Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 25(7): 2275-2284, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30963661

RESUMEN

Plant stress resulting from soil freezing is expected to increase in northern temperate regions over the next century due to reductions in snow cover caused by climate change. Within plant communities, soil spatial heterogeneity can potentially buffer the effects of plant freezing stress by increasing the availability of soil microsites that function as microrefugia. Moreover, increased species richness resulting from soil heterogeneity can increase the likelihood of stress-tolerant species being present in a community. We used a field experiment to examine interactions between soil heterogeneity and increased freezing intensity (achieved via snow removal) on plant abundance and diversity in a grassland. Patches of topsoil were mixed with either sand or woodchips to create heterogeneous and homogeneous treatments, and plant community responses to snow removal were assessed over three growing seasons. Soil heterogeneity interacted significantly with snow removal, but it either buffered or exacerbated the snow removal response depending on the specific substrate (sand vs. woodchips) and plant functional group. In turn, snow removal influenced plant responses to soil heterogeneity; for example, adventive forb cover responded to increased heterogeneity under ambient snow cover, but this effect diminished with snow removal. Our results reveal that soil heterogeneity can play an important role in determining plant responses to changes in soil freezing stress resulting from global climate change. While the deliberate creation of soil microsites in ecological restoration projects as a land management practice could increase the frequency of microrefugia that mitigate plant community responses to increased freezing stress, the design of these microsites must be optimized, given that soil heterogeneity also has the potential to exacerbate freezing stress responses.


Asunto(s)
Pradera , Suelo , Cambio Climático , Congelación , Estaciones del Año , Nieve
2.
Int J Biometeorol ; 63(4): 511-521, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30756175

RESUMEN

In the semi-arid climatic conditions, water shortage is a key factor to generate crop production. Planting in autumn and winter and using precipitation can help cope with the problem. But in the semi-arid areas with cold winter, frost is another limited factor affecting crop production. For this purpose, in the present study, a simple and universal crop growth simulator (SUCROS) model was used to estimate the potential yield of sugar beets and frost damage from 1993 to 2009 for four autumn sowing dates (2 October, 17 October, 1 November, and 16 November) and two spring dates (6 March and 6 May) in eight locations (Birjand, Bojnord, Ghaen, Mashhad, Torbat-e Heydarieh, Neyshabor, Torbat-e Jam, and Ghochan) of the Khorasan province in northeastern Iran as a semi-arid and cold area. There was a large variability between locations and years in terms of frost damage. The crop failure from frost for the autumn sowing dates ranged from 62.5 to 100% at Neyshabor and Ghochan, respectively. Although autumn sowing dates performed better than spring sowing dates in terms of fresh storage organ yield (~ 109.9 t ha-1 vs. ~ 78.4 t ha-1), the risk of frost stress under autumn sowing dates was high at all studied locations. To maximize potential yield and minimize frost risk, sugar beet farmers under semi-arid and frost-prone conditions in the world such as Khorasan province should choose optimum sowing dates outside the high frost risk period to avoid crop damage. The last frost day under these areas normally happened between the 15th and 28th of February, after which no frost events occurred. Accordingly, it is recommended to farmers to sow sugar beet after the period during which no frost risk for sugar beet occurred.


Asunto(s)
Beta vulgaris/crecimiento & desarrollo , Congelación/efectos adversos , Modelos Teóricos , Agricultura/métodos , Irán , Medición de Riesgo , Estaciones del Año
3.
Glob Chang Biol ; 23(8): 3076-3091, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28192628

RESUMEN

Turnover concepts in state-of-the-art global vegetation models (GVMs) account for various processes, but are often highly simplified and may not include an adequate representation of the dominant processes that shape vegetation carbon turnover rates in real forest ecosystems at a large spatial scale. Here, we evaluate vegetation carbon turnover processes in GVMs participating in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT) using estimates of vegetation carbon turnover rate (k) derived from a combination of remote sensing based products of biomass and net primary production (NPP). We find that current model limitations lead to considerable biases in the simulated biomass and in k (severe underestimations by all models except JeDi and VISIT compared to observation-based average k), likely contributing to underestimation of positive feedbacks of the northern forest carbon balance to climate change caused by changes in forest mortality. A need for improved turnover concepts related to frost damage, drought, and insect outbreaks to better reproduce observation-based spatial patterns in k is identified. As direct frost damage effects on mortality are usually not accounted for in these GVMs, simulated relationships between k and winter length in boreal forests are not consistent between different regions and strongly biased compared to the observation-based relationships. Some models show a response of k to drought in temperate forests as a result of impacts of water availability on NPP, growth efficiency or carbon balance dependent mortality as well as soil or litter moisture effects on leaf turnover or fire. However, further direct drought effects such as carbon starvation (only in HYBRID4) or hydraulic failure are usually not taken into account by the investigated GVMs. While they are considered dominant large-scale mortality agents, mortality mechanisms related to insects and pathogens are not explicitly treated in these models.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Bosques , Carbono , Ecosistema , Modelos Teóricos , Árboles
4.
Front Plant Sci ; 13: 829580, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185993

RESUMEN

Global climate change results in more extreme temperature events, which poses a serious threat to wheat production in the North China Plain (NCP). Assessing the potential impact of temperature extremes on crop growth and yield is an important prerequisite for exploring crop adaptation measures to deal with changing climate. In this study, we evaluated the effects of heat and frost stress during wheat sensitive period on grain yield at four representative sites over the NCP using Agricultural Production System Simulator (APSIM)-wheat model driven by the climate projections from 20 Global Climate Models (GCMs) in the Coupled Model Inter-comparison Project phase 6 (CMIP6) during two future periods of 2031-2060 (2040S) and 2071-2100 (2080S) under societal development pathway (SSP) 245 and SSP585 scenarios. We found that extreme temperature stress had significantly negative impacts on wheat yield. However, increased rainfall and the elevated atmospheric CO2 concentration could partly compensate for the yield loss caused by extreme temperature events. Under future climate scenarios, the risk of exposure to heat stress around flowering had no great change but frost risk in spring increased slightly mainly due to warming climate accelerating wheat development and advancing the flowering time to a cooler period of growing season. Wheat yield loss caused by heat and frost stress increased by -0.6 to 4.2 and 1.9-12.8% under SSP585_2080S, respectively. We also found that late sowing and selecting cultivars with a long vegetative growth phase (VGP) could significantly compensate for the negative impact of extreme temperature on wheat yields in the south of NCP. However, selecting heat resistant cultivars in the north NCP and both heat and frost resistant cultivars in the central NCP may be a more effective way to alleviate the negative effect of extreme temperature on wheat yields. Our findings showed that not only heat risk should be concerned under climate warming, but also frost risk should not be ignored.

5.
Evolution ; 76(9): 1986-2003, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779006

RESUMEN

Species have restricted geographic distributions and the causes are still largely unknown. Temperature has long been associated with distribution limits, suggesting that there are ubiquitous constraints to the evolution of the climate niche. Here, we investigated the traits involved in such constraints by macroevolutionary comparisons involving 100 Brassicaceae species differing in elevational distribution. Plants were grown under three temperature treatments (regular frost, mild, regular heat) and phenotyped for phenological, morphological, and thermal resistance traits. Trait values were analyzed by assessing the effect of temperature and elevational distribution, by comparing models of evolutionary trajectories, and by correlative approaches to identify trade-offs. Analyses pointed to size, leaf morphology, and growth under heat as among the most discriminating traits between low- and high-elevation species, with high-elevation species growing faster under the occurrence of regular heat bouts, at the cost of reduced size. Mixed models and evolutionary models supported adaptive divergence for these traits, and correlation analysis indicated their involvement in moderate trade-offs. Finally, we found asymmetry in trait evolution, with evolvability across traits being 50% less constrained under regular frost. Overall, results suggest that trade-offs between traits under adaptive divergence contribute to the disparate distribution of species along the elevational gradient.


Asunto(s)
Brassicaceae , Brassicaceae/genética , Clima , Fenotipo , Hojas de la Planta , Temperatura
6.
J Biotechnol ; 327: 97-105, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33450348

RESUMEN

Potato (Solanum tuberosum L.) is considered to be frost-susceptible as short spells of frost can reduce the tuber yield and quality. Ice recrystallization inhibition (IRI) protein helps prevent growth of ice crystals in the cell apoplast during frost and help prevent damage associated with freezing stress. In this study, we investigated the in planta potential of Lolium perenne derived IRI3 transgene in improving the tolerance of transgenic potato lines for freezing stress. The codon optimized IRI3 transgene was introduced into potato cultivar Diamant through Agrobacterium mediated transformation. Three transgenic potato lines were successfully generated which were confirmed for transgene insertion and genomic integration by polymerase chain reaction and Southern blot. It was evident that the IRI3 transcript decreased in initial 24 h of cold stress treatment while the IRI3 mRNA expression up regulated in subsequent hours of cold treatment with maximum increase to 20 folds at 96 h post stress. A similar trend was also revealed in ion-leakage assay which showed that during cold stress, the transgenic potato lines depicted reduced ion leakage of 14-22% as compared to non-transgenic control plants. Further, the generated transgenic potato lines were tolerant to the frost spell in quarantine field conditions as compared to the non-transgenic potato lines. Additionally, the transgenic lines exhibited efficient recovery post frost injury in field conditions. The biochemical profiles of chlorophyll, proline and higher levels of antioxidant enzyme (superoxide dismutase, Catalase) activity and malondialdehyde levels showed that despite the phenotypic impact of low temperature, the transgenic potato lines quickly adjusted to maintain their cellular homeostasis post freezing stress by increasing the antioxidant defenses. This study suggests that up regulation of IRI3 transcript and regulatory network of cold stress response in transgenic potato lines improve frost tolerance and help stabilize yield in cultivated potato.


Asunto(s)
Solanum tuberosum , Congelación , Regulación de la Expresión Génica de las Plantas , Hielo , Tubérculos de la Planta , Plantas Modificadas Genéticamente/genética , Solanum tuberosum/genética
7.
Environ Sci Eur ; 30(1): 10, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29629251

RESUMEN

BACKGROUND: Understanding the abundance of adverse environmental conditions e.g. frost, drought, and heat during critical crop growth stages, which are assumed to be altered by climate change, is crucial for an accurate risk assessment for cropping systems. While a lengthening of the vegetation period may be beneficial, higher frequencies of heat or frost events and drought spells are generally regarded as harmful. The objective of the present study was to quantify shifts in maize and wheat phenology and the occurrence of adverse environmental conditions during critical growth stages for four regions located in the North German Plain. First, a statistical analysis of phenological development was conducted based on recent data (1981-2010). Next, these data were used to calibrate the DSSAT-CERES wheat and maize models, which were then used to run three climate projections representing the maximum, intermediate and minimum courses of climate development within the RCP 8.5 continuum during the years 2021-2050. By means of model simulation runs and statistical analysis, the climate data were evaluated for the abundance of adverse environmental conditions during critical development stages, i.e. the stages of early crop development, anthesis, sowing and harvest. RESULTS: Proxies for adverse environmental conditions included thresholds of low and high temperatures as well as soil moisture. The comparison of the baseline climate and future climate projections showed a significant increase in the abundance of adverse environmental conditions during critical growth stages in the future. The lengthening of the vegetation period in spring did not compensate for the increased abundance of high temperatures, e.g. during anthesis. CONCLUSIONS: The results of this study indicate the need to develop adaptation strategies, such as implementing changes in cropping calendars. An increase in frost risk during early development, however, reveals the limited feasibility of early sowing as a mitigation strategy. In addition, the abundance of low soil water contents that hamper important production processes such as sowing and harvest were found to increase locally.

8.
Tree Physiol ; 37(4): 491-500, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27998974

RESUMEN

Trees experience low apoplastic water potential frequently in most environments. Low apoplastic water potential increases the risk of embolism formation in xylem conduits and creates dehydration stress for the living cells. We studied the magnitude and rate of xylem diameter change in response to decreasing apoplastic water potential and the role of living parenchyma cells in it to better understand xylem diameter changes in different environmental conditions. We compared responses of control and heat-injured xylem of Pinus sylvestris (L.) and Populus tremula (L.) branches to decreasing apoplastic water potential created by osmotic stress, desiccation and freezing. It was shown that xylem in control branches shrank more in response to decreasing apoplastic water potential in comparison with the samples that were preheated to damage living xylem parenchyma. By manipulating the osmotic pressure of the xylem sap, we observed xylem shrinkage due to decreasing apoplastic water potential even in the absence of water tension within the conduits. These results indicate that decreasing apoplastic water potential led to withdrawal of intracellular water from the xylem parenchyma, causing tissue shrinkage. The amount of xylem shrinkage per decrease in apoplastic water potential was higher during osmotic stress or desiccation compared with freezing. During desiccation, xylem diameter shrinkage involved both dehydration-related shrinkage of xylem parenchyma and water tension-induced shrinkage of conduits, whereas dehydration-related shrinkage of xylem parenchyma was accompanied by swelling of apoplastic ice during freezing. It was also shown that the exchange of water between symplast and apoplast within xylem is clearly faster than previously reported between the phloem and the xylem. Time constant of xylem shrinkage was 40 and 2 times higher during osmotic stress than during freezing stress in P. sylvestris and P. tremula, respectively. Finally, it was concluded that the amount of water stored in the xylem parenchyma is an important reservoir for trees to buffer daily fluctuations in water relations.


Asunto(s)
Desecación , Congelación , Pinus sylvestris/fisiología , Populus/fisiología , Estrés Fisiológico , Xilema/fisiología , Presión Osmótica , Agua/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA