ADN/métodos , Reparación del ADN/genética , Replicación del ADN , Perfil Genético , Genoma Humano/genética , Humanos , Mutación INDEL/genética , Mutagénesis , Mutación/genética , Células Madre Pluripotentes/metabolismo , Secuenciación Completa del Genoma/métodos
5.
Cell ; 171(7): 1532-1544.e15, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29129376

RESUMEN

Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission.


Asunto(s)
Lisofosfatidilcolinas/metabolismo , Malaria/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Animales , Femenino , Humanos , Malaria/inmunología , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Plasmodium berghei/fisiología , Reproducción
6.
Cell ; 169(3): 457-469.e13, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28431246

RESUMEN

Fat metabolism has been linked to fertility and reproductive adaptation in animals and humans, and environmental sex determination potentially plays a role in the process. To investigate the impact of fatty acids (FA) on sex determination and reproductive development, we examined and observed an impact of FA synthesis and mobilization by lipolysis in somatic tissues on oocyte fate in Caenorhabditis elegans. The subsequent genetic analysis identified ACS-4, an acyl-CoA synthetase and its FA-CoA product, as key germline factors that mediate the role of FA in promoting oocyte fate through protein myristoylation. Further tests indicated that ACS-4-dependent protein myristoylation perceives and translates the FA level into regulatory cues that modulate the activities of MPK-1/MAPK and key factors in the germline sex-determination pathway. These findings, including a similar role of ACS-4 in a male/female species, uncover a likely conserved mechanism by which FA, an environmental factor, regulates sex determination and reproductive development.


Asunto(s)
Acetato CoA Ligasa/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Ácidos Grasos/metabolismo , Ácido Mirístico/metabolismo , Procesamiento Proteico-Postraduccional , Procesos de Determinación del Sexo , Acetato CoA Ligasa/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Mutación , Oocitos/metabolismo
7.
Cell ; 167(1): 87-98.e14, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27641502

RESUMEN

Aerobic organisms survive low oxygen (O2) through activation of diverse molecular, metabolic, and physiological responses. In most plants, root water permeability (in other words, hydraulic conductivity, Lpr) is downregulated under O2 deficiency. Here, we used a quantitative genetics approach in Arabidopsis to clone Hydraulic Conductivity of Root 1 (HCR1), a Raf-like MAPKKK that negatively controls Lpr. HCR1 accumulates and is functional under combined O2 limitation and potassium (K(+)) sufficiency. HCR1 regulates Lpr and hypoxia responsive genes, through the control of RAP2.12, a key transcriptional regulator of the core anaerobic response. A substantial variation of HCR1 in regulating Lpr is observed at the Arabidopsis species level. Thus, by combinatorially integrating two soil signals, K(+) and O2 availability, HCR1 modulates the resilience of plants to multiple flooding scenarios.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Oxígeno/metabolismo , Raíces de Plantas/metabolismo , Potasio/metabolismo , Agua/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas , Quinasas Quinasa Quinasa PAM/genética , Permeabilidad , Factores de Transcripción/genética
8.
Mol Cell ; 82(1): 60-74.e5, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995509

RESUMEN

Acetyl-CoA is a key intermediate situated at the intersection of many metabolic pathways. The reliance of histone acetylation on acetyl-CoA enables the coordination of gene expression with metabolic state. Abundant acetyl-CoA has been linked to the activation of genes involved in cell growth or tumorigenesis through histone acetylation. However, the role of histone acetylation in transcription under low levels of acetyl-CoA remains poorly understood. Here, we use a yeast starvation model to observe the dramatic alteration in the global occupancy of histone acetylation following carbon starvation; the location of histone acetylation marks shifts from growth-promoting genes to gluconeogenic and fat metabolism genes. This reallocation is mediated by both the histone deacetylase Rpd3p and the acetyltransferase Gcn5p, a component of the SAGA transcriptional coactivator. Our findings reveal an unexpected switch in the specificity of histone acetylation to promote pathways that generate acetyl-CoA for oxidation when acetyl-CoA is limiting.


Asunto(s)
Gluconeogénesis , Glucosa/deficiencia , Histonas/metabolismo , Metabolismo de los Lípidos , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Metabolismo de los Lípidos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
9.
Mol Cell ; 81(16): 3294-3309.e12, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34293321

RESUMEN

Temperature is a variable component of the environment, and all organisms must deal with or adapt to temperature change. Acute temperature change activates cellular stress responses, resulting in refolding or removal of damaged proteins. However, how organisms adapt to long-term temperature change remains largely unexplored. Here we report that budding yeast responds to long-term high temperature challenge by switching from chaperone induction to reduction of temperature-sensitive proteins and re-localizing a portion of its proteome. Surprisingly, we also find that many proteins adopt an alternative conformation. Using Fet3p as an example, we find that the temperature-dependent conformational difference is accompanied by distinct thermostability, subcellular localization, and, importantly, cellular functions. We postulate that, in addition to the known mechanisms of adaptation, conformational plasticity allows some polypeptides to acquire new biophysical properties and functions when environmental change endures.


Asunto(s)
Adaptación Fisiológica/genética , Proteoma/genética , Estrés Fisiológico/genética , Transcriptoma/genética , Aclimatación/genética , Animales , Exposición a Riesgos Ambientales/efectos adversos , Regulación Fúngica de la Expresión Génica/genética , Calor/efectos adversos , Saccharomycetales/genética
10.
Physiol Rev ; 101(3): 739-795, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33270534

RESUMEN

Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.


Asunto(s)
Enfermedades Metabólicas/etiología , Obesidad/etiología , Placenta/metabolismo , Femenino , Humanos , Enfermedades Metabólicas/metabolismo , Obesidad/metabolismo , Embarazo
11.
Annu Rev Microbiol ; 77: 193-212, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37100405

RESUMEN

Related groups of microbes are widely distributed across Earth's habitats, implying numerous dispersal and adaptation events over evolutionary time. However, relatively little is known about the characteristics and mechanisms of these habitat transitions, particularly for populations that reside in animal microbiomes. Here, we review the literature concerning habitat transitions among a variety of bacterial and archaeal lineages, considering the frequency of migration events, potential environmental barriers, and mechanisms of adaptation to new physicochemical conditions, including the modification of protein inventories and other genomic characteristics. Cells dependent on microbial hosts, particularly bacteria from the Candidate Phyla Radiation, have undergone repeated habitat transitions from environmental sources into animal microbiomes. We compare their trajectories to those of both free-living cells-including the Melainabacteria, Elusimicrobia, and methanogenic archaea-and cellular endosymbionts and bacteriophages, which have made similar transitions. We conclude by highlighting major related topics that may be worthy of future study.


Asunto(s)
Bacteriófagos , Microbiota , Animales , Archaea/genética , Bacterias/genética , Genómica
12.
Immunol Rev ; 326(1): 151-161, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39007725

RESUMEN

Food allergy can be life-threatening and often develops early in life. In infants and children, loss-of-function mutations in skin barrier genes associate with food allergy. In a mouse model with skin barrier mutations (Flakey Tail, FT+/- mice), topical epicutaneous sensitization to a food allergen peanut extract (PNE), an environmental allergen Alternaria alternata (Alt) and a detergent induce food allergy and then an oral PNE-challenge induces anaphylaxis. Exposures to these allergens and detergents can occur for infants and children in a household setting. From the clinical and preclinical studies of neonates and children with skin barrier mutations, early oral exposure to allergenic foods before skin sensitization may induce tolerance to food allergens and thus protect against development of food allergy. In the FT+/- mice, oral food allergen prior to skin sensitization induce tolerance to food allergens. However, when the skin of FT+/- pups are exposed to a ubiquitous environmental allergen at the time of oral consumption of food allergens, this blocks the induction of tolerance to the food allergen and the mice can then be skin sensitized with the food allergen. The development of food allergy in neonatal FT+/- mice is mediated by altered skin responses to allergens with increases in skin expression of interleukin 33, oncostatin M and amphiregulin. The development of neonate food allergy is enhanced when born to an allergic mother, but it is inhibited by maternal supplementation with α-tocopherol. Moreover, preclinical studies suggest that food allergen skin sensitization can occur before manifestation of clinical features of atopic dermatitis. Thus, these parameters may impact design of clinical studies for food allergy, when stratifying individuals by loss of skin barrier function or maternal atopy before offspring development of atopic dermatitis.


Asunto(s)
Alérgenos , Dermatitis Atópica , Hipersensibilidad a los Alimentos , Piel , Animales , Humanos , Hipersensibilidad a los Alimentos/inmunología , Dermatitis Atópica/inmunología , Dermatitis Atópica/etiología , Alérgenos/inmunología , Piel/inmunología , Ratones , Modelos Animales de Enfermedad , Tolerancia Inmunológica , Proteínas Filagrina
13.
Annu Rev Pharmacol Toxicol ; 64: 1-26, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37788491

RESUMEN

I am deeply honored to be invited to write this scientific autobiography. As a physician-scientist, pediatrician, molecular biologist, and geneticist, I have authored/coauthored more than 600 publications in the fields of clinical medicine, biochemistry, biophysics, pharmacology, drug metabolism, toxicology, molecular biology, cancer, standardized gene nomenclature, developmental toxicology and teratogenesis, mouse genetics, human genetics, and evolutionary genomics. Looking back, I think my career can be divided into four distinct research areas, which I summarize mostly chronologically in this article: (a) discovery and characterization of the AHR/CYP1 axis, (b) pharmacogenomics and genetic prediction of response to drugs and other environmental toxicants, (c) standardized drug-metabolizing gene nomenclature based on evolutionary divergence, and (d) discovery and characterization of the SLC39A8 gene encoding the ZIP8 metal cation influx transporter. Collectively, all four topics embrace gene-environment interactions, hence the title of my autobiography.


Asunto(s)
Genómica , Médicos , Humanos , Animales , Ratones , Proteínas de Transporte de Membrana , Farmacogenética
14.
Trends Genet ; 40(10): 817-818, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079787

RESUMEN

Daphnia produce genetically identical males and females; their sex is determined by environmental conditions. Recently, Kato et al. identified isoform switching events in Daphnia as a gene regulatory mechanism for sex-specific development. This finding uncovers the impact of alternative usage of gene isoforms on this extreme phenotypic plasticity trait.


Asunto(s)
Daphnia , Procesos de Determinación del Sexo , Animales , Procesos de Determinación del Sexo/genética , Daphnia/genética , Femenino , Masculino , Ambiente , Empalme Alternativo/genética
15.
Trends Genet ; 40(8): 718-729, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782642

RESUMEN

Intimate links between epigenome modifications and metabolites allude to a crucial role of cellular metabolism in transcriptional regulation. Retina, being a highly metabolic tissue, adapts by integrating inputs from genetic, epigenetic, and extracellular signals. Precise global epigenomic signatures guide development and homeostasis of the intricate retinal structure and function. Epigenomic and metabolic realignment are hallmarks of aging and highlight a link of the epigenome-metabolism nexus with aging-associated multifactorial traits affecting the retina, including age-related macular degeneration and glaucoma. Here, we focus on emerging principles of epigenomic and metabolic control of retinal gene regulation, with emphasis on their contribution to human disease. In addition, we discuss potential mitigation strategies involving lifestyle changes that target the epigenome-metabolome relationship for maintaining retinal function.


Asunto(s)
Envejecimiento , Epigénesis Genética , Epigenoma , Retina , Humanos , Envejecimiento/genética , Envejecimiento/metabolismo , Epigenoma/genética , Retina/metabolismo , Degeneración Macular/genética , Degeneración Macular/metabolismo , Animales , Regulación de la Expresión Génica/genética , Epigenómica , Glaucoma/genética , Glaucoma/metabolismo , Metilación de ADN/genética
16.
Mol Cell ; 74(3): 598-608.e6, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051140

RESUMEN

RNA flow between organisms has been documented within and among different kingdoms of life. Recently, we demonstrated horizontal RNA transfer between honeybees involving secretion and ingestion of worker and royal jellies. However, how the jelly facilitates transfer of RNA is still unknown. Here, we show that worker and royal jellies harbor robust RNA-binding activity. We report that a highly abundant jelly component, major royal jelly protein 3 (MRJP-3), acts as an extracellular non-sequence-specific RNA-aggregating factor. Multivalent RNA binding stimulates higher-order assembly of MRJP-3 into extracellular ribonucleoprotein granules that protect RNA from degradation and enhance RNA bioavailability. These findings reveal that honeybees have evolved a secreted dietary RNA-binding factor to concentrate, stabilize, and share RNA among individuals. Our work identifies high-order ribonucleoprotein assemblies with functions outside cells and organisms.


Asunto(s)
Abejas/genética , Ácidos Grasos/genética , Transferencia de Gen Horizontal/genética , Glicoproteínas/genética , Proteínas de Insectos/genética , Animales , Ácidos Grasos/biosíntesis , Transición de Fase , ARN/genética , Transporte de ARN/genética , Proteínas de Unión al ARN/genética
17.
Semin Immunol ; 69: 101805, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37429234

RESUMEN

Pathogenic microbes invade the human body and trigger a host immune response to defend against the infection. In response, host-adapted pathogens employ numerous virulence strategies to overcome host defense mechanisms. As a result, the interaction between the host and pathogen is a dynamic process that shapes the evolution of the host's immune response. Among the immune responses against intracellular bacteria, pyroptosis, a lytic form of cell death, is a crucial mechanism that eliminates replicative niches for intracellular pathogens and modulates the immune system by releasing danger signals. This review focuses on the role of pyroptosis in combating intracellular bacterial infection. We examine the cell type specific roles of pyroptosis in neutrophils and intestinal epithelial cells. We discuss the regulatory mechanisms of pyroptosis, including its modulation by autophagy and interferon-inducible GTPases. Furthermore, we highlight that while host-adapted pathogens can often subvert pyroptosis, environmental microbes are effectively eliminated by pyroptosis.


Asunto(s)
Infecciones Bacterianas , Piroptosis , Humanos , Muerte Celular , Neutrófilos , Bacterias
18.
Proc Natl Acad Sci U S A ; 121(25): e2321441121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38861597

RESUMEN

Legacy effects describe the persistent, long-term impacts on an ecosystem following the removal of an abiotic or biotic feature. Redlining, a policy that codified racial segregation and disinvestment in minoritized neighborhoods, has produced legacy effects with profound impacts on urban ecosystem structure and health. These legacies have detrimentally impacted public health outcomes, socioeconomic stability, and environmental health. However, the collateral impacts of redlining on wildlife communities are uncertain. Here, we investigated whether faunal biodiversity was associated with redlining. We used home-owner loan corporation (HOLC) maps [grades A (i.e., "best" and "greenlined"), B, C, and D (i.e., "hazardous" and "redlined")] across four cities in California and contributory science data (iNaturalist) to estimate alpha and beta diversity across six clades (mammals, birds, insects, arachnids, reptiles, and amphibians) as a function of HOLC grade. We found that in greenlined neighborhoods, unique species were detected with less sampling effort, with redlined neighborhoods needing over 8,000 observations to detect the same number of unique species. Historically redlined neighborhoods had lower native and nonnative species richness compared to greenlined neighborhoods across each city, with disparities remaining at the clade level. Further, community composition (i.e., beta diversity) consistently differed among HOLC grades for all cities, including large differences in species assemblage observed between green and redlined neighborhoods. Our work spotlights the lasting effects of social injustices on the community ecology of cities, emphasizing that urban conservation and management efforts must incorporate an antiracist, justice-informed lens to improve biodiversity in urban environments.


Asunto(s)
Animales Salvajes , Biodiversidad , Ciudades , Animales , California , Ecosistema , Humanos , Conservación de los Recursos Naturales
19.
Proc Natl Acad Sci U S A ; 121(12): e2316008121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466849

RESUMEN

Introgression is pervasive across the tree of life but varies across taxa, geography, and genomic regions. However, the factors modulating this variation and how they may be affected by global change are not well understood. Here, we used 200 genomes and a 15-y site-specific environmental dataset to investigate the effects of environmental variation and mating system divergence on the magnitude of introgression between a recently diverged outcrosser-selfer pair of annual plants in the genus Clarkia. These sister taxa diverged very recently and subsequently came into secondary sympatry where they form replicated contact zones. Consistent with observations of other outcrosser-selfer pairs, we found that introgression was asymmetric between taxa, with substantially more introgression from the selfer to the outcrosser. This asymmetry was caused by a bias in the direction of initial F1 hybrid formation and subsequent backcrossing. We also found extensive variation in the outcrosser's admixture proportion among contact zones, which was predicted nearly entirely by interannual variance in spring precipitation. Greater fluctuations in spring precipitation resulted in higher admixture proportions, likely mediated by the effects of spring precipitation on the expression of traits that determine premating reproductive isolation. Climate-driven hybridization dynamics may be particularly affected by global change, potentially reshaping species boundaries and adaptation to novel environments.


Asunto(s)
Clarkia , Clarkia/genética , Reproducción , Aislamiento Reproductivo , Hibridación Genética , Genoma , Flujo Génico
20.
Proc Natl Acad Sci U S A ; 121(10): e2305228121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38394215

RESUMEN

We used nuclear genomic data and statistical models to evaluate the ecological and evolutionary processes shaping spatial variation in species richness in Calochortus (Liliaceae, 74 spp.). Calochortus occupies diverse habitats in the western United States and Mexico and has a center of diversity in the California Floristic Province, marked by multiple orogenies, winter rainfall, and highly divergent climates and substrates (including serpentine). We used sequences of 294 low-copy nuclear loci to produce a time-calibrated phylogeny, estimate historical biogeography, and test hypotheses regarding drivers of present-day spatial patterns in species number. Speciation and species coexistence require reproductive isolation and ecological divergence, so we examined the roles of chromosome number, environmental heterogeneity, and migration in shaping local species richness. Six major clades-inhabiting different geographic/climatic areas, and often marked by different base chromosome numbers (n = 6 to 10)-began diverging from each other ~10.3 Mya. As predicted, local species number increased significantly with local heterogeneity in chromosome number, elevation, soil characteristics, and serpentine presence. Species richness is greatest in the Transverse/Peninsular Ranges where clades with different chromosome numbers overlap, topographic complexity provides diverse conditions over short distances, and several physiographic provinces meet allowing immigration by several clades. Recently diverged sister-species pairs generally have peri-patric distributions, and maximum geographic overlap between species increases over the first million years since divergence, suggesting that chromosomal evolution, genetic divergence leading to gametic isolation or hybrid inviability/sterility, and/or ecological divergence over small spatial scales may permit species co-occurrence.


Asunto(s)
Evolución Biológica , Liliaceae , Filogenia , Ecosistema , Cromosomas , Especiación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA