Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.145
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 89: 637-666, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32569522

RESUMEN

The evolution of eukaryotic genomes has been propelled by a series of gene duplication events, leading to an expansion in new functions and pathways. While duplicate genes may retain some functional redundancy, it is clear that to survive selection they cannot simply serve as a backup but rather must acquire distinct functions required for cellular processes to work accurately and efficiently. Understanding these differences and characterizing gene-specific functions is complex. Here we explore different gene pairs and families within the context of the endoplasmic reticulum (ER), the main cellular hub of lipid biosynthesis and the entry site for the secretory pathway. Focusing on each of the ER functions, we highlight specificities of related proteins and the capabilities conferred to cells through their conservation. More generally, these examples suggest why related genes have been maintained by evolutionary forces and provide a conceptual framework to experimentally determine why they have survived selection.


Asunto(s)
Retículo Endoplásmico/metabolismo , Evolución Molecular , Duplicación de Gen , Saccharomyces cerevisiae/metabolismo , Selección Genética , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Antiportadores/genética , Antiportadores/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Retículo Endoplásmico/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Células Eucariotas/citología , Células Eucariotas/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingosina N-Aciltransferasa/genética , Esfingosina N-Aciltransferasa/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
Cell ; 178(4): 850-866.e26, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398340

RESUMEN

We performed a comprehensive assessment of rare inherited variation in autism spectrum disorder (ASD) by analyzing whole-genome sequences of 2,308 individuals from families with multiple affected children. We implicate 69 genes in ASD risk, including 24 passing genome-wide Bonferroni correction and 16 new ASD risk genes, most supported by rare inherited variants, a substantial extension of previous findings. Biological pathways enriched for genes harboring inherited variants represent cytoskeletal organization and ion transport, which are distinct from pathways implicated in previous studies. Nevertheless, the de novo and inherited genes contribute to a common protein-protein interaction network. We also identified structural variants (SVs) affecting non-coding regions, implicating recurrent deletions in the promoters of DLG2 and NR3C2. Loss of nr3c2 function in zebrafish disrupts sleep and social function, overlapping with human ASD-related phenotypes. These data support the utility of studying multiplex families in ASD and are available through the Hartwell Autism Research and Technology portal.


Asunto(s)
Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad/genética , Linaje , Mapas de Interacción de Proteínas/genética , Animales , Niño , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Guanilato-Quinasas/genética , Humanos , Patrón de Herencia/genética , Aprendizaje Automático , Masculino , Núcleo Familiar , Regiones Promotoras Genéticas/genética , Receptores de Mineralocorticoides/genética , Factores de Riesgo , Proteínas Supresoras de Tumor/genética , Secuenciación Completa del Genoma , Pez Cebra/genética
3.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38706315

RESUMEN

In UniProtKB, up to date, there are more than 251 million proteins deposited. However, only 0.25% have been annotated with one of the more than 15000 possible Pfam family domains. The current annotation protocol integrates knowledge from manually curated family domains, obtained using sequence alignments and hidden Markov models. This approach has been successful for automatically growing the Pfam annotations, however at a low rate in comparison to protein discovery. Just a few years ago, deep learning models were proposed for automatic Pfam annotation. However, these models demand a considerable amount of training data, which can be a challenge with poorly populated families. To address this issue, we propose and evaluate here a novel protocol based on transfer learningThis requires the use of protein large language models (LLMs), trained with self-supervision on big unnanotated datasets in order to obtain sequence embeddings. Then, the embeddings can be used with supervised learning on a small and annotated dataset for a specialized task. In this protocol we have evaluated several cutting-edge protein LLMs together with machine learning architectures to improve the actual prediction of protein domain annotations. Results are significatively better than state-of-the-art for protein families classification, reducing the prediction error by an impressive 60% compared to standard methods. We explain how LLMs embeddings can be used for protein annotation in a concrete and easy way, and provide the pipeline in a github repo. Full source code and data are available at https://github.com/sinc-lab/llm4pfam.


Asunto(s)
Bases de Datos de Proteínas , Proteínas , Proteínas/química , Anotación de Secuencia Molecular/métodos , Biología Computacional/métodos , Aprendizaje Automático
4.
Proc Natl Acad Sci U S A ; 120(31): e2215632120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37506195

RESUMEN

Autism spectrum disorder (ASD) has a complex genetic architecture involving contributions from both de novo and inherited variation. Few studies have been designed to address the role of rare inherited variation or its interaction with common polygenic risk in ASD. Here, we performed whole-genome sequencing of the largest cohort of multiplex families to date, consisting of 4,551 individuals in 1,004 families having two or more autistic children. Using this study design, we identify seven previously unrecognized ASD risk genes supported by a majority of rare inherited variants, finding support for a total of 74 genes in our cohort and a total of 152 genes after combined analysis with other studies. Autistic children from multiplex families demonstrate an increased burden of rare inherited protein-truncating variants in known ASD risk genes. We also find that ASD polygenic score (PGS) is overtransmitted from nonautistic parents to autistic children who also harbor rare inherited variants, consistent with combinatorial effects in the offspring, which may explain the reduced penetrance of these rare variants in parents. We also observe that in addition to social dysfunction, language delay is associated with ASD PGS overtransmission. These results are consistent with an additive complex genetic risk architecture of ASD involving rare and common variation and further suggest that language delay is a core biological feature of ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Desarrollo del Lenguaje , Niño , Humanos , Trastorno del Espectro Autista/genética , Herencia Multifactorial/genética , Padres , Secuenciación Completa del Genoma , Predisposición Genética a la Enfermedad
5.
Plant J ; 117(5): 1592-1603, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38050352

RESUMEN

The Plant Expression Omnibus (PEO) is a web application that provides biologists with access to gene expression insights across over 100 plant species, ~60 000 manually annotated RNA-seq samples, and more than 4 million genes. The tool allows users to explore the expression patterns of genes across different organs, identify organ-specific genes, and discover top co-expressed genes for any gene of interest. PEO also provides functional annotations for each gene, allowing for the identification of genetic modules and pathways. PEO is designed to facilitate comparative kingdom-wide gene expression analysis and provide a valuable resource for plant biology research. We provide two case studies to demonstrate the utility of PEO in identifying candidate genes in pollen coat biosynthesis in Arabidopsis and investigating the biosynthetic pathway components of capsaicin in Capsicum annuum. The database is freely available at https://expression.plant.tools/.


Asunto(s)
Arabidopsis , Perfilación de la Expresión Génica , Transcriptoma/genética , Plantas/genética , Plantas/metabolismo , Bases de Datos Factuales , RNA-Seq , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética
6.
Genomics ; 116(4): 110860, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38776985

RESUMEN

Walnuts exhibit a higher resistance to diseases, though they are not completely immune. This study focuses on the Pectin methylesterase (PME) gene family to investigate whether it is involved in disease resistance in walnuts. These 21 genes are distributed across 12 chromosomes, with four pairs demonstrating homology. Variations in conserved motifs and gene structures suggest diverse functions within the gene family. Phylogenetic and collinear gene pairs of the PME family indicate that the gene family has evolved in a relatively stable way. The cis-acting elements and gene ontology enrichment of these genes, underscores their potential role in bolstering walnuts' defense mechanisms. Transcriptomic analyses were conducted under conditions of Cryptosphaeria pullmanensis infestation and verified by RT-qPCR. The results showed that certain JrPME family genes were activated in response, leading to the hypothesis that some members may confer resistance to the disease.


Asunto(s)
Ascomicetos , Hidrolasas de Éster Carboxílico , Resistencia a la Enfermedad , Juglans , Familia de Multigenes , Enfermedades de las Plantas , Proteínas de Plantas , Juglans/microbiología , Juglans/genética , Ascomicetos/genética , Enfermedades de las Plantas/microbiología , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Regulación de la Expresión Génica de las Plantas
7.
BMC Bioinformatics ; 25(1): 207, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844845

RESUMEN

BACKGROUND: Gene families are groups of homologous genes that often have similar biological functions. These families are formed by gene duplication events throughout evolution, resulting in multiple copies of an ancestral gene. Over time, these copies can acquire mutations and structural variations, resulting in members that may vary in size, motif ordering and sequence. Multigene families have been described in a broad range of organisms, from single-celled bacteria to complex multicellular organisms, and have been linked to an array of phenomena, such as host-pathogen interactions, immune evasion and embryonic development. Despite the importance of gene families, few approaches have been developed for estimating and graphically visualizing their diversity patterns and expression profiles in genome-wide studies. RESULTS: Here, we introduce an R package named dgfr, which estimates and enables the visualization of sequence divergence within gene families, as well as the visualization of secondary data such as gene expression. The package takes as input a multi-fasta file containing the coding sequences (CDS) or amino acid sequences from a multigene family, performs a pairwise alignment among all sequences, and estimates their distance, which is subjected to dimension reduction, optimal cluster determination, and gene assignment to each cluster. The result is a dataset that allows for the visualization of sequence divergence and expression within the gene family, an approximation of the number of clusters present in the family. CONCLUSIONS: dgfr provides a way to estimate and study the diversity of gene families, as well as visualize the dispersion and secondary profile of the sequences. The dgfr package is available at https://github.com/lailaviana/dgfr under the GPL-3 license.


Asunto(s)
Variación Genética , Familia de Multigenes , Programas Informáticos , Variación Genética/genética , Alineación de Secuencia/métodos
8.
Plant J ; 115(1): 18-36, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36995899

RESUMEN

Floral scent plays a crucial role in the reproductive process of many plants. Humans have been fascinated by floral scents throughout history, and have transported and traded floral scent products for which they have found multiple uses, such as in food additives, hygiene and perfume products, and medicines. Yet the scientific study of how plants synthesize floral scent compounds began later than studies on most other major plant metabolites, and the first report of the characterization of an enzyme responsible for the synthesis of a floral scent compound, namely linalool in Clarkia breweri, a California annual, appeared in 1994. In the almost 30 years since, enzymes and genes involved in the synthesis of hundreds of scent compounds from multiple plant species have been described. This review recapitulates this history and describes the major findings relating to the various aspects of floral scent biosynthesis and emission, including genes and enzymes and their evolution, storage and emission of scent volatiles, and the regulation of the biochemical processes.


Asunto(s)
Odorantes , Plantas , Humanos , Plantas/genética , Flores/genética , Flores/química
9.
Proteins ; 92(2): 157-169, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37776148

RESUMEN

Acyltransferases (AT) are enzymes that catalyze the transfer of acyl group to a receptor molecule. This review focuses on ATs that act on thioester-containing substrates. Although many ATs can recognize a wide variety of substrates, sequence similarity analysis allowed us to classify the ATs into fifteen distinct families. Each AT family is originated from enzymes experimentally characterized to have AT activity, classified according to sequence similarity, and confirmed with tertiary structure similarity for families that have crystallized structures available. All the sequences and structures of the AT families described here are present in the thioester-active enzyme (ThYme) database. The AT sequences and structures classified into families and available in the ThYme database could contribute to enlightening the understanding acyl transfer to thioester-containing substrates, most commonly coenzyme A, which occur in multiple metabolic pathways, mostly with fatty acids.


Asunto(s)
Aciltransferasas , Coenzima A , Humanos , Aciltransferasas/metabolismo
10.
BMC Genomics ; 25(1): 26, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172704

RESUMEN

Databases of genome sequences are growing exponentially, but, in some cases, assembly is incomplete and genes are poorly annotated. For evolutionary studies, it is important to identify all members of a given gene family in a genome. We developed a method for identifying most, if not all, members of a gene family from raw genomes in which assembly is of low quality, using the P-type ATPase superfamily as an example. The method is based on the translation of an entire genome in all six reading frames and the co-occurrence of two family-specific sequence motifs that are in close proximity to each other. To test the method's usability, we first used it to identify P-type ATPase members in the high-quality annotated genome of barley (Hordeum vulgare). Subsequently, after successfully identifying plasma membrane H+-ATPase family members (P3A ATPases) in various plant genomes of varying quality, we tested the hypothesis that the number of P3A ATPases correlates with the ability of the plant to tolerate saline conditions. In 19 genomes of glycophytes and halophytes, the total number of P3A ATPase genes was found to vary from 7 to 22, but no significant difference was found between the two groups. The method successfully identified P-type ATPase family members in raw genomes that are poorly assembled.


Asunto(s)
Hordeum , ATPasas Tipo P , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Genoma de Planta , ATPasas Tipo P/genética , Hordeum/genética , Hordeum/metabolismo , Filogenia
11.
Neurogenetics ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976082

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with considerable genetic heterogeneity. The disorder is clinically diagnosed based on DSM-5 criteria, featuring deficits in social communication and interaction, along with restricted and repetitive behaviours. Here, we performed whole-genome sequencing (WGS) on four individuals with ASD from two multiplex families (MPX), where more than one individual is affected, to identify potential single nucleotide variants (SNVs) and structural variants (SVs) in coding and non-coding regions. A rigorous bioinformatics pipeline was employed for variant detection, followed by segregation analysis. Our investigation revealed an unreported splicing variant in the DYRK1A gene (c.-77 + 2T > C; IVS1 + 2T > C; NM_001396.5), in heterozygote form in two affected children in one of the families (family B), which was absent in the healthy parents and siblings. This finding suggests the presence of gonadal mosaicism in one of the parents, representing the first documented instance of such inheritance for a variant in the DYRK1A gene associated with ASD. Furthermore, we identified a 50 bp deletion in intron 9 of the DLG2 gene in two affected patients from the same family, confirmed by PCR and Sanger sequencing. In Family A, we identified potential candidate variants associated with ASD shared by the two patients. These findings enhance our understanding of the genetic landscape of ASD, particularly in MPX families, and highlight the utility of WGS in uncovering novel genetic contributions to neurodevelopmental disorders.

12.
Neurogenetics ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795246

RESUMEN

Primary microcephaly is a rare neurogenic and genetically heterogeneous disorder characterized by significant brain size reduction that results in numerous neurodevelopmental disorders (NDD) problems, including mild to severe intellectual disability (ID), global developmental delay (GDD), seizures and other congenital malformations. This disorder can arise from a mutation in genes involved in various biological pathways, including those within the brain. We characterized a recessive neurological disorder observed in nine young adults from five independent consanguineous Pakistani families. The disorder is characterized by microcephaly, ID, developmental delay (DD), early-onset epilepsy, recurrent infection, hearing loss, growth retardation, skeletal and limb defects. Through exome sequencing, we identified novel homozygous variants in five genes that were previously associated with brain diseases, namely CENPJ (NM_018451.5: c.1856A > G; p.Lys619Arg), STIL (NM_001048166.1: c.1235C > A; p.(Pro412Gln), CDK5RAP2 (NM_018249.6 c.3935 T > G; p.Leu1312Trp), RBBP8 (NM_203291.2 c.1843C > T; p.Gln615*) and CEP135 (NM_025009.5 c.1469A > G; p.Glu490Gly). These variants were validated by Sanger sequencing across all family members, and in silico structural analysis. Protein 3D homology modeling of wild-type and mutated proteins revealed substantial changes in the structure, suggesting a potential impact on function. Importantly, all identified genes play crucial roles in maintaining genomic integrity during cell division, with CENPJ, STIL, CDK5RAP2, and CEP135 being involved in centrosomal function. Collectively, our findings underscore the link between erroneous cell division, particularly centrosomal function, primary microcephaly and ID.

13.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36947137

RESUMEN

Protein domains that emerged more recently in evolution have a higher structural disorder and greater clustering of hydrophobic residues along the primary sequence. It is hard to explain how selection acting via descent with modification could act so slowly as not to saturate over the extraordinarily long timescales over which these trends persist. Here, we hypothesize that the trends were created by a higher level of selection that differentially affects the retention probabilities of protein domains with different properties. This hypothesis predicts that loss rates should depend on disorder and clustering trait values. To test this, we inferred loss rates via maximum likelihood for animal Pfam domains, after first performing a set of stringent quality control methods to reduce annotation errors. Intermediate trait values, matching those of ancient domains, are associated with the lowest loss rates, making our results difficult to explain with reference to previously described homology detection biases. Simulations confirm that effect sizes are of the right magnitude to produce the observed long-term trends. Our results support the hypothesis that differential domain loss slowly weeds out those protein domains that have nonoptimal levels of disorder and clustering. The same preferences also shape the differential diversification of Pfam domains, thereby further impacting proteome composition.


Asunto(s)
Proteoma , Animales , Dominios Proteicos , Probabilidad , Interacciones Hidrofóbicas e Hidrofílicas , Bases de Datos de Proteínas
14.
BMC Immunol ; 25(1): 13, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331731

RESUMEN

The reconstruction of clonal families (CFs) in B-cell receptor (BCR) repertoire analysis is a crucial step to understand the adaptive immune system and how it responds to antigens. The BCR repertoire of an individual is formed throughout life and is diverse due to several factors such as gene recombination and somatic hypermutation. The use of Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using next generation sequencing enabled the generation of full BCR repertoires that also include rare CFs. The reconstruction of CFs from AIRR-seq data is challenging and several approaches have been developed to solve this problem. Currently, most methods use the heavy chain (HC) only, as it is more variable than the light chain (LC). CF reconstruction options include the definition of appropriate sequence similarity measures, the use of shared mutations among sequences, and the possibility of reconstruction without preliminary clustering based on V- and J-gene annotation. In this study, we aimed to systematically evaluate different approaches for CF reconstruction and to determine their impact on various outcome measures such as the number of CFs derived, the size of the CFs, and the accuracy of the reconstruction. The methods were compared to each other and to a method that groups sequences based on identical junction sequences and another method that only determines subclones. We found that after accounting for data set variability, in particular sequencing depth and mutation load, the reconstruction approach has an impact on part of the outcome measures, including the number of CFs. Simulations indicate that unique junctions and subclones should not be used as substitutes for CF and that more complex methods do not outperform simpler methods. Also, we conclude that different approaches differ in their ability to correctly reconstruct CFs when not considering the LC and to identify shared CFs. The results showed the effect of different approaches on the reconstruction of CFs and highlighted the importance of choosing an appropriate method.


Asunto(s)
Linfocitos B , Receptores de Antígenos de Linfocitos B , Humanos , Mutación , Receptores de Antígenos de Linfocitos B/genética , Secuenciación de Nucleótidos de Alto Rendimiento
15.
Am J Hum Genet ; 108(7): 1330-1341, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34102099

RESUMEN

Adaptor protein (AP) complexes mediate selective intracellular vesicular trafficking and polarized localization of somatodendritic proteins in neurons. Disease-causing alleles of various subunits of AP complexes have been implicated in several heritable human disorders, including intellectual disabilities (IDs). Here, we report two bi-allelic (c.737C>A [p.Pro246His] and c.1105A>G [p.Met369Val]) and eight de novo heterozygous variants (c.44G>A [p.Arg15Gln], c.103C>T [p.Arg35Trp], c.104G>A [p.Arg35Gln], c.229delC [p.Gln77Lys∗11], c.399_400del [p.Glu133Aspfs∗37], c.747G>T [p.Gln249His], c.928-2A>C [p.?], and c.2459C>G [p.Pro820Arg]) in AP1G1, encoding gamma-1 subunit of adaptor-related protein complex 1 (AP1γ1), associated with a neurodevelopmental disorder (NDD) characterized by mild to severe ID, epilepsy, and developmental delay in eleven families from different ethnicities. The AP1γ1-mediated adaptor complex is essential for the formation of clathrin-coated intracellular vesicles. In silico analysis and 3D protein modeling simulation predicted alteration of AP1γ1 protein folding for missense variants, which was consistent with the observed altered AP1γ1 levels in heterologous cells. Functional studies of the recessively inherited missense variants revealed no apparent impact on the interaction of AP1γ1 with other subunits of the AP-1 complex but rather showed to affect the endosome recycling pathway. Knocking out ap1g1 in zebrafish leads to severe morphological defect and lethality, which was significantly rescued by injection of wild-type AP1G1 mRNA and not by transcripts encoding the missense variants. Furthermore, microinjection of mRNAs with de novo missense variants in wild-type zebrafish resulted in severe developmental abnormalities and increased lethality. We conclude that de novo and bi-allelic variants in AP1G1 are associated with neurodevelopmental disorder in diverse populations.


Asunto(s)
Complejo 1 de Proteína Adaptadora/genética , Discapacidades del Desarrollo/genética , Epilepsia/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Alelos , Animales , Análisis Mutacional de ADN , Femenino , Células HEK293 , Humanos , Masculino , Linaje , Ratas , Pez Cebra/genética
16.
Planta ; 259(5): 113, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581452

RESUMEN

MAIN CONCLUSION: Carbohydrates are hydrolyzed by a family of carbohydrate-active enzymes (CAZymes) called glycosidases or glycosyl hydrolases. Here, we have summarized the roles of various plant defense glycosidases that possess different substrate specificities. We have also highlighted the open questions in this research field. Glycosidases or glycosyl hydrolases (GHs) are a family of carbohydrate-active enzymes (CAZymes) that hydrolyze glycosidic bonds in carbohydrates and glycoconjugates. Compared to those of all other sequenced organisms, plant genomes contain a remarkable diversity of glycosidases. Plant glycosidases exhibit activities on various substrates and have been shown to play important roles during pathogen infections. Plant glycosidases from different GH families have been shown to act upon pathogen components, host cell walls, host apoplastic sugars, host secondary metabolites, and host N-glycans to mediate immunity against invading pathogens. We could classify the activities of these plant defense GHs under eleven different mechanisms through which they operate during pathogen infections. Here, we have provided comprehensive information on the catalytic activities, GH family classification, subcellular localization, domain structure, functional roles, and microbial strategies to regulate the activities of defense-related plant GHs. We have also emphasized the research gaps and potential investigations needed to advance this topic of research.


Asunto(s)
Glicósido Hidrolasas , Polisacáridos , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Polisacáridos/metabolismo , Carbohidratos , Plantas/metabolismo , Glicósidos/metabolismo
17.
Clin Genet ; 105(4): 423-429, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38088234

RESUMEN

Intellectual disability (ID) is a large group of neurodevelopmental disorders characterized by a congenital limitation in intellectual functioning (reasoning, learning, and problem solving), adaptive behavior (conceptual, social, and practical skills), originated at birth and manifested before the age of 18. By whole exome sequencing of five consanguineous Pakistani families presenting hallmark features of ID, global developmental delay, aggressive and self-injurious behaviors, microcephaly, febrile seizures and facial dysmorphic features, we identified three novel homozygous missense variants (NM_024298.5: c.588G > T; p.Trp196Cys, c.736 T > C; p.Tyr246His and c.524A > C; p. Asp175Ala) and one rare homozygous in-frame deletion variant (c.758_778del;p.Glu253_Ala259del) in membrane-bound O-acyltransferase family member 7 (MBOAT7) gene previously associated with autosomal recessive neurodevelopmental disorder. The segregation of the variants was validated by Sanger sequencing in all family members. In silico homology modeling of wild-type and mutated proteins revealed substantial changes in the structure of both proteins, indicating a possible effect on function. The identification and validation of new pathogenic MBOAT7 variants in five cases of autosomal recessive ID further highlight the importance of this genes in proper brain function and development.


Asunto(s)
Discapacidad Intelectual , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Recién Nacido , Humanos , Secuenciación del Exoma , Linaje , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/patología , Familia , Malformaciones del Sistema Nervioso/complicaciones , Aciltransferasas/genética , Proteínas de la Membrana/genética
18.
Mol Phylogenet Evol ; 192: 107986, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38142794

RESUMEN

Chemoreception is critical for the survival and reproduction of animals. Except for a reduced group of insects and chelicerates, the molecular identity of chemosensory proteins is poorly understood in invertebrates. Gastropoda is the extant mollusk class with the greatest species richness, including marine, freshwater, and terrestrial lineages, and likely, highly diverse chemoreception systems. Here, we performed a comprehensive comparative genome analysis taking advantage of the chromosome-level information of two Gastropoda species, one of which belongs to a lineage that underwent a whole genome duplication event. We identified thousands of previously uncharacterized chemosensory-related genes, the majority of them encoding G protein-coupled receptors (GPCR), mostly organized into clusters distributed across all chromosomes. We also detected gene families encoding degenerin epithelial sodium channels (DEG-ENaC), ionotropic receptors (IR), sensory neuron membrane proteins (SNMP), Niemann-Pick type C2 (NPC2) proteins, and lipocalins, although with a lower number of members. Our phylogenetic analysis of the GPCR gene family across protostomes revealed: (i) remarkable gene family expansions in Gastropoda; (ii) clades including members from all protostomes; and (iii) species-specific clades with a substantial number of receptors. For the first time, we provide new and valuable knowledge into the evolution of the chemosensory gene families in invertebrates other than arthropods.


Asunto(s)
Artrópodos , Gastrópodos , Animales , Gastrópodos/genética , Filogenia , Artrópodos/genética , Genoma/genética , Genómica
19.
BMC Cancer ; 24(1): 221, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365614

RESUMEN

BACKGROUND: The Psychosocial Assessment Tool (PAT2.0) is widely used to assess psychosocial risk in families of children with cancer. Our study aims to apply PAT2.0 to Chinese patients and assess the reliability, content validity, and construct validity of the Chinese version. METHODS: A total of 161 participants completed the study, each with only one child diagnosed with cancer. Psychometric evaluations, including internal consistency, score distribution, test-retest reliability, and construct validity, were conducted. RESULTS: Cronbach's alpha values ranged from 0.732 to 0.843, indicating good internal consistency. Additionally, intraclass correlation coefficient values ranged from 0.869 to 0.984, indicating excellent test-retest reliability. The Simplified Chinese version of PAT2.0 demonstrated high construct validity in factor analyses and correlations with the General Functioning Subscale of the Family Assessment Device. CONCLUSION: The translation process of the Chinese version of PAT2.0 was successful, proving its applicability for psychosocial evaluation and interventions in families of children with cancer in China.


Asunto(s)
Neoplasias , Niño , Humanos , Reproducibilidad de los Resultados , Encuestas y Cuestionarios , Psicometría , Neoplasias/diagnóstico , Neoplasias/psicología , China
20.
BMC Neurol ; 24(1): 172, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783254

RESUMEN

BACKGROUND: Epilepsy, a challenging neurological condition, is often present with comorbidities that significantly impact diagnosis and management. In the Pakistani population, where financial limitations and geographical challenges hinder access to advanced diagnostic methods, understanding the genetic underpinnings of epilepsy and its associated conditions becomes crucial. METHODS: This study investigated four distinct Pakistani families, each presenting with epilepsy and a spectrum of comorbidities, using a combination of whole exome sequencing (WES) and Sanger sequencing. The epileptic patients were prescribed multiple antiseizure medications (ASMs), yet their seizures persist, indicating the challenging nature of ASM-resistant epilepsy. RESULTS: Identified genetic variants contributed to a diverse range of clinical phenotypes. In the family 1, which presented with epilepsy, developmental delay (DD), sleep disturbance, and aggressive behavior, a homozygous splice site variant, c.1339-6 C > T, in the COL18A1 gene was detected. The family 2 exhibited epilepsy, intellectual disability (ID), DD, and anxiety phenotypes, a homozygous missense variant, c.344T > A (p. Val115Glu), in the UFSP2 gene was identified. In family 3, which displayed epilepsy, ataxia, ID, DD, and speech impediment, a novel homozygous frameshift variant, c.1926_1941del (p. Tyr643MetfsX2), in the ZFYVE26 gene was found. Lastly, family 4 was presented with epilepsy, ID, DD, deafness, drooling, speech impediment, hypotonia, and a weak cry. A homozygous missense variant, c.1208 C > A (p. Ala403Glu), in the ATP13A2 gene was identified. CONCLUSION: This study highlights the genetic heterogeneity in ASM-resistant epilepsy and comorbidities among Pakistani families, emphasizing the importance of genotype-phenotype correlation and the necessity for expanded genetic testing in complex clinical cases.


Asunto(s)
Comorbilidad , Epilepsia , Heterogeneidad Genética , Linaje , Humanos , Pakistán/epidemiología , Epilepsia/genética , Epilepsia/epidemiología , Epilepsia/diagnóstico , Masculino , Femenino , Niño , Preescolar , Adolescente , Secuenciación del Exoma , Adulto , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/epidemiología , Adulto Joven , Discapacidad Intelectual/genética , Discapacidad Intelectual/epidemiología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA