Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 126: 105054, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34933157

RESUMEN

In this research, a hyperelastic strain energy function was developed to investigate the anisotropic mechanical behavior of a soft bio-composite containing the coral collagen fibers and alginate hydrogel matrix. This hyperelastic function considers the matrix isotropic response, anisotropic behavior of soft crimpled fibers, and matrix-fiber interaction. The material parameters of the model were assumed as a function of the volume fraction of fibers to consider the fiber content. The published experimental data of matrix and bio-composites with different volume fractions of fibers in different directions were used to find the material parameters. A damage model was developed to take into account the damage of matrix, fibers, and fiber-matrix interaction. Results showed that the interaction contribution increases by increasing the volume fraction of fibers due to the crosslinks between the matrix and fibers. Moreover, by exceeding the fibers volume fraction from 20%, the anisotropic stiffening dominates the interaction stiffening in the longitudinal test owing to the load-bearing of soft fibers. Simulation results exhibited that cross-plied bio-composites show more uniform deformations than angle-plied bio-composites. Moreover, the damage results showed that the matrix plays a significant role in the failure of bio-composites.


Asunto(s)
Antozoos , Materiales Biocompatibles , Hidrogeles , Animales , Anisotropía , Colágeno , Simulación por Computador , Estrés Mecánico
2.
Materials (Basel) ; 15(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35683058

RESUMEN

The main objective of this study is to better understand the performance changes of naturally aged glass fiber-reinforced concrete (GFRC) and polypropylene fiber-reinforced concrete (PPFRC), especially the degradation of fibers, which is of great significance for evaluating the durability of structures using these two types of composite materials. The mechanical properties, water absorption, and microstructures of GFRC and PPFRC at a curing age of three years, including their compressive strength, full curves of water absorption, fiber-matrix interaction, and fiber degradation, were systematically studied, and the related properties were compared with those at the curing age of 28 days. The degradation of fibers after freeze-thaw cycles was also studied. The results revealed the following. The water/binder ratio (w/b) affects the rate of increase of the long-term compressive strength of naturally aged concrete. In general, the water absorption of fiber-reinforced concrete (FRC) at the curing age of three years was found to be significantly reduced, but with the increases of w/b and the fiber content to the maximum values, the water absorption of the specimens cured for three years was higher than that of the specimens cured for 28 days. Moreover, with the increase of the curing age, the optimal glass fiber (GF) contents for reducing the water absorption decreased from 1.35% to 0.90% (w/b = 0.30), and from 0.90% to 0.45% (w/b = 0.35), respectively. The GF surface was degraded into continuous pits with diameters of about 200 to 600 nm, and the surface of the pits was attached with spherical granular C-S-H gel products with diameters of about 30 to 44 nm. The freeze-thaw cycles were found to have no significant effect on the pits on the GF surface and the granular C-S-H gel products attached to the pits, but caused a portion of the cement matrix covering the GF to fall off. The interfacial bonding between the polypropylene fiber (PPF) and the cement matrix exhibited almost no change in the PPFRC after three years of curing as compared with that after 28 days of curing. Furthermore, the cement hydration gel on the PPF surface was not significantly damaged by 150 freeze-thaw cycles.

3.
J Mech Behav Biomed Mater ; 118: 104410, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33744502

RESUMEN

The response of fibrous soft tissues undergoing torsional deformations is a topic of considerable current interest. Such deformations are common in ligaments and tendons and are also of particular interest in cardiac mechanics. A well-known context where such issues arise is in understanding the mechanical response of papillary muscles of the heart. Thus the classical torsion problem for solid or hollow cylinders composed of rubber-like materials has received renewed recent attention in the context of anisotropic materials. Here we consider the torsion of a solid circular cylinder composed of a transversely isotropic incompressible fiber-reinforced hyperelastic material. The focus of the work is on examining the effect of fiber-matrix interaction on the axial stress response with emphasis on the Poynting effect. The classic Poynting effect for isotropic rubber-like materials where torsion induces elongation of the cylinder is shown to be significantly different for the transversely isotropic models considered here. For sufficiently small total angles of twist, well within the range of physiological response, a reverse-Poynting effect is shown to hold where the cylinder tends to shorten on twisting while for larger angles of twist, the usual positive Poynting effect occurs. It is shown that the influence of the fiber-matrix interaction is to enhance the reverse Poynting effect. The results are illustrated using experimental data of other authors for skeletal muscles and for brain white matter.


Asunto(s)
Materiales Biocompatibles , Ligamentos , Anisotropía , Elasticidad , Estrés Mecánico
4.
J Mech Behav Biomed Mater ; 124: 104782, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34536799

RESUMEN

The response of fibrous soft tissues undergoing torsional deformations is a topic of current interest. Such deformations are common in ligaments and tendons and are also of particular interest in cardiac mechanics. The problem of torsion superimposed on extension of incompressible hyperelastic solid circular cylinders is a classic problem of nonlinear elasticity that has been considered by many authors in the context of rubber elasticity particularly for isotropic materials. A striking feature of such problems is the instability that arises with sufficiently large twist where a kink and then a knot suddenly appears. An energy approach to examining this instability when the extension and twist are prescribed was described by Gent and Hua (2004) and illustrated there for a neo-Hookean isotropic elastic material. The theoretical results were compared with experimental observations on natural rubber rods. Murphy (2015) has shown that the approach of Gent and Hua (2004) for isotropic materials can be simplified when the rods are assumed to be thin and this theory was applied to transversely isotropic materials by Horgan and Murphy (2016). In contrast with the case for isotropic materials, it was shown there that the kinking instability occurs even in the absence of stretch, i.e., for the case of pure torsion. Here we are concerned with the implications of this simplified thin rod instability theory for fiber-reinforced transversely isotropic materials that reflect fiber-matrix interaction. It is again shown that the kinking instability occurs even in the absence of stretch, i.e., for the case of pure torsion. The results are illustrated for a specific strain-energy density function that models fiber-matrix interaction. It is shown that the critical twist at which kinking occurs decreases as a measure of fiber-matrix interaction is increased so that the fiber-matrix interaction has a destabilizing effect. The results are illustrated using experimental data of other authors for skeletal muscles and for porcine brain white matter tissue.


Asunto(s)
Ligamentos , Tendones , Animales , Anisotropía , Elasticidad , Modelos Biológicos , Estrés Mecánico , Porcinos
5.
Polymers (Basel) ; 12(12)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339384

RESUMEN

In this study, a high-density polyethylene (HDPE)-based carbon fiber-reinforced thermoplastic (CFRTP) was irradiated by an electron-beam. To assess the absorbed dose rate influence on its mechanical properties, the beam energy and absorbed dose were fixed, while the absorbed dose rates were varied. The tensile strength (TS) and Young's modulus (YM) were evaluated. The irradiated CFRTP TS increased at absorbed dose rates of up to 6.8 kGy/s and decreased at higher rates. YM showed no meaningful differences. For CFRTPs constituents, the carbon fiber (CF) TS gradually increased, while the HDPE TS decreased slightly as the absorbed dose rates increased. The OH intermolecular bond was strongly developed in irradiated CFRTP at low absorbed dose rates and gradually declined when increasing those rates. X-ray photoelectron spectroscopy analysis revealed that the oxygen content of irradiated CFRTPs decreased with increasing absorbed dose rate due to the shorter irradiation time at higher dose rates. In conclusion, from the TS viewpoint, opposite effects occurred when increasing the absorbed dose rate: a favorable increase in CF TS and adverse decline of attractive hydrogen bonding interactions between HDPE and CF for CFRTPs TS. Therefore, the irradiated CFRTP TS was maximized at an optimum absorbed dose rate of 6.8 kGy/s.

6.
Materials (Basel) ; 11(2)2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29373487

RESUMEN

Calcium phosphate cement (CPC) is a well-established bone replacement material in dentistry and orthopedics. CPC mimics the physicochemical properties of natural bone and therefore shows excellent in vivo behavior. However, due to their brittleness, the application of CPC implants is limited to non-load bearing areas. Generally, the fiber-reinforcement of ceramic materials enhances fracture resistance, but simultaneously reduces the strength of the composite. Combining strong C-fiber reinforcement with a hydroxyapatite to form a CPC with a chemical modification of the fiber surface allowed us to adjust the fiber-matrix interface and consequently the fracture behavior. Thus, we could demonstrate enhanced mechanical properties of CPC in terms of bending strength and work of fracture to a strain of 5% (WOF5). Hereby, the strength increased by a factor of four from 9.2 ± 1.7 to 38.4 ± 1.7 MPa. Simultaneously, the WOF5 increased from 0.02 ± 0.004 to 2.0 ± 0.6 kJ∙m-2, when utilizing an aqua regia/CaCl2 pretreatment. The cell proliferation and activity of MG63 osteoblast-like cells as biocompatibility markers were not affected by fiber addition nor by fiber treatment. CPC reinforced with chemically activated C-fibers is a promising bone replacement material for load-bearing applications.

7.
Materials (Basel) ; 8(8): 5376-5384, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-28793511

RESUMEN

Scaffold mechanical properties are essential in regulating the microenvironment of three-dimensional cell culture. A coupled fiber-matrix numerical model was developed in this work for predicting the mechanical response of collagen scaffolds subjected to various levels of non-enzymatic glycation and collagen concentrations. The scaffold was simulated by a Voronoi network embedded in a matrix. The computational model was validated using published experimental data. Results indicate that both non-enzymatic glycation-induced matrix stiffening and fiber network density, as regulated by collagen concentration, influence scaffold behavior. The heterogeneous stress patterns of the scaffold were induced by the interfacial mechanics between the collagen fiber network and the matrix. The knowledge obtained in this work could help to fine-tune the mechanical properties of collagen scaffolds for improved tissue regeneration applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA