Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.481
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2304704121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38593073

RESUMEN

Childhood maltreatment (CM) leads to a lifelong susceptibility to mental ill-health which might be reflected by its effects on adult brain structure, perhaps indirectly mediated by its effects on adult metabolic, immune, and psychosocial systems. Indexing these systemic factors via body mass index (BMI), C-reactive protein (CRP), and rates of adult trauma (AT), respectively, we tested three hypotheses: (H1) CM has direct or indirect effects on adult trauma, BMI, and CRP; (H2) adult trauma, BMI, and CRP are all independently related to adult brain structure; and (H3) childhood maltreatment has indirect effects on adult brain structure mediated in parallel by BMI, CRP, and AT. Using path analysis and data from N = 116,887 participants in UK Biobank, we find that CM is related to greater BMI and AT levels, and that these two variables mediate CM's effects on CRP [H1]. Regression analyses on the UKB MRI subsample (N = 21,738) revealed that greater CRP and BMI were both independently related to a spatially convergent pattern of cortical effects (Spearman's ρ = 0.87) characterized by fronto-occipital increases and temporo-parietal reductions in thickness. Subcortically, BMI was associated with greater volume, AT with lower volume and CPR with effects in both directions [H2]. Finally, path models indicated that CM has indirect effects in a subset of brain regions mediated through its direct effects on BMI and AT and indirect effects on CRP [H3]. Results provide evidence that childhood maltreatment can influence brain structure decades after exposure by increasing individual risk toward adult trauma, obesity, and inflammation.


Asunto(s)
Encéfalo , Maltrato a los Niños , Adulto , Humanos , Niño , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Proteína C-Reactiva/metabolismo , Inflamación/metabolismo , Obesidad/complicaciones , Maltrato a los Niños/psicología
2.
J Neurosci ; 44(32)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844342

RESUMEN

Sleep slow waves are the hallmark of deeper non-rapid eye movement sleep. It is generally assumed that gray matter properties predict slow-wave density, morphology, and spectral power in healthy adults. Here, we tested the association between gray matter volume (GMV) and slow-wave characteristics in 27 patients with moderate-to-severe traumatic brain injury (TBI, 32.0 ± 12.2 years old, eight women) and compared that with 32 healthy controls (29.2 ± 11.5 years old, nine women). Participants underwent overnight polysomnography and cerebral MRI with a 3 Tesla scanner. A whole-brain voxel-wise analysis was performed to compare GMV between groups. Slow-wave density, morphology, and spectral power (0.4-6 Hz) were computed, and GMV was extracted from the thalamus, cingulate, insula, precuneus, and orbitofrontal cortex to test the relationship between slow waves and gray matter in regions implicated in the generation and/or propagation of slow waves. Compared with controls, TBI patients had significantly lower frontal and temporal GMV and exhibited a subtle decrease in slow-wave frequency. Moreover, higher GMV in the orbitofrontal cortex, insula, cingulate cortex, and precuneus was associated with higher slow-wave frequency and slope, but only in healthy controls. Higher orbitofrontal GMV was also associated with higher slow-wave density in healthy participants. While we observed the expected associations between GMV and slow-wave characteristics in healthy controls, no such associations were observed in the TBI group despite lower GMV. This finding challenges the presumed role of GMV in slow-wave generation and morphology.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Sustancia Gris , Imagen por Resonancia Magnética , Sueño de Onda Lenta , Humanos , Femenino , Masculino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/fisiopatología , Adulto , Sueño de Onda Lenta/fisiología , Lesiones Traumáticas del Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/patología , Adulto Joven , Polisomnografía , Corteza Cerebral/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Persona de Mediana Edad , Lesiones Encefálicas/fisiopatología , Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/patología
3.
J Neurosci ; 44(12)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38388427

RESUMEN

Individual differences in cognitive performance in childhood are a key predictor of significant life outcomes such as educational attainment and mental health. Differences in cognitive ability are governed in part by variations in brain structure. However, studies commonly focus on either gray or white matter metrics in humans, leaving open the key question as to whether gray or white matter microstructure plays distinct or complementary roles supporting cognitive performance. To compare the role of gray and white matter in supporting cognitive performance, we used regularized structural equation models to predict cognitive performance with gray and white matter measures. Specifically, we compared how gray matter (volume, cortical thickness, and surface area) and white matter measures (volume, fractional anisotropy, and mean diffusivity) predicted individual differences in cognitive performance. The models were tested in 11,876 children (ABCD Study; 5,680 female, 6,196 male) at 10 years old. We found that gray and white matter metrics bring partly nonoverlapping information to predict cognitive performance. The models with only gray or white matter explained respectively 15.4 and 12.4% of the variance in cognitive performance, while the combined model explained 19.0%. Zooming in, we additionally found that different metrics within gray and white matter had different predictive power and that the tracts/regions that were most predictive of cognitive performance differed across metrics. These results show that studies focusing on a single metric in either gray or white matter to study the link between brain structure and cognitive performance are missing a key part of the equation.


Asunto(s)
Sustancia Blanca , Niño , Humanos , Masculino , Femenino , Sustancia Blanca/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Cognición
4.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38584086

RESUMEN

Machine learning is an emerging tool in clinical psychology and neuroscience for the individualized prediction of psychiatric symptoms. However, its application in non-clinical populations is still in its infancy. Given the widespread morphological changes observed in psychiatric disorders, our study applies five supervised machine learning regression algorithms-ridge regression, support vector regression, partial least squares regression, least absolute shrinkage and selection operator regression, and Elastic-Net regression-to predict anxiety and depressive symptom scores. We base these predictions on the whole-brain gray matter volume in a large non-clinical sample (n = 425). Our results demonstrate that machine learning algorithms can effectively predict individual variability in anxiety and depressive symptoms, as measured by the Mood and Anxiety Symptoms Questionnaire. The most discriminative features contributing to the prediction models were primarily located in the prefrontal-parietal, temporal, visual, and sub-cortical regions (e.g. amygdala, hippocampus, and putamen). These regions showed distinct patterns for anxious arousal and high positive affect in three of the five models (partial least squares regression, support vector regression, and ridge regression). Importantly, these predictions were consistent across genders and robust to demographic variability (e.g. age, parental education, etc.). Our findings offer critical insights into the distinct brain morphological patterns underlying specific components of anxiety and depressive symptoms, supporting the existing tripartite theory from a neuroimaging perspective.


Asunto(s)
Depresión , Sustancia Gris , Humanos , Masculino , Femenino , Sustancia Gris/diagnóstico por imagen , Depresión/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Ansiedad/diagnóstico por imagen , Ansiedad/psicología , Afecto
5.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37955636

RESUMEN

Although proline-rich transmembrane protein 2 is the primary causative gene of paroxysmal kinesigenic dyskinesia, its effects on the brain structure of paroxysmal kinesigenic dyskinesia patients are not yet clear. Here, we explored the influence of proline-rich transmembrane protein 2 mutations on similarity-based gray matter morphological networks in individuals with paroxysmal kinesigenic dyskinesia. A total of 51 paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations, 55 paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, and 80 healthy controls participated in the study. We analyzed the structural connectome characteristics across groups by graph theory approaches. Relative to paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation and healthy controls, paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations exhibited a notable increase in characteristic path length and a reduction in both global and local efficiency. Relative to healthy controls, both patient groups showed reduced nodal metrics in right postcentral gyrus, right angular, and bilateral thalamus; Relative to healthy controls and paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations showed almost all reduced nodal centralities and structural connections in cortico-basal ganglia-thalamo-cortical circuit including bilateral supplementary motor area, bilateral pallidum, and right caudate nucleus. Finally, we used support vector machine by gray matter network matrices to classify paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations and paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, achieving an accuracy of 73%. These results show that proline-rich transmembrane protein 2 related gray matter network deficits may contribute to paroxysmal kinesigenic dyskinesia, offering new insights into its pathophysiological mechanisms.


Asunto(s)
Distonía , Sustancia Gris , Humanos , Sustancia Gris/diagnóstico por imagen , Mutación , Distonía/diagnóstico por imagen , Distonía/genética , Encéfalo/diagnóstico por imagen , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética
6.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38342690

RESUMEN

Migraine without aura is a multidimensional neurological disorder characterized by sensory, emotional, and cognitive symptoms linked to structural and functional abnormalities in the anterior cingulate cortex. Anterior cingulate cortex subregions play differential roles in the clinical symptoms of migraine without aura; however, the specific patterns and mechanisms remain unclear. In this study, voxel-based morphometry and seed-based functional connectivity were used to investigate structural and functional alterations in the anterior cingulate cortex subdivisions in 50 patients with migraine without aura and 50 matched healthy controls. Compared with healthy controls, patients exhibited (1) decreased gray matter volume in the subgenual anterior cingulate cortex, (2) increased functional connectivity between the bilateral subgenual anterior cingulate cortex and right middle frontal gyrus, and between the posterior part of anterior cingulate cortex and right middle frontal gyrus, orbital part, and (3) decreased functional connectivity between the anterior cingulate cortex and left anterior cingulate and paracingulate gyri. Notably, left subgenual anterior cingulate cortex was correlated with the duration of each attack, whereas the right subgenual anterior cingulate cortex was associated with migraine-specific quality-of-life questionnaire (emotion) and self-rating anxiety scale scores. Our findings provide new evidence supporting the hypothesis of abnormal anterior cingulate cortex subcircuitry, revealing structural and functional abnormalities in its subregions and emphasizing the potential involvement of the left subgenual anterior cingulate cortex-related pain sensation subcircuit and right subgenual anterior cingulate cortex -related pain emotion subcircuit in migraine.


Asunto(s)
Giro del Cíngulo , Migraña sin Aura , Humanos , Giro del Cíngulo/diagnóstico por imagen , Migraña sin Aura/diagnóstico por imagen , Corteza Cerebral , Dolor/diagnóstico por imagen , Emociones , Imagen por Resonancia Magnética/métodos
7.
Proc Natl Acad Sci U S A ; 119(49): e2207181119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36459652

RESUMEN

Aging is characterized by a progressive loss of brain volume at an estimated rate of 5% per decade after age 40. While these morphometric changes, especially those affecting gray matter and atrophy of the temporal lobe, are predictors of cognitive performance, the strong association with aging obscures the potential parallel, but more specific role, of individual subject physiology. Here, we studied a cohort of 554 human subjects who were monitored using structural MRI scans and blood immune protein concentrations. Using machine learning, we derived a cytokine clock (CyClo), which predicted age with good accuracy (Mean Absolute Error = 6 y) based on the expression of a subset of immune proteins. These proteins included, among others, Placenta Growth Factor (PLGF) and Vascular Endothelial Growth Factor (VEGF), both involved in angiogenesis, the chemoattractant vascular cell adhesion molecule 1 (VCAM-1), the canonical inflammatory proteins interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα), the chemoattractant IP-10 (CXCL10), and eotaxin-1 (CCL11), previously involved in brain disorders. Age, sex, and the CyClo were independently associated with different functionally defined cortical networks in the brain. While age was mostly correlated with changes in the somatomotor system, sex was associated with variability in the frontoparietal, ventral attention, and visual networks. Significant canonical correlation was observed for the CyClo and the default mode, limbic, and dorsal attention networks, indicating that immune circulating proteins preferentially affect brain processes such as focused attention, emotion, memory, response to social stress, internal evaluation, and access to consciousness. Thus, we identified immune biomarkers of brain aging which could be potential therapeutic targets for the prevention of age-related cognitive decline.


Asunto(s)
Encéfalo , Factor A de Crecimiento Endotelial Vascular , Humanos , Adulto , Atrofia , Encéfalo/diagnóstico por imagen , Envejecimiento , Investigadores , Citocinas
8.
Pflugers Arch ; 476(8): 1235-1247, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38856775

RESUMEN

To assess the possible interactions between the dorsolateral periaqueductal gray matter (dlPAG) and the different domains of the nucleus ambiguus (nA), we have examined the pattern of double-staining c-Fos/FoxP2 protein immunoreactivity (c-Fos-ir/FoxP2-ir) and tyrosine hydroxylase (TH) throughout the rostrocaudal extent of nA in spontaneously breathing anaesthetised male Sprague-Dawley rats during dlPAG electrical stimulation. Activation of the dlPAG elicited a selective increase in c-Fos-ir with an ipsilateral predominance in the somatas of the loose (p < 0.05) and compact formation (p < 0.01) within the nA and confirmed the expression of FoxP2 bilaterally in all the domains within the nA. A second group of experiments was made to examine the importance of the dlPAG in modulating the laryngeal response evoked after electrical or chemical (glutamate) dlPAG stimulations. Both electrical and chemical stimulations evoked a significant decrease in laryngeal resistance (subglottal pressure) (p < 0.001) accompanied with an increase in respiratory rate together with a pressor and tachycardic response. The results of our study contribute to new data on the role of the mesencephalic neuronal circuits in the control mechanisms of subglottic pressure and laryngeal activity.


Asunto(s)
Estimulación Eléctrica , Laringe , Sustancia Gris Periacueductal , Proteínas Proto-Oncogénicas c-fos , Ratas Sprague-Dawley , Animales , Masculino , Ratas , Sustancia Gris Periacueductal/metabolismo , Sustancia Gris Periacueductal/fisiología , Estimulación Eléctrica/métodos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Laringe/fisiología , Laringe/metabolismo , Factores de Transcripción Forkhead/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Presión , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/fisiología , Ácido Glutámico/metabolismo
9.
Pflugers Arch ; 476(11): 1743-1760, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39218820

RESUMEN

Ulcerative colitis has been associated with psychological distress and an aberrant immune response. The immunomodulatory role of systemic cytokines produced during experimental intestinal inflammation in tonic immobility (TI) defensive behavior remains unknown. The present study characterized the TI defensive behavior of guinea pigs subjected to colitis induction at the acute stage and after recovery from intestinal mucosa injury. Moreover, we investigated whether inflammatory mediators (tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-8, IL-10, and prostaglandins) act on the mesencephalic nucleus, periaqueductal gray matter (PAG). Colitis was induced in guinea pigs by intrarectal administration of acetic acid. The TI defensive behavior, histology, cytokine production, and expression of c-FOS, IBA-1, and cyclooxygenase (COX)-2 in PAG were evaluated. Colitis reduced the duration of TI episodes from the first day, persisting throughout the 7-day experimental period. Neuronal c-FOS immunoreactivity was augmented in both columns of the PAG (ventrolateral (vlPAG) and dorsal), but there were no changes in IBA-1 expression. Dexamethasone, infliximab, and parecoxib treatments increased the duration of TI episodes, suggesting a modulatory role of peripheral inflammatory mediators in this behavior. Immunoneutralization of TNF-α, IL-1ß, and IL-8 in the vlPAG reversed all effects produced by colitis. In contrast, IL-10 neutralization further reduced the duration of TI episodes. Our results reveal that peripherally produced inflammatory mediators during colitis may modulate neuronal functioning in mesencephalic structures such as vlPAG.


Asunto(s)
Colitis , Animales , Masculino , Cobayas , Colitis/metabolismo , Colitis/inducido químicamente , Colitis/inmunología , Pérdida de Tono Postural , Sustancia Gris Periacueductal/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Citocinas/metabolismo , Dexametasona/farmacología , Ciclooxigenasa 2/metabolismo , Infliximab/farmacología , Infliximab/uso terapéutico , Modelos Animales de Enfermedad
10.
Neuroimage ; 297: 120716, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38955254

RESUMEN

MAO-A catalyzes the oxidative degradation of monoamines and is thus implicated in sex-specific neuroplastic processes that influence gray matter (GM) density (GMD) and microstructure (GMM). Given the exact monitoring of plasma hormone levels and sex steroid intake, transgender individuals undergoing gender-affirming hormone therapy (GHT) represent a valuable cohort to potentially investigate sex steroid-induced changes of GM and concomitant MAO-A density. Here, we investigated the effects of GHT over a median time period of 4.5 months on GMD and GMM as well as MAO-A distribution volume. To this end, 20 cisgender women, 11 cisgender men, 20 transgender women and 10 transgender men underwent two MRI scans in a longitudinal design. PET scans using [11C]harmine were performed before each MRI session in a subset of 35 individuals. GM changes determined by diffusion weighted imaging (DWI) metrics for GMM and voxel based morphometry (VBM) for GMD were estimated using repeated measures ANOVA. Regions showing significant changes of both GMM and GMD were used for the subsequent analysis of MAO-A density. These involved the fusiform gyrus, rolandic operculum, inferior occipital cortex, middle and anterior cingulum, bilateral insula, cerebellum and the lingual gyrus (post-hoc tests: pFWE+Bonferroni < 0.025). In terms of MAO-A distribution volume, no significant effects were found. Additionally, the sexual desire inventory (SDI) was applied to assess GHT-induced changes in sexual desire, showing an increase of SDI scores among transgender men. Changes in the GMD of the bilateral insula showed a moderate correlation to SDI scores (rho = - 0.62, pBonferroni = 0.047). The present results are indicative of a reliable influence of gender-affirming hormone therapy on 1) GMD and GMM following an interregional pattern and 2) sexual desire specifically among transgender men.


Asunto(s)
Sustancia Gris , Monoaminooxidasa , Tomografía de Emisión de Positrones , Personas Transgénero , Humanos , Sustancia Gris/efectos de los fármacos , Sustancia Gris/diagnóstico por imagen , Masculino , Adulto , Femenino , Monoaminooxidasa/sangre , Monoaminooxidasa/metabolismo , Adulto Joven , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Estudios Longitudinales
11.
Neuroimage ; 285: 120499, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38097055

RESUMEN

Anxious depression is a common subtype of major depressive disorder (MDD) associated with adverse outcomes and severely impaired social function. It is important to clarify the underlying neurobiology of anxious depression to refine the diagnosis and stratify patients for therapy. Here we explored associations between anxiety and brain structure/function in MDD patients. A total of 260 MDD patients and 127 healthy controls underwent three-dimensional T1-weighted structural scanning and resting-state functional magnetic resonance imaging. Demographic data were collected from all participants. Differences in gray matter volume (GMV), (fractional) amplitude of low-frequency fluctuation ((f)ALFF), regional homogeneity (ReHo), and seed point-based functional connectivity were compared between anxious MDD patients, non-anxious MDD patients, and healthy controls. A random forest model was used to predict anxiety in MDD patients using neuroimaging features. Anxious MDD patients showed significant differences in GMV in the left middle temporal gyrus and ReHo in the right superior parietal gyrus and the left precuneus than HCs. Compared with non-anxious MDD patients, patients with anxious MDD showed significantly different GMV in the left inferior temporal gyrus, left superior temporal gyrus, left superior frontal gyrus (orbital part), and left dorsolateral superior frontal gyrus; fALFF in the left middle temporal gyrus; ReHo in the inferior temporal gyrus and the superior frontal gyrus (orbital part); and functional connectivity between the left superior temporal gyrus(temporal pole) and left medial superior frontal gyrus. A diagnostic predictive random forest model built using imaging features and validated by 10-fold cross-validation distinguished anxious from non-anxious MDD with an AUC of 0.802. Patients with anxious depression exhibit dysregulation of brain regions associated with emotion regulation, cognition, and decision-making, and our diagnostic model paves the way for more accurate, objective clinical diagnosis of anxious depression.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Depresión , Imagen por Resonancia Magnética/métodos , Encéfalo , Neuroimagen , Aprendizaje Automático
12.
Neurobiol Dis ; : 106693, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368669

RESUMEN

INTRODUCTION: Peripheral cytokine levels may affect specific brain volumes. Few studies have examined this possible relationship. OBJECTIVE: In a case-control study, we used magnetic resonance imaging (MRI) voxel-based morphological analysis techniques to examine the relationship between gray matter volume changes and cognitive, motor and emotional dysfunction as well as between gray matter volume changes and peripheral blood cytokine levels. METHOD: A total of 134 subjects, comprising 66 PD patients and 68 healthy controls, were recruited. Peripheral venous blood was collected to measure the concentrations of 12 cytokines, including IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17, IFN-α, IFN-γ, and TNF-α. All the subjects also underwent MRI, where 3D-T1-weighted MR images were used for the analysis. In addition, the Montreal Cognitive Assessment (MoCA), Mini-Mental Status Examination (MMSE), Unified Parkinson's disease Rating Scale (UPDRS), Hamilton Anxiety Scale (HAMA), and Hamilton Depression Scale (HAMD) scores were assessed in PD patients. Statistical parameter mapping 12 software was used for the statistical analysis of the images. RESULT: Compared with control patients, PD patients presented decreased gray matter volume (GMV) in the bilateral frontal lobe, temporal lobe, parietal lobe, occipital lobe, insula, and right cerebellar lobule VIII. Regional GMV in the temporal lobe, parietal lobe, and cerebellum was correlated with MoCA, MMSE, UPDRS, HAMA, and HAMD scores in PDs. In addition, the regional GMV in PDs was correlated with the concentrations of cytokines, including IL-4, IL-6, IFN-γ, and TNF-α. The IL-6 concentration was negatively correlated with the UPDRS-IV score. CONCLUSION: PD patients exhibit gray matter atrophy in a wide range of brain regions, which are symmetrically distributed and mainly concentrated in the frontal and temporal lobes, and these changes may be linked to motor disorders and neuropsychiatric manifestations. Cytokine concentrations in peripheral blood are correlated with regional gray matter volume in PDs, and the IL-6 level affects gray matter volume in the left precentral gyrus and the manifestation of motor complications.

13.
Neurobiol Dis ; 193: 106464, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452948

RESUMEN

Neuroinflammation contributes to the pathology and progression of Alzheimer's disease (AD), and it can be observed even with mild cognitive impairment (MCI), a prodromal phase of AD. Free water (FW) imaging estimates the extracellular water content and has been used to study neuroinflammation across several neurological diseases including AD. Recently, the role of gut microbiota has been implicated in the pathogenesis of AD. The relationship between FW imaging and gut microbiota was examined in patients with AD and MCI. Fifty-six participants underwent neuropsychological assessments, FW imaging, and gut microbiota analysis targeting the bacterial 16S rRNA gene. They were categorized into the cognitively normal control (NC) (n = 19), MCI (n = 19), and AD (n = 18) groups according to the neuropsychological assessments. The correlations of FW values, neuropsychological assessment scores, and the relative abundance of gut microbiota were analyzed. FW was higher in several white matter tracts and in gray matter regions, predominantly the frontal, temporal, limbic and paralimbic regions in the AD/MCI group than in the NC group. In the AD/MCI group, higher FW values in the temporal (superior temporal and temporal pole), limbic and paralimbic (insula, hippocampus and amygdala) regions were the most associated with worse neuropsychological assessment scores. In the AD/MCI group, FW values in these regions were negatively correlated with the relative abundances of butyrate-producing genera Anaerostipes, Lachnospiraceae UCG-004, and [Ruminococcus] gnavus group, which showed a significant decreasing trend in the order of the NC, MCI, and AD groups. The present study showed that increased FW in the gray matter regions related to cognitive impairment was associated with low abundances of butyrate producers in the AD/MCI group. These findings suggest an association between neuroinflammation and decreased levels of the short-chain fatty acid butyrate that is one of the major gut microbial metabolites having a potentially beneficial role in brain homeostasis.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Microbioma Gastrointestinal , Humanos , Sustancia Gris/patología , Enfermedad de Alzheimer/patología , Butiratos , Enfermedades Neuroinflamatorias , ARN Ribosómico 16S , Disfunción Cognitiva/patología , Imagen por Resonancia Magnética
14.
Am J Physiol Heart Circ Physiol ; 327(4): H847-H858, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39120466

RESUMEN

Cerebrovascular and neurological diseases exhibit sex-specific patterns in prevalence, severity, and regional specificity, some of which are associated with altered cerebral blood flow (CBF). Females often exhibit higher resting CBF, but understanding the impact of sex per se on CBF is hampered by study variability in age, comorbidities, medications, and control for menstrual cycle or hormone therapies. A majority of studies report whole brain CBF without differentiating between gray and white matter or without assessing regional CBF. Thus fundamental sex differences in regional or whole brain CBF remain unclarified. While controlling for the above confounders, we tested the hypothesis that females will exhibit higher total gray and white matter perfusion as well as regional gray matter perfusion. Adults 18-30 yr old (females = 22 and males = 26) were studied using arterial spin labeling (ASL) magnetic resonance imaging (MRI) scans followed by computational anatomy toolbox (CAT12) analysis in statistical parametric mapping (SPM12) to quantify CBF relative to brain volume. Females displayed 40% higher perfusion globally (females = 62 ± 9 and males = 45 ± 10 mL/100 g/min, P < 0.001), gray matter (females = 75 ± 11 and males = 54 ± 12 mL/100 g/min, P < 0.001), and white matter (females = 44 ± 6 and males = 32 ± 7 mL/100 g/min, P < 0.001). Females exhibited greater perfusion than males in 67 of the 68 regions tested, ranging from 14% to 66% higher. A second MRI approach (4-dimensional flow) focused on large arteries confirmed the sex difference in global CBF. These data indicate strikingly higher basal CBF in females at global, gray, and white matter levels and across dozens of brain regions and offer new clarity into fundamental sex differences in global and regional CBF regulation before aging or pathology.NEW & NOTEWORTHY MRI used to measure cerebral blood flow (CBF) in gray matter, white matter, and 68 regions in healthy men and women. This study demonstrated that CBF is 40% higher in women, the highest sex difference reported, when controlling for numerous important clinical confounders like age, smoking, menstrual cycle, comorbidities, and medications.


Asunto(s)
Circulación Cerebrovascular , Sustancia Gris , Imagen por Resonancia Magnética , Sustancia Blanca , Humanos , Femenino , Masculino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/irrigación sanguínea , Adulto , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/irrigación sanguínea , Adulto Joven , Adolescente , Factores Sexuales , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Voluntarios Sanos
15.
Hum Brain Mapp ; 45(13): e70020, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39225128

RESUMEN

Hemispherotomy is an effective surgery for treating refractory epilepsy from diffuse unihemispheric lesions. To date, postsurgery neuroplastic changes supporting behavioral recovery after left or right hemispherotomy remain unclear. In the present study, we systematically investigated changes in gray matter volume (GMV) before and after surgery and further analyzed their relationships with behavioral scores in two large groups of pediatric patients with left and right hemispherotomy (29 left and 28 right). To control for the dramatic developmental effect during this stage, age-adjusted GMV within unaffected brain regions was derived voxel by voxel using a normative modeling approach with an age-matched reference cohort of 2115 healthy children. Widespread GMV increases in the contralateral cerebrum and ipsilateral cerebellum and GMV decreases in the contralateral cerebellum were consistently observed in both patient groups, but only the left hemispherotomy patients showed GMV decreases in the contralateral cingulate gyrus. Intriguingly, the GMV decrease in the contralateral cerebellum was significantly correlated with improvement in behavioral scores in the right but not the left hemispherotomy patients. Importantly, the preoperative voxelwise GMV features can be used to significantly predict postoperative behavioral scores in both patient groups. These findings indicate an important role of the contralateral cerebellum in the behavioral recovery following right hemispherotomy and highlight the predictive potential of preoperative imaging features in postoperative behavioral performance.


Asunto(s)
Epilepsia Refractaria , Sustancia Gris , Hemisferectomía , Imagen por Resonancia Magnética , Humanos , Hemisferectomía/métodos , Femenino , Masculino , Niño , Preescolar , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/cirugía , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/patología , Adolescente , Cerebelo/diagnóstico por imagen , Cerebelo/cirugía , Cerebelo/patología , Plasticidad Neuronal/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Encéfalo/patología , Lateralidad Funcional/fisiología
16.
Hum Brain Mapp ; 45(11): e26754, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39046031

RESUMEN

Only a small number of studies have assessed structural differences between the two hemispheres during childhood and adolescence. However, the existing findings lack consistency or are restricted to a particular brain region, a specific brain feature, or a relatively narrow age range. Here, we investigated associations between brain asymmetry and age as well as sex in one of the largest pediatric samples to date (n = 4265), aged 1-18 years, scanned at 69 sites participating in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our study revealed that significant brain asymmetries already exist in childhood, but their magnitude and direction depend on the brain region examined and the morphometric measurement used (cortical volume or thickness, regional surface area, or subcortical volume). With respect to effects of age, some asymmetries became weaker over time while others became stronger; sometimes they even reversed direction. With respect to sex differences, the total number of regions exhibiting significant asymmetries was larger in females than in males, while the total number of measurements indicating significant asymmetries was larger in males (as we obtained more than one measurement per cortical region). The magnitude of the significant asymmetries was also greater in males. However, effect sizes for both age effects and sex differences were small. Taken together, these findings suggest that cerebral asymmetries are an inherent organizational pattern of the brain that manifests early in life. Overall, brain asymmetry appears to be relatively stable throughout childhood and adolescence, with some differential effects in males and females.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Caracteres Sexuales , Humanos , Adolescente , Masculino , Niño , Femenino , Preescolar , Lactante , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Encéfalo/anatomía & histología , Factores de Edad , Desarrollo Infantil/fisiología , Lateralidad Funcional/fisiología , Desarrollo del Adolescente/fisiología
17.
Hum Brain Mapp ; 45(5): e26589, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38530121

RESUMEN

BACKGROUND: Prior research has shown smaller cortical and subcortical gray matter volumes among individuals with attention-deficit/hyperactivity disorder (ADHD). However, neuroimaging studies often do not differentiate between inattention and hyperactivity/impulsivity, which are distinct core features of ADHD. The present study uses an approach to disentangle overlapping variance to examine the neurostructural heterogeneity of inattention and hyperactivity/impulsivity dimensions. METHODS: We analyzed data from 10,692 9- to 10-year-old children from the Adolescent Brain Cognitive Development (ABCD) Study. Confirmatory factor analysis was used to derive factors representing inattentive and hyperactive/impulsive traits. We employed structural equation modeling to examine these factors' associations with gray matter volume while controlling for the shared variance between factors. RESULTS: Greater endorsement of inattentive traits was associated with smaller bilateral caudal anterior cingulate and left parahippocampal volumes. Greater endorsement of hyperactivity/impulsivity traits was associated with smaller bilateral caudate and left parahippocampal volumes. The results were similar when accounting for socioeconomic status, medication, and in-scanner motion. The magnitude of these findings increased when accounting for overall volume and intracranial volume, supporting a focal effect in our results. CONCLUSIONS: Inattentive and hyperactivity/impulsivity traits show common volume deficits in regions associated with visuospatial processing and memory while at the same time showing dissociable differences, with inattention showing differences in areas associated with attention and emotion regulation and hyperactivity/impulsivity associated with volume differences in motor activity regions. Uncovering such biological underpinnings within the broader disorder of ADHD allows us to refine our understanding of ADHD presentations.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Niño , Adolescente , Humanos , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Corteza Cerebral , Cognición , Conducta Impulsiva
18.
Hum Brain Mapp ; 45(1): e26553, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38224541

RESUMEN

22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.


Asunto(s)
Síndrome de DiGeorge , Trastornos Psicóticos , Femenino , Humanos , Adolescente , Masculino , Síndrome de DiGeorge/diagnóstico por imagen , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Trastornos Psicóticos/complicaciones , Sustancia Gris/diagnóstico por imagen
19.
Hum Brain Mapp ; 45(5): e26656, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38530116

RESUMEN

Gray matter (GM) atrophy and white matter (WM) lesions may contribute to cognitive decline in patients with delayed neurological sequelae (DNS) after carbon monoxide (CO) poisoning. However, there is currently a lack of evidence supporting this relationship. This study aimed to investigate the volume of GM, cortical thickness, and burden of WM lesions in 33 DNS patients with dementia, 24 DNS patients with mild cognitive impairment, and 51 healthy controls. Various methods, including voxel-based, deformation-based, surface-based, and atlas-based analyses, were used to examine GM structures. Furthermore, we explored the connection between GM volume changes, WM lesions burden, and cognitive decline. Compared to the healthy controls, both patient groups exhibited widespread GM atrophy in the cerebral cortices (for volume and cortical thickness), subcortical nuclei (for volume), and cerebellum (for volume) (p < .05 corrected for false discovery rate [FDR]). The total volume of GM atrophy in 31 subregions, which included the default mode network (DMN), visual network (VN), and cerebellar network (CN) (p < .05, FDR-corrected), independently contributed to the severity of cognitive impairment (p < .05). Additionally, WM lesions impacted cognitive decline through both direct and indirect effects, with the latter mediated by volume reduction in 16 subregions of cognitive networks (p < .05). These preliminary findings suggested that both GM atrophy and WM lesions were involved in cognitive decline in DNS patients following CO poisoning. Moreover, the reduction in the volume of DMN, VN, and posterior CN nodes mediated the WM lesions-induced cognitive decline.


Asunto(s)
Intoxicación por Monóxido de Carbono , Disfunción Cognitiva , Sustancia Blanca , Humanos , Intoxicación por Monóxido de Carbono/complicaciones , Intoxicación por Monóxido de Carbono/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Atrofia , Progresión de la Enfermedad
20.
BMC Med ; 22(1): 271, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926881

RESUMEN

BACKGROUND: To evaluate the neurological alterations induced by Omicron infection, to compare brain changes in chronic insomnia with those in exacerbated chronic insomnia in Omicron patients, and to examine individuals without insomnia alongside those with new-onset insomnia. METHODS: In this study, a total of 135 participants were recruited between January 11 and May 4, 2023, including 26 patients with chronic insomnia without exacerbation, 24 patients with chronic insomnia with exacerbation, 40 patients with no sleep disorder, and 30 patients with new-onset insomnia after infection with Omicron (a total of 120 participants with different sleep statuses after infection), as well as 15 healthy controls who were never infected with Omicron. Neuropsychiatric data, clinical symptoms, and multimodal magnetic resonance imaging data were collected. The gray matter thickness and T1, T2, proton density, and perivascular space values were analyzed. Associations between changes in multimodal magnetic resonance imaging findings and neuropsychiatric data were evaluated with correlation analyses. RESULTS: Compared with healthy controls, gray matter thickness changes were similar in the patients who have and do not have a history of chronic insomnia groups after infection, including an increase in cortical thickness near the parietal lobe and a reduction in cortical thickness in the frontal, occipital, and medial brain regions. Analyses showed a reduced gray matter thickness in patients with chronic insomnia compared with those with an aggravation of chronic insomnia post-Omicron infection, and a reduction was found in the right medial orbitofrontal region (mean [SD], 2.38 [0.17] vs. 2.67 [0.29] mm; P < 0.001). In the subgroups of Omicron patients experiencing sleep deterioration, patients with a history of chronic insomnia whose insomnia symptoms worsened after infection displayed heightened medial orbitofrontal cortical thickness and increased proton density values in various brain regions. Conversely, patients with good sleep quality who experienced a new onset of insomnia after infection exhibited reduced cortical thickness in pericalcarine regions and decreased proton density values. In new-onset insomnia patients post-Omicron infection, the thickness in the right pericalcarine was negatively correlated with the Self-rating Anxiety Scale (r = - 0.538, P = 0.002, PFDR = 0.004) and Self-rating Depression Scale (r = - 0.406, P = 0.026, PFDR = 0.026) scores. CONCLUSIONS: These findings help us understand the pathophysiological mechanisms involved when Omicron invades the nervous system and induces various forms of insomnia after infection. In the future, we will continue to pay attention to the dynamic changes in the brain related to insomnia caused by Omicron infection.


Asunto(s)
COVID-19 , Imagen por Resonancia Magnética , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , COVID-19/complicaciones , COVID-19/diagnóstico por imagen , COVID-19/patología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Trastornos del Inicio y del Mantenimiento del Sueño/diagnóstico por imagen , Calidad del Sueño , SARS-CoV-2 , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen Multimodal/métodos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Anciano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA