Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Plant Cell Rep ; 43(3): 66, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341387

RESUMEN

KEY MESSAGE: We used transcriptomic and proteomic association analysis to reveal the critical genes/proteins at three key flower bud differentiation stages and overexpression of CpFPA1 in Arabidopsis resulted in earlier flowering. Wintersweet (Chimonanthus praecox), a rare winter-flowering woody plant, is well known for its unique blooming time, fragrance and long flowering period. However, the molecular mechanism of flowering in C. praecox remains poorly unclear. In this study, we used transcriptomic and proteomic association analysis to reveal the critical genes/proteins at three key flower bud (FB) differentiation stages (FB.Apr, FB.May and FB.Nov) in C. praecox. The results showed that a total of 952 differential expressed genes (DEGs) and 40 differential expressed proteins (DEPs) were identified. Gene ontology (GO) enrichment revealed that DEGs in FB.Apr/FB.May comparison group were mainly involved in metabolic of biological process, cell and cell part of cellular component and catalytic activity of molecular function. In the EuKaryotic Orthologous Groups (KOG) functional classification, DEPs were predicted mainly in the function of general function prediction only (KOG0118), post-translational modification, protein turnover and chaperones. The autonomous pathway genes play an essential role in the floral induction. Based on transcriptome and proteome correlation analysis, six candidate genes associated with the autonomous pathway were identified, including FPA1, FPA2a, FPA2b, FCA, FLK, FY. Furthermore, CpFPA1 was isolated and functionally characterized, and ectopic expression of CpFPA1 in Arabidopsis Columbia (Col-0) resulted in earlier flowering. These data could contribute to understand the function of CpFPA1 for floral induction and provide information for further research on the molecular mechanisms of flowering in wintersweet.


Asunto(s)
Arabidopsis , Transcriptoma , Transcriptoma/genética , Proteoma/genética , Proteoma/metabolismo , Flores/genética , Flores/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteómica , Regulación de la Expresión Génica de las Plantas
2.
BMC Genomics ; 24(1): 14, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627560

RESUMEN

BACKGROUND: Mikania micrantha is a vine with strong invasion ability, and its strong sexual reproduction ability is not only the main factor of harm, but also a serious obstacle to control. M. micrantha spreads mainly through seed production. Therefore, inhibiting the flowering and seed production of M. micrantha is an effective strategy to prevent from continuing to spread. RESULT: The flowering number of M. micrantha is different at different altitudes. A total of 67.01 Gb of clean data were obtained from nine cDNA libraries, and more than 83.47% of the clean reads were mapped to the reference genome. In total, 5878 and 7686 significantly differentially expressed genes (DEGs) were found in E2 vs. E9 and E13 vs. E9, respectively. Based on the background annotation and gene expression, some candidate genes related to the flowering pathway were initially screened, and their expression levels in the three different altitudes in flower bud differentiation showed the same trend. That is, at an altitude of 1300 m, the flower integration gene and flower meristem gene were downregulated (such as SOC1 and AP1), and the flowering inhibition gene was upregulated (such as FRI and SVP). Additionally, the results showed that there were many DEGs involved in the hormone signal transduction pathway in the flower bud differentiation of M. micrantha at different altitudes. CONCLUSIONS: Our results provide abundant sequence resources for clarifying the underlying mechanisms of flower bud differentiation and mining the key factors inhibiting the flowering and seed production of M. micrantha to provide technical support for the discovery of an efficient control method.


Asunto(s)
Mikania , Mikania/genética , Altitud , Perfilación de la Expresión Génica , Flores/genética , Reproducción , Transcriptoma , Regulación de la Expresión Génica de las Plantas
3.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38068873

RESUMEN

Mikania micrantha is a highly invasive vine, and its ability to sexually reproduce is a major obstacle to its eradication. The long-distance dissemination of M. micrantha depends on the distribution of seeds; therefore, inhibiting M. micrantha flowering and seed production is an effective control strategy. The number of blooms of M. micrantha differs at different altitudes (200, 900, and 1300 m). In this study, we used a combination of metabolomics and transcriptomics methods to study the patterns of metabolite accumulation in the flower buds of M. micrantha. Using LC-MS/MS, 658 metabolites were found in the flower buds of M. micrantha at three different altitudes (200, 900, and 1300 m). Flavonoids and phenolic acids were found to be the main differential metabolites, and their concentrations were lower at 900 m than at 200 m and 1300 m, with the concentrations of benzoic acid, ferulic acid, and caffeic acid being the lowest. The biosynthesis pathways for flavonoids and phenolic compounds were significantly enriched for differentially expressed genes (DEGs), according to the results of transcriptome analysis. The production of flavonoid and phenolic acids was strongly linked with the expressions of phenylalanine ammonia-lyase (PAL), caffeoyl-CoA O-methyltransferase (COMT), and 4-coumarate-CoA ligase (4CL), according to the results of the combined transcriptome and metabolome analysis. These genes' roles in the regulation of distinct phenolic acids and flavonoids during M. micrantha bud differentiation are still unknown. This study adds to our understanding of how phenolic acids and flavonoids are regulated in M. micrantha flower buds at various altitudes and identifies regulatory networks that may be involved in this phenomenon, offering a new approach for the prevention and management of M. micrantha.


Asunto(s)
Mikania , Mikania/genética , Flavonoides , Cromatografía Liquida , Espectrometría de Masas en Tándem , Perfilación de la Expresión Génica , Flores/genética
4.
J Integr Plant Biol ; 65(5): 1241-1261, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36541724

RESUMEN

Sorbitol is an important signaling molecule in fruit trees. Here, we observed that sorbitol increased during flower bud differentiation (FBD) in loquat (Eriobotrya japonica Lindl.). Transcriptomic analysis suggested that bud formation was associated with the expression of the MADS-box transcription factor (TF) family gene, EjCAL. RNA fluorescence in situ hybridization showed that EjCAL was enriched in flower primordia but hardly detected in the shoot apical meristem. Heterologous expression of EjCAL in Nicotiana benthamiana plants resulted in early FBD. Yeast-one-hybrid analysis identified the ERF12 TF as a binding partner of the EjCAL promoter. Chromatin immunoprecipitation-PCR confirmed that EjERF12 binds to the EjCAL promoter, and ß-glucuronidase activity assays indicated that EjERF12 regulates EjCAL expression. Spraying loquat trees with sorbitol promoted flower bud formation and was associated with increased expression of EjERF12 and EjCAL. Furthermore, we identified EjUF3GaT1 as a target gene of EjCAL and its expression was activated by EjCAL. Function characterization via overexpression and RNAi reveals that EjUF3GaT1 is a biosynthetic gene of flavonoid hyperoside. The concentration of the flavonoid hyperoside mirrored that of sorbitol during FBD and exogenous hyperoside treatment also promoted loquat bud formation. We identified a mechanism whereby EjCAL might regulate hyperoside biosynthesis and confirmed the involvement of EjCAL in flower bud formation in planta. Together, these results provide insight into bud formation in loquat and may be used in efforts to increase yield.


Asunto(s)
Eriobotrya , Factores de Transcripción , Factores de Transcripción/metabolismo , Eriobotrya/genética , Eriobotrya/metabolismo , Sorbitol/metabolismo , Hibridación Fluorescente in Situ , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/metabolismo , Flavonoides/metabolismo
5.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35742894

RESUMEN

Chestnut (Castanea mollisima) is an important woody food crop, but its yield has been low in cultivation, mainly due to the problems of fewer female flowers and more male flowers. Therefore, regulating the transition of chestnut flowers and effectively balancing the proportion of male and female to improve the yield are key factor to be solved in production. In this study, the chestnut floral buds in pre- and post-winter were used as materials. The data of metabolites, hormones, and gene expression during flower bud differentiation of chestnut were analyzed by transcriptomics and metabolomics to preliminarily reveal the possible reason of male and female flower bud transformation in pre- and post-winter. The analysis of Differentially Expressed Genes (DEGs) showed that there were 6323 DEGs in the Complete mixed flower bud (CMF) group in pre- and post-winter, of which 3448 genes were up-regulated and 2875 genes were down-regulated. There were 8037 DEGs in the Incomplete mixed flower bud (IMF) in pre- and post-winter, of which 4546 genes were up-regulated and 3491 genes were down-regulated. A total of 726 genes from the two flower buds were enriched into 251 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in post winter, of which plant hormone signal transduction accounted for 4.13%. The analysis results of differential metabolites showed that the differential metabolites of the two flower buds were mainly concentrated in the secondary metabolic synthesis pathway. The difference of hormone content showed that the content of Gibberellin 9 (GA9) and GA19 in CMF was higher than that in IMF in pre-winter, but the opposite in post-winter. Methyl jasmonate (MeJA) content was only very high in CMF in pre-winter, while Jasmonoyl-(l)-Isoleucine (JA-ILE) showed high content in CMF in post-winter. In post-winter, higher concentration of JA-ILE was positively correlated with the expression of Flowering Locus T (CmFT), and CmFT gene was significantly positively correlated with the expression levels of MYC2-1, MYC2-2 and LFY 3 (LEAFY 3). The higher concentration of JA-ILE was negatively correlated with the transcription level of JAZ1-3. In vitro experiments further verified that Jasmonate-Zim 1-3 (JAZ 1-3) combined with MYC2-1 inhibited the transcription of CmFT gene, while MYC2-1 alone promoted the expression of FT. The results suggested that a higher concentration of GA is conducive to breaking the dormancy of flower buds and promoting the development of male flower buds, while a lower concentration of GA and a higher concentration of JA-ILE are conducive to the differentiation and formation of female flower buds in post-winter, in which JAZ1-3 and MYC2-1 play a key role in the differentiation of female flower buds of chestnut.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Flores/metabolismo , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma
6.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36555203

RESUMEN

Flower bud differentiation is crucial to reproductive success in plants. In the present study, RNA-Seq and nutrients quantification were used to identify the stage-specific genes for flower bud differentiation with buds which characterize the marked change during flower bud formation from a widely grown Chinese cherry (Prunus pseudocerasus L.) cultivar 'Manaohong'. A KEGG enrichment analysis revealed that the sugar metabolism pathways dynamically changed. The gradually decreasing trend in the contents of total sugar, soluble sugar and protein implies that the differentiation was an energy-consuming process. Changes in the contents of D-glucose and sorbitol were conformed with the gene expression trends of bglX and SORD, respectively, which at least partially reflects a key role of the two substances in the transition from physiological to morphological differentiation. Further, the WRKY and SBP families were also significantly differentially expressed during the vegetative-to-reproductive transition. In addition, floral meristem identity genes, e.g., AP1, AP3, PI, AGL6, SEP1, LFY, and UFO demonstrate involvement in the specification of the petal and stamen primordia, and FPF1 might promote the onset of morphological differentiation. Conclusively, the available evidence justifies the involvement of sugar metabolism in the flower bud differentiation of Chinese cherry, and the uncovered candidate genes are beneficial to further elucidate flower bud differentiation in cherries.


Asunto(s)
Perfilación de la Expresión Génica , Prunus , Carbohidratos , Flores/genética , Regulación de la Expresión Génica de las Plantas , Prunus/genética , Azúcares , Transcriptoma
7.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35682645

RESUMEN

Basic leucine zipper (bZIP), a conserved transcription factor widely found in eukaryotes, has important regulatory roles in plant growth. To understand the information related to the bZIP gene family in walnut, 88 JrbZIP genes were identified at the genome-wide level and classified into 13 subfamilies (A, B, C, D, E, F, G, H, I, J, K, M, and S) using a bioinformatic approach. The number of exons in JrbZIPs ranged from 1 to 12, the number of amino acids in JrbZIP proteins ranged from 145 to 783, and the isoelectric point ranged from 4.85 to 10.05. The majority of JrbZIP genes were localized in the nucleus. The promoter prediction results indicated that the walnut bZIP gene contains a large number of light-responsive and jasmonate-responsive action elements. The 88 JrbZIP genes were involved in DNA binding and nucleus and RNA biosynthetic processes of three ontological categories, molecular functions, cellular components and biological processes. The codon preference analysis showed that the bZIP gene family has a stronger bias for AGA, AGG, UUG, GCU, GUU, and UCU than other codons. Moreover, the transcriptomic data showed that JrbZIP genes might play an important role in floral bud differentiation. The results of a protein interaction network map and kegg enrichment analysis indicated that bZIP genes were mainly involved in phytohormone signaling, anthocyanin synthesis and flowering regulation. qRT-PCR demonstrated the role of the bZIP gene family in floral bud differentiation. Co-expression network maps were constructed for 29 walnut bZIP genes and 6 flowering genes, and JrCO (a homolog of AtCO) was significantly correlated (p < 0.05) with 13 JrbZIP genes in the level of floral bud differentiation expression, including JrbZIP31 (homolog of AtFD), and JrLFY was significantly and positively correlated with JrbZIP10,11,51,59,67 (p < 0.05), and the above results suggest that bZIP family genes may act together with flowering genes to regulate flower bud differentiation in walnut. This study was the first genome-wide report of the walnut bZIP gene family, which could improve our understanding of walnut bZIP proteins and provide a solid foundation for future cloning and functional analyses of this gene family.


Asunto(s)
Juglans , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Juglans/genética , Juglans/metabolismo , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
BMC Genomics ; 22(1): 439, 2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34118883

RESUMEN

BACKGROUND: B-BOX (BBX) proteins are zinc-finger transcription factors with one or two BBX domains and sometimes a CCT domain. These proteins play an essential role in regulating plant growth and development, as well as in resisting abiotic stress. So far, the BBX gene family has been widely studied in other crops. However, no one has systematically studied the BBX gene in cotton. RESULTS: In the present study, 17, 18, 37 and 33 BBX genes were detected in Gossypium arboreum, G. raimondii, G. hirsutum and G. barbadense, respectively, via genome-wide identification. Phylogenetic analysis showed that all BBX genes were divided into 5 main categories. The protein motifs and exon/intron structures showed that each group of BBX genes was highly conserved. Collinearity analysis revealed that the amplification of BBX gene family in Gossypium spp. was mainly through segmental replication. Nonsynonymous (Ka)/ synonymous (Ks) substitution ratios indicated that the BBX gene family had undergone purification selection throughout the long-term natural selection process. Moreover, transcriptomic data showed that some GhBBX genes were highly expressed in floral organs. The qRT-PCR results showed that there were significant differences in GhBBX genes in leaves and shoot apexes between early-maturing materials and late-maturing materials at most periods. Yeast two-hybrid results showed that GhBBX5/GhBBX23 and GhBBX8/GhBBX26 might interact with GhFT. Transcriptome data analysis and qRT-PCR verification showed that different GhBBX genes had different biological functions in abiotic stress and phytohormone response. CONCLUSIONS: Our comprehensive analysis of BBX in G. hirsutum provided a basis for further study on the molecular role of GhBBXs in regulating flowering and cotton resistance to abiotic stress.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Perfilación de la Expresión Génica , Genoma de Planta , Gossypium/genética , Gossypium/metabolismo , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Plant Biotechnol J ; 19(1): 153-166, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32654381

RESUMEN

The transition from vegetative to reproductive growth is very important for early maturity in cotton. However, the genetic control of this highly dynamic and complex developmental process remains unclear. A high-resolution tissue- and stage-specific transcriptome profile was generated from six developmental stages using 72 samples of two early-maturing and two late-maturing cotton varieties. The results of histological analysis of paraffin sections showed that flower bud differentiation occurred at the third true leaf stage (3TLS) in early-maturing varieties, but at the fifth true leaf stage (5TLS) in late-maturing varieties. Using pairwise comparison and weighted gene co-expression network analysis, 5312 differentially expressed genes were obtained, which were divided into 10 gene co-expression modules. In the MElightcyan module, 46 candidate genes regulating cotton flower bud differentiation were identified and expressed at the flower bud differentiation stage. A novel key regulatory gene related to flower bud differentiation, GhCAL, was identified in the MElightcyan module. Anti-GhCAL transgenic cotton plants exhibited late flower bud differentiation and flowering time. GhCAL formed heterodimers with GhAP1-A04/GhAGL6-D09 and regulated the expression of GhAP1-A04 and GhAGL6-D09. GhAP1-A04- and GhAGL6-D09-silenced plants also showed significant late flowering. Finally, we propose a new flowering regulatory pathway mediated by GhCAL. This study elucidated the molecular mechanism of cotton flowering regulation and provides good genetic resources for cotton early-maturing breeding.


Asunto(s)
Gossypium , Transcriptoma , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Gossypium/genética , Fitomejoramiento , Transcriptoma/genética
10.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34829974

RESUMEN

Flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) is an important and extensively cultivated vegetable in south China, and its stalk development is mainly regulated by gibberellin (GA). DELLA proteins negatively regulate GA signal transduction and may play an important role in determining bolting and flowering. Nevertheless, no systematic study of the DELLA gene family has been undertaken in flowering Chinese cabbage. In the present study, we found that the two-true-leaf spraying of gibberellin A3 (GA3) did not promote bolting but did promote flowering, whereas the three-true-leaf spraying of GA3 promoted both bolting and flowering. In addition, we identified five DELLA genes in flowering Chinese cabbage. All five proteins contained DELLA, VHYNP, VHIID, and SAW conserved domains. Protein-protein interaction results showed that in the presence of GA3, all five DELLA proteins interacted with BcGID1b (GA-INSENSITIVE DWARF 1b) but not with BcGID1a (GA-INSENSITIVE DWARF 1a) or BcGID1c (GA-INSENSITIVE DWARF 1c). Their expression analysis showed that the DELLA genes exhibited tissue-specific expression, and their reversible expression profiles responded to exogenous GA3 depending on the treatment stage. We also found that the DELLA genes showed distinct expression patterns in the two varieties of flowering Chinese cabbage. BcRGL1 may play a major role in the early bud differentiation process of different varieties, affecting bolting and flowering. Taken together, these results provide a theoretical basis for further dissecting the DELLA regulatory mechanism in the bolting and flowering of flowering Chinese cabbage.


Asunto(s)
Brassica/genética , Flores/genética , Giberelinas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica/crecimiento & desarrollo , China , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Familia de Multigenes/genética , Hojas de la Planta/genética , Receptores de Superficie Celular/genética
11.
Int J Mol Sci ; 21(9)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349427

RESUMEN

The quality of Lily cut flower was determined by the quality of bulbs. During the process of vernalization and flower bud differentiation, sugar massively accumulated in the bulb, which influenced the bulb development. However, the details of sugar genes' regulation mechanism for these processes were not fully understood. Here, morphological physiology, transcriptomes and gene engineering technology were used to explore this physiological change. Seventy-two genes of 25 kinds of sugar metabolism-related genes were annotated after re-analyzing transcriptome data of Oriental hybrid lily 'Sorbonne' bulbs, which were generated on Hiseq Illumina 2000. The results showed that these genes were closely related to lily bulb vernalization and development. Combining gene expression pattern with gene co-expression network, five genes (Contig5669, Contig13319, Contig7715, Contig1420 and Contig87292) were considered to be the most potential signals, and the sucrose transporter gene (SUT) was the focus of this study. Carbohydrate transport pathway and genes' regulation mechanism were inferred through a physiological and molecular test. SUT seemed to be the sugar sensor that could sense and regulate sugar concentration, which might have effects on other genes, such as FT, LFY and so on. LoSUT2 and LoSUT4 genes were cloned from Oriental hybrid lily 'Sorbonne' by RACE, which was the first time for these genes in Oriental hybrid lily 'Sorbonne'. The physiological properties of these proteins were analyzed such as hydrophobicity and phosphorylation. In addition, secondary and tertiary structures of proteins were predicted, which indicated the two proteins were membrane proteins. Their cellular locations were verified through positioning the experiment of the fluorescent vector. They were highly expressed in cells around phloem, which illustrated the key role of these genes in sugar transport. Furthermore, transient expression assays showed that overexpressed LoSUT2 and LoSUT4 in Arabidopsis thaliana bloomed significantly earlier than the wild type and the expression of FT, SOC1 and LFY were also affected by LoSUT2 and LoSUT4, which indicated that LoSUT2 and LoSUT4 may regulate plants flowering time.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Lilium/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Plantas/genética , Transcriptoma , Secuencia de Aminoácidos , Biología Computacional/métodos , Flores/metabolismo , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Lilium/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Redes y Vías Metabólicas , Modelos Moleculares , Anotación de Secuencia Molecular , Fenotipo , Desarrollo de la Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformación Proteica , Relación Estructura-Actividad
12.
Yi Chuan ; 42(8): 739-751, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32952110

RESUMEN

Flowering is the adaptability of plants in response to the environment, which is regulated by the complex flowering control network formed by a variety of exogenous and endogenous signals. Plant hormones, the most important endogenous signal participants, play important roles in the process of plant flowering. Recent reports reveal the pivotal roles of hormones in the epigenetic regulation and flowering promotion pathway. In addition, synergistic or antagonistic interaction has been observed among many hormones. Numerous hormones have been found to be involved in the regulation of the multiple flowering development regulation and signaling pathways mediated by DELLA protein in the gibberellin (GA) pathway. In this review, we summarize the recent advances ofthe flowering mechanisms related to GA pathway and discuss the effects of abscisic acid (ABA), auxin (IAA), cytokinin (CTK), salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) on flowering, including their cross-regulation with DELLA, miRNAs, and transcription factor (TFs). This review provides a reference for further comprehensive analysis of the hormone-regulated network of plant flower formation.


Asunto(s)
Flores , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Epigénesis Genética , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Humanos , MicroARNs , Desarrollo de la Planta/genética , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/genética
13.
Int J Mol Sci ; 20(14)2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31330828

RESUMEN

Rosa chinensis is one of the most popular flower plants worldwide. The recurrent flowering trait greatly enhances the ornamental value of roses, and is the result of the constant formation of new flower buds. Flower bud differentiation has always been a major topic of interest among researchers. The APETALA1 (AP1) MADS-box (Mcm1, Agamous, Deficiens and SRF) transcription factor-encoding gene is important for the formation of the floral meristem and floral organs. However, research on the rose AP1 gene has been limited. Thus, we isolated AP1 from Rosa chinensis 'Old Blush'. An expression analysis revealed that RcAP1 was not expressed before the floral primordia formation stage in flower buds. The overexpression of RcAP1 in Arabidopsis thaliana resulted in an early-flowering phenotype. Additionally, the virus-induced down-regulation of RcAP1 expression delayed flowering in 'Old Blush'. Moreover, RcAP1 was specifically expressed in the sepals of floral organs, while its expression was down-regulated in abnormal sepals and leaf-like organs. These observations suggest that RcAP1 may contribute to rose bud differentiation as well as floral organ morphogenesis, especially the sepals. These results may help for further characterization of the regulatory mechanisms of the recurrent flowering trait in rose.


Asunto(s)
Flores/embriología , Flores/metabolismo , Proteínas de Plantas/metabolismo , Rosa/embriología , Rosa/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Morfogénesis/genética , Morfogénesis/fisiología , Proteínas de Plantas/genética
14.
Sci Rep ; 14(1): 17694, 2024 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085421

RESUMEN

The application of exogenous paclobutrazol (PP333) can improve the ability of winter warming to promote flowering in Chaenomeles speciosa, but the underlying mechanism is unclear. In this study, the cultivar 'Changshouguan' was sprayed with different concentrations of PP333 during flower bud differentiation, and the changes in the anatomical structures and physiological characteristics of the flower buds during the differentiation process, as well as the growth state of the flower buds and the effect on flowering promotion after winter warming treatment, were comprehensively investigated. The results showed that different concentrations of PP333 could advance the flowering time of 'Changshouguan' by 15-24 d under the warming treatment and increase the flowering duration to 17 d compared with those under the warming treatment alone (CK), and 1000 mg/L was the best treatment. Compared with the CK treatment, the PP333 treatment decreased the contents of indole acetic acid (IAA) and gibberellic acid (GAs) and increased the contents of zeatin ribosides (ZRs) and abscisic acid (ABA), thus changing the balance of hormones during flower bud differentiation. The inflection point (low point) of the curve shapes of the ZRs/GAs and ZRs/IAA ratios appeared significantly earlier, which showed a pattern consistent with soluble sugar and protein content and antioxidant activity. Interestingly, the above changes also corresponded to earlier flowering times during the warming process. Taken together, these results indicate that spraying an appropriate concentration of PP333 in the early stage of 'Changshouguan' flower bud differentiation promotes the early differentiation of flower buds and early flowering under winter warming treatment by altering their endogenous hormone content and homeostasis and changing their physiological state. The key to maintaining a relatively long flowering period in plants in the PP333 treatment group after flowering promotion was the increased accumulation of sugars and proteins.


Asunto(s)
Flores , Reguladores del Crecimiento de las Plantas , Estaciones del Año , Triazoles , Flores/efectos de los fármacos , Flores/crecimiento & desarrollo , Triazoles/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Giberelinas/farmacología , Giberelinas/metabolismo , Rosaceae/fisiología , Rosaceae/efectos de los fármacos , Rosaceae/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología
15.
Front Plant Sci ; 14: 1173985, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123867

RESUMEN

Grapevine is one of the most important fruit trees in the world, but it is often threatened by various biotic and abiotic stresses in production, resulting in decreased yield and quality. Grapevine double cropping in one year is a kind of preparatory and artificial control technology, which can not only save the loss of natural disasters, but also plays an important role in staggering the peak to market, thus increasing yield and improving the quality of grape fruit. This perspective provides a concise discussion of the physiological basis, the main determinants, and their impacts on yield and fruit quality of grapevine double cropping. We also highlight the current challenges around this theme and prospect its application in the future.

16.
Plants (Basel) ; 12(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36987065

RESUMEN

Pecan (Carya illinoensis) nuts are delicious and rich in unsaturated fatty acids, which are beneficial for human health. Their yield is closely related to several factors, such as the ratio of female and male flowers. We sampled and paraffin-sectioned female and male flower buds for one year and determined the stages of initial flower bud differentiation, floral primordium formation, and pistil and stamen primordium formation. We then performed transcriptome sequencing on these stages. Our data analysis suggested that FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 play a role in flower bud differentiation. J3 was highly expressed in the early stage of female flower buds and may play a role in regulating flower bud differentiation and flowering time. Genes such as NF-YA1 and STM were expressed during male flower bud development. NF-YA1 belongs to the NF-Y transcription factor family and may initiate downstream events leading to floral transformation. STM promoted the transformation of leaf buds to flower buds. AP2 may have been involved in the establishment of floral meristem characteristics and the determination of floral organ characteristics. Our results lay a foundation for the control and subsequent regulation of female and male flower bud differentiation and yield improvement.

17.
Plants (Basel) ; 12(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38068616

RESUMEN

Flowering cherry (Cerasus sp.) are significant spring-blooming trees. However, the short blooming period and the rarity of early and late-flowering varieties limit their use in gardens in northern China. The experiment incorporated annually early-flowering species such as Cerasus discoidea, Cerasus pseudocerasus 'Introtsa', Cerasus dielsiana, Cerasus campanulata 'Youkou', Cerasus yedoensis 'Somei-Yoshino', and Cerasus spachiana f. ascendens, as well as twice-a-year flowering species like Cerasus subhirtella 'Autumnalis' and Cerasus subhirtella 'Accolade'. We observed the timing of natural events and growth measurements for specific plants over a span of two years. This research involved a thorough examination of their ability to withstand cold temperatures, considering their physiological aspects. We examined the levels of nutrients and hormones in the flower buds at various stages of development in plants that bloom yearly and every two years. The findings indicated that C. subhirtella 'Autumnalis' is adaptable, offering the lengthiest autumn blooming phase lasting 54 days. The hierarchy of cold tolerance was as follows: C. pseudocerasus 'Introtsa' > C. discoidea > Cerasus × subhirtella 'Autumnalis' > C. dielsiana > C. 'Youkou'. Furthermore, the soluble protein content in leaves increased before autumn flower buds' sprout of twice-a-year flowering varieties but declined in C. yedoensis 'Somei-Yoshino' within the same time. We determined that changes in nutrient content significantly contribute to the autumn opening of C. subhirtella 'Autumnalis' robust short branch flower buds. During the final phase of flower bud development, the rise in trans-Zeatin-riboside (ZR) and indolacetic acid (IAA) promotes the initiation of the first flowering period in C. subhirtella 'Autumnalis' prior to its mandatory hibernation. The occurrence of secondary flowering involves a multifaceted regulatory process. These findings serve as valuable references for delving deeper into the mechanisms governing cherry blossom formation and secondary flowering.

18.
Front Plant Sci ; 13: 863330, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432408

RESUMEN

Reproductive bud differentiation is one of the most critical events for the reproductive success of seed plants. Yet, our understanding of genetic basis remains limited for the development of the reproductive organ of gymnosperms, namely, unisexual strobilus or cone, leaving its regulatory network largely unknown for strobilus bud differentiation. In this study, we analyzed the temporal dynamic landscapes of genes, long non-coding RNAs (lncRNAs), and microRNAs (miRNAs) during the early differentiation of female strobilus buds in Ginkgo biloba based on the whole transcriptome sequencing. Results suggested that the functions of three genes, i.e., Gb_19790 (GbFT), Gb_13989 (GinNdly), and Gb_16301 (AG), were conserved in both angiosperms and gymnosperms at the initial differentiation stage. The expression of genes, lncRNAs, and miRNAs underwent substantial changes from the initial differentiation to the enlargement of ovule stalk primordia. Besides protein-coding genes, 364 lncRNAs and 15 miRNAs were determined to be functional. Moreover, a competing endogenous RNA (ceRNA) network comprising 10,248 lncRNA-miRNA-mRNA pairs was identified, which was highly correlated with the development of ovulate stalk primordia. Using the living fossil ginkgo as the study system, this study not only reveals the expression patterns of genes related to flowering but also provides novel insights into the regulatory networks of lncRNAs and miRNAs, especially the ceRNA network, paving the way for future studies concerning the underlying regulation mechanisms of strobilus bud differentiation.

19.
BMC Mol Cell Biol ; 23(1): 56, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517772

RESUMEN

BACKGROUND: Magnolia, a traditional and important ornamental plant in urban greening, has been cultivated for about 2000 years in China for its elegant flower shape and gorgeous flower color. Most varieties of Magnolia bloom once a year in spring, whereas a few others, such as Magnolia liliiflora Desr. 'Hongyuanbao', also bloom for the second time in summer or early autumn. Such a twice flowering trait is desirable for its high ornamental value, while its underlying mechanism remains unclear. METHODS: Paraffin section was used to show the flowering time and phenotypic changes of M. liliiflora 'Hongyuanbao' during the twice flowering periods from March 28 to August 25, 2018. Gas chromatography-mass spectrometry (GC-MS) was then performed to explore the chemical metabolites through the twice flower bud differentiation process in 'Hongyuanbao', and the metabolites were screened and identified by orthogonal projection to latent structures discriminant analysis (OPLS-DA). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis (KEGG) was used to reveal the relationship between the sugar metabolites and twice-flowering characteristic. To further investigate the potential role of sucrose and trehalose on flowering regulation of 'Hongyuanbao', the plants once finished the spring flowering were regularly sprayed with sucrose and trehalose solutions at 30 mM, 60 mM, and 90 mM concentrations from April 22, 2019. The flower bud differentiation processes of sprayed plants were observed and the expression patterns of the genes involved in sucrose and trehalose metabolic pathways were studied by quantitative reverse transcription PCR (qRT-PCR). RESULTS: It showed that 'Hongyuanbao' could complete flower bud differentiation twice in a year and flowered in both spring and summer. The metabolites of flower bud differentiation had a significant variation between the first and second flower buds. Compared to the first flower bud differentiation process, the metabolites in the sucrose and trehalose metabolic pathways were significantly up-regulated during the second flower bud differentiation process. Besides that, the expression levels of a number of trehalose-6-phosphate synthase (TPS) genes including MlTPS1, MlTPS5, MlTPS6, MlTPS7 and MlTPS9 were substantially increased in the second flower differentiation process compared with the first process. Exogenous treatments indicated that compared to the control plants (sprayed with water, CK), all three concentrations of trehalose could accelerate flowering and the effect of 60 mM concentration was the most significant. For the sucrose foliar spray, only the 60 mM concentration accelerated flowering compared with CK. It suggested that different concentration of trehalose and sucrose might have different effects. Expression analysis showed that sucrose treatment increased the transcription levels of MlTPS5 and MlTPS6, whereas trehalose treatment increased MlTPS1, showing that different MlTPS genes took part in sucrose and trehalose metabolic pathways respectively. The expression levels of a number of flowering-related genes, such as MlFT, MlLFY, and MlSPL were also increased in response to the sprays of sucrose and trehalose. CONCLUSIONS: We provide a novel insight into the effect of sucrose and trehalose on the flowering process in Magnolia. Under the different sugar contents treatments, the time of flower bud differentiation of Magnolia was advanced. Induced and accelerated flowering in response to sucrose and trehalose foliar spray, coupled with elevated expression of trehalose regulatory and response genes, suggests that secondary flower bud formation is a promoted by altered endogenous sucrose and trehalose levels. Those results give a new understanding of sucrose and trehalose on twice-flowering in Magnolia and provide a preliminary speculation for inducing and accelerating the flowering process in Magnolia.


Asunto(s)
Magnolia , Regulación de la Expresión Génica de las Plantas , Trehalosa , Azúcares , Sacarosa
20.
Plants (Basel) ; 9(3)2020 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-32182715

RESUMEN

Carbohydrates are nutrients and important signal molecules in higher plants. Sugar transporters (ST) play important role not only in long-distance transport of sugar, but also in sugar accumulations in sink cells. Longan (Dimocarpus longan L.) is one of the most important commercial tropical/subtropical evergreen fruit species in Southeast Asia. In this study, a total of 52 longan sugar transporter (DlST) genes were identified and they were divided into eight clades according to phylogenetic analysis. Out of these 52 DlST genes, many plant hormones (e.g., MeJA and gibberellin), abiotic (e.g., cold and drought), and biotic stress responsive element exist in their promoter region. Gene structure analysis exhibited that each of the clades have closely associated gene architectural features based on similar number or length of exons. The numbers of DlSTs, which exhibited alternative splicing (AS) events, in flower bud is more than that in other tissues. Expression profile analysis revealed that ten DlST members may regulate longan flowerbud differentiation. In silico expression profiles in nine longan organs indicated that some DlST genes were tissue specificity and further qRT-PCR analysis suggested that the transcript level of seven DlSTs (DlINT3, DlpGlcT1, DlpGlcT2, DlPLT4, DlSTP1, DlVGT1 and DlVGT2) was consistent with sugar accumulation in fruit, indicating that they might be involved in sugar accumulations during longan fruit development. Our findings will contribute to a better understanding of sugar transporters in woody plant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA