Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.343
Filtrar
1.
Cell ; 179(4): 964-983.e31, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675502

RESUMEN

To elucidate the deregulated functional modules that drive clear cell renal cell carcinoma (ccRCC), we performed comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic characterization of treatment-naive ccRCC and paired normal adjacent tissue samples. Genomic analyses identified a distinct molecular subgroup associated with genomic instability. Integration of proteogenomic measurements uniquely identified protein dysregulation of cellular mechanisms impacted by genomic alterations, including oxidative phosphorylation-related metabolism, protein translation processes, and phospho-signaling modules. To assess the degree of immune infiltration in individual tumors, we identified microenvironment cell signatures that delineated four immune-based ccRCC subtypes characterized by distinct cellular pathways. This study reports a large-scale proteogenomic analysis of ccRCC to discern the functional impact of genomic alterations and provides evidence for rational treatment selection stemming from ccRCC pathobiology.


Asunto(s)
Carcinoma de Células Renales/genética , Proteínas de Neoplasias/genética , Proteogenómica , Transcriptoma/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Supervivencia sin Enfermedad , Exoma/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Genoma Humano/genética , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/inmunología , Fosforilación Oxidativa , Fosforilación/genética , Transducción de Señal/genética , Transcriptoma/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Secuenciación del Exoma
2.
Cell ; 171(4): 950-965.e28, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100075

RESUMEN

Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (TP53, ATRX, RB1) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types.


Asunto(s)
Sarcoma/genética , Adulto , Anciano , Anciano de 80 o más Años , Análisis por Conglomerados , Variaciones en el Número de Copia de ADN , Epigenómica , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Persona de Mediana Edad , Mutación , Sarcoma/diagnóstico , Sarcoma/patología , Adulto Joven
3.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38701421

RESUMEN

Cancer is a complex cellular ecosystem where malignant cells coexist and interact with immune, stromal and other cells within the tumor microenvironment (TME). Recent technological advancements in spatially resolved multiplexed imaging at single-cell resolution have led to the generation of large-scale and high-dimensional datasets from biological specimens. This underscores the necessity for automated methodologies that can effectively characterize molecular, cellular and spatial properties of TMEs for various malignancies. This study introduces SpatialCells, an open-source software package designed for region-based exploratory analysis and comprehensive characterization of TMEs using multiplexed single-cell data. The source code and tutorials are available at https://semenovlab.github.io/SpatialCells. SpatialCells efficiently streamlines the automated extraction of features from multiplexed single-cell data and can process samples containing millions of cells. Thus, SpatialCells facilitates subsequent association analyses and machine learning predictions, making it an essential tool in advancing our understanding of tumor growth, invasion and metastasis.


Asunto(s)
Análisis de la Célula Individual , Programas Informáticos , Microambiente Tumoral , Análisis de la Célula Individual/métodos , Humanos , Neoplasias/patología , Aprendizaje Automático , Biología Computacional/métodos
4.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36882021

RESUMEN

Immune checkpoint inhibitor (ICI) treatment has created the opportunity of improved outcome for patients with hepatocellular carcinoma (HCC). However, only a minority of HCC patients benefit from ICI treatment owing to poor treatment efficacy and safety concerns. There are few predictive factors that precisely stratify HCC responders to immunotherapy. In this study, we developed a tumour microenvironment risk (TMErisk) model to divide HCC patients into different immune subtypes and evaluated their prognosis. Our results indicated that virally mediated HCC patients who had more common tumour protein P53 (TP53) alterations with lower TMErisk scores were appropriate for ICI treatment. HCC patients with alcoholic hepatitis who more commonly harboured catenin beta 1 (CTNNB1) alterations with higher TMErisk scores could benefit from treatment with multi-tyrosine kinase inhibitors. The developed TMErisk model represents the first attempt to anticipate tumour tolerance of ICIs in the TME through the degree of immune infiltration in HCCs.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Microambiente Tumoral , Neoplasias Hepáticas/tratamiento farmacológico , Inmunoterapia
5.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38171932

RESUMEN

N6-methyladenosine (m6A) RNA methylation is the predominant epigenetic modification for mRNAs that regulates various cancer-related pathways. However, the prognostic significance of m6A modification regulators remains unclear in glioma. By integrating the TCGA lower-grade glioma (LGG) and glioblastoma multiforme (GBM) gene expression data, we demonstrated that both the m6A regulators and m6A-target genes were associated with glioma prognosis and activated various cancer-related pathways. Then, we paired m6A regulators and their target genes as m6A-related gene pairs (MGPs) using the iPAGE algorithm, among which 122 MGPs were significantly reversed in expression between LGG and GBM. Subsequently, we employed LASSO Cox regression analysis to construct an MGP signature (MrGPS) to evaluate glioma prognosis. MrGPS was independently validated in CGGA and GEO glioma cohorts with high accuracy in predicting overall survival. The average area under the receiver operating characteristic curve (AUC) at 1-, 3- and 5-year intervals were 0.752, 0.853 and 0.831, respectively. Combining clinical factors of age and radiotherapy, the AUC of MrGPS was much improved to around 0.90. Furthermore, CIBERSORT and TIDE algorithms revealed that MrGPS is indicative for the immune infiltration level and the response to immune checkpoint inhibitor therapy in glioma patients. In conclusion, our study demonstrated that m6A methylation is a prognostic factor for glioma and the developed prognostic model MrGPS holds potential as a valuable tool for enhancing patient management and facilitating accurate prognosis assessment in cases of glioma.


Asunto(s)
Glioblastoma , Glioma , Humanos , Glioma/genética , Adenina , Adenosina/genética
6.
Int Immunol ; 36(1): 17-32, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37878760

RESUMEN

Chronic obstructive pulmonary disease (COPD) is closely related to innate and adaptive inflammatory immune responses. It is increasingly becoming evident that metabolic syndrome (MetS) affects a significant portion of COPD patients. Through this investigation, we identify shared immune-related candidate biological markers. The Weighted Gene Co-Expression Network Analysis (WGCNA) was utilized to reveal the co-expression modules linked to COPD and MetS. The commonly expressed genes in the COPD and MetS were utilized to conduct an enrichment analysis. We adopted machine-learning to screen and validate hub genes. We also assessed the relationship between hub genes and immune cell infiltration in COPD and MetS, respectively. Moreover, associations across hub genes and metabolic pathways were also explored. Finally, we chose a single-cell RNA sequencing (scRNA-seq) dataset to investigate the hub genes and shared mechanisms at the level of the cells. We also applied cell trajectory analysis and cell-cell communication analysis to focus on the vital immune cell we were interested in. As a result, we selected and validated 13 shared hub genes for COPD and MetS. The enrichment analysis and immune infiltration analysis illustrated strong associations between hub genes and immunology. Additionally, we applied metabolic pathway enrichment analysis, indicating the significant role of reactive oxygen species (ROS) in COPD with MetS. Through scRNA-seq analysis, we found that ROS might accumulate the most in the alveolar macrophages. In conclusion, the 13 hub genes related to the immune response and metabolism may serve as diagnostic biomarkers and treatment targets of COPD with MetS.


Asunto(s)
Síndrome Metabólico , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Síndrome Metabólico/genética , Especies Reactivas de Oxígeno , Comunicación Celular , Enfermedad Pulmonar Obstructiva Crónica/genética , Análisis de Secuencia de ARN
7.
Hum Genomics ; 18(1): 65, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886862

RESUMEN

BACKGROUND: Human cytomegalovirus (HCMV) is a herpesvirus that can infect various cell types and modulate host gene expression and immune response. It has been associated with the pathogenesis of various cancers, but its molecular mechanisms remain elusive. METHODS: We comprehensively analyzed the expression of HCMV pathway genes across 26 cancer types using the Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. We also used bioinformatics tools to study immune invasion and tumor microenvironment in pan-cancer. Cox regression and machine learning were used to analyze prognostic genes and their relationship with drug sensitivity. RESULTS: We found that HCMV pathway genes are widely expressed in various cancers. Immune infiltration and the tumor microenvironment revealed that HCMV is involved in complex immune processes. We obtained prognostic genes for 25 cancers and significantly found 23 key genes in the HCMV pathway, which are significantly enriched in cellular chemotaxis and synaptic function and may be involved in disease progression. Notably, CaM family genes were up-regulated and AC family genes were down-regulated in most tumors. These hub genes correlate with sensitivity or resistance to various drugs, suggesting their potential as therapeutic targets. CONCLUSIONS: Our study has revealed the role of the HCMV pathway in various cancers and provided insights into its molecular mechanism and therapeutic significance. It is worth noting that the key genes of the HCMV pathway may open up new doors for cancer prevention and treatment.


Asunto(s)
Biología Computacional , Citomegalovirus , Neoplasias , Microambiente Tumoral , Humanos , Citomegalovirus/genética , Citomegalovirus/patogenicidad , Biología Computacional/métodos , Neoplasias/genética , Neoplasias/virología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Regulación Neoplásica de la Expresión Génica/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/virología , Pronóstico , Redes Reguladoras de Genes/genética , Perfilación de la Expresión Génica , Bases de Datos Genéticas
8.
FASEB J ; 38(5): e23523, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38457275

RESUMEN

Zinc and ring finger 3 (ZNRF3) is a negative suppressor of Wnt signal and newly identified as an important regulator in tumorigenesis and development. However, the pan-cancer analysis of ZNRF3 has not been reported. We found that ZNRF3 was significantly decreased in six tumors including CESC, KIRP, KIRC, SKCM, OV, and ACC, but increased in twelve tumors, namely LGG, ESCA, STES, COAD, STAD, LUSC, LIHC, THCA, READ, PAAD, TGCT, and LAML. Clinical outcomes of cancer patients were closely related to ZNRF3 expression in ESCA, GBM, KIRC, LUAD, STAD, UCEC, LGG, and SARC. The highest genetic alteration frequency of ZNRF3 occurred in ACC. Abnormal expression of ZNRF3 could be attributed to the differences of copy number variation (CNV) and DNA methylation as well as ZNRF3-interacting proteins. Besides, ZNRF3 were strongly associated with tumor heterogeneity, tumor stemness, immune score, stromal score and ESTIMATE score in certain cancers. In terms of immune cell infiltration, ZNRF3 was positively correlated to infiltration of cancer-associated fibroblasts in CESC, HNSC, OV, PAAD, PRAD, and THYM, but negatively associated with infiltration of CD8 T cells in HNSC, KIRC, KIRP and THYM. Moreover, ZNRF3 expression was correlated with most immune checkpoint genes in SARC, LUSC, LUAD, PRAD, THCA, UVM, TGCT, and OV, and associated with overwhelming majority of immunoregulatory genes in almost all cancers. Most RNA modification genes were also remarkably related to ZNRF3 level in KIRP, LUAD, LUSC, THYM, UVM, PRAD, and UCEC, indicating that ZNRF3 might have an important effect on cancer epigenetic regulation. Finally, we verified the expression and role of ZNRF3 in clinical specimens and cell lines of renal cancer and liver cancer. This study provides a comprehensive pan-cancer analysis of ZNRF3 and reveals the complexity of its carcinogenic effect.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Variaciones en el Número de Copia de ADN , Epigénesis Genética , Pronóstico , Zinc
9.
FASEB J ; 38(13): e23802, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38979944

RESUMEN

Intercellular adhesion molecule 1 (ICAM1) is a cell surface adhesion glycoprotein in the immunoglobulin supergene family. It is associated with several epithelial tumorigenesis processes, as well as with inflammation. However, the function of ICAM1 in the prognosis of tumor immunity is still unclear. This study aimed to examine the immune function of ICAM1 in 33 tumor types and to investigate the prognostic value of tumors. Using datasets from the Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), Cancer Cell Lines Encyclopedia (CCLE), Human Protein Atlas (HPA), and cBioPortal, we investigated the role of ICAM1 in tumors. We explored the potential correlation between ICAM1 expression and tumor prognosis, gene mutations, microsatellite instability, and tumor immune cell levels in various cancers. We observed that ICAM1 is highly expressed in multiple malignant tumors. Furthermore, ICAM1 is negatively or positively associated with different malignant tumor prognoses. The expression levels of ICAM1 were correlated with the tumor mutation burden (TMB) in 11 tumors and with MSI in eight tumors. ICAM1 is a gene associated with immune infiltrating cells, such as M1 macrophages and CD8+ T cells in gastric and colon cancer. Meanwhile, the expression of ICAM1 is associated with several immune-related functions and immune-regulation-related signaling pathways, such as the chemokine signaling pathway. Our study shows that ICAM1 can be used as a prognostic biomarker in many cancer types because of its function in tumorigenesis and malignant tumor immunity.


Asunto(s)
Biomarcadores de Tumor , Molécula 1 de Adhesión Intercelular , Neoplasias , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/metabolismo , Mutación , Regulación Neoplásica de la Expresión Génica , Inestabilidad de Microsatélites , Microambiente Tumoral/inmunología
10.
FASEB J ; 38(2): e23421, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38198194

RESUMEN

Diabetic kidney disease (DKD) is the primary cause of end-stage renal disease, exhibiting high disability and mortality rates. Ferroptosis is vital for the progression of DKD, but the exact mechanism remains unclear. This study aimed to explore the potential mechanism of ferroptosis-related genes in DKD and their relationship with the immune and to identify new diagnostic biomarkers to help treat and diagnose DKD. GSE30122 and GSE47185 were obtained from the Gene Expression Omnibus database and were integrated into a merged dataset, followed by functional enrichment analysis. Then potential differentially expressed genes were screened. Ferroptosis-related differentially-expressed genes were identified, followed by gene ontology analysis. Protein-protein interaction networks were constructed and hub genes were screened. The immune cell-infiltrating state in the dataset was assessed using appropriate algorithms. Immune signature subtypes were constructed using the consensus clustering analysis. Hub gene expression was validated using qRT-PCR and immunohistochemistry. A total of Eleven screened ferroptosis-related differentially expressed genes were screened. Six potentially diagnostically favorable ferroptosis-related hub genes were identified. Significantly increased expression of γδT cells, resting mast cells, and macrophages infiltration was observed in the DKD group. Additionally, two distinct immune signature subgroups were identified. Ferroptosis-related hub genes were significantly correlated with differentially infiltrated immune cells. Six hub genes were significantly upregulated in HK-2 cells following high glucose treatment and in human kidney tissues of patients with DKD. Six ferroptosis-related hub genes were identified as potential biomarkers of diabetic kidney disease, but further validation is needed.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ferroptosis , Humanos , Nefropatías Diabéticas/genética , Ferroptosis/genética , Marcadores Genéticos , Riñón , Biología Computacional
11.
Proc Natl Acad Sci U S A ; 119(46): e2214569119, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343225

RESUMEN

Immunocyte infiltration and cytotoxicity play critical roles in both inflammation and immunotherapy. However, current cancer immunotherapy screening methods overlook the capacity of the T cells to penetrate the tumor stroma, thereby significantly limiting the development of effective treatments for solid tumors. Here, we present an automated high-throughput microfluidic platform for simultaneous tracking of the dynamics of T cell infiltration and cytotoxicity within the 3D tumor cultures with a tunable stromal makeup. By recourse to a clinical tumor-infiltrating lymphocyte (TIL) score analyzer, which is based on a clinical data-driven deep learning method, our platform can evaluate the efficacy of each treatment based on the scoring of T cell infiltration patterns. By screening a drug library using this technology, we identified an epigenetic drug (lysine-specific histone demethylase 1 inhibitor, LSD1i) that effectively promoted T cell tumor infiltration and enhanced treatment efficacy in combination with an immune checkpoint inhibitor (anti-PD1) in vivo. We demonstrated an automated system and strategy for screening immunocyte-solid tumor interactions, enabling the discovery of immuno- and combination therapies.


Asunto(s)
Aprendizaje Profundo , Neoplasias , Humanos , Microfluídica/métodos , Detección Precoz del Cáncer , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor , Factores Inmunológicos , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
12.
Genomics ; 116(2): 110797, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38262564

RESUMEN

BACKGROUND: Hypertrophic scar (HTS) is a prevalent chronic inflammatory skin disorder characterized by abnormal proliferation and extracellular matrix deposition and the precise mechanisms underlying HTS remain elusive. This study aimed to identify and validate potential immune-related genes associated with hypertrophic scar formation. METHODS: Skin samples from normal (n = 12) and hypertrophic scar tissues (n = 12) were subjected to RNA-seq analysis. Differentially expressed genes (DEGs) and significant modular genes in Weighted gene Co-expression Network Analysis (WGCNA) were identified. Subsequently, functional enrichment analysis was performed on the intersecting genes. Additionally, eight immune-related genes were matched from the ImmPort database. Validation of NRG1 and CRLF1 was carried out using an external cohort (GSE136906). Furthermore, the association between these two genes and immune cells was assessed by Spearman correlation analysis. Finally, RNA was extracted from normal and hypertrophic scar samples, and RT-qPCR, Immunohistochemistry staining and Western Blot were employed to validate the expression of characteristic genes. RESULTS: A total of 940 DEGs were identified between HTS and normal samples, and 288 key module genes were uncovered via WGCNA. Enrichment analysis in key module revealed involvement in many immune-related pathways, such as Th17 cell differentiation, antigen processing and presentation and B cell receptor signaling pathway. The eight immune-related genes (IFI30, NR2F2, NRG1, ESM1, NFATC2, CRLF1, COLEC12 and IL6) were identified by matching from the ImmPort database. Notably, we observed that activated mast cell positively correlated with CRLF1 expression, while CD8 T cells exhibited a positive correlation with NRG1. The expression of NRG1 and CRLF1 was further validated in clinical samples. CONCLUSION: In this study, two key immune-related genes (CRLF1 and NRG1) were identified as characteristic genes associated with HTS. These findings provide valuable insights into the immune-related mechanisms underlying hypertrophic scar formation.


Asunto(s)
Cicatriz Hipertrófica , Neurregulina-1 , Receptores de Citocinas , Humanos , Diferenciación Celular , Cicatriz Hipertrófica/genética , Bases de Datos Factuales , Matriz Extracelular , Piel , Receptores de Citocinas/genética
13.
Genomics ; 116(1): 110762, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38104669

RESUMEN

Monoubiquitination of FANCD2 is a central step in the activation of the Fanconi anemia (FA) pathway after DNA damage. Defects in the FA pathway centered around FANCD2 not only lead to genomic instability but also induce tumorigenesis. At present, few studies have investigated FANCD2 in tumors, and no pan-cancer research on FANCD2 has been conducted. We conducted a comprehensive analysis of the role of FANCD2 in cancer using public databases and other published studies. Moreover, we evaluated the role of FANCD2 in the proliferation, migration and invasion of lung adenocarcinoma cells through in vitro and in vivo experiments, and explored the role of FANCD2 in cisplatin chemoresistance. We investigated the regulatory effect of FANCD2 on the cell cycle of lung adenocarcinoma cells by flow cytometry, and verified this effect by western blotting. FANCD2 expression is elevated in most TCGA tumors and shows a strong positive correlation with poor prognosis in tumor patients. In addition, FANCD2 expression shows strong correlations with immune infiltration, immune checkpoints, the tumor mutation burden (TMB), and microsatellite instability (MSI), which are immune-related features, suggesting that it may be a potential target of tumor immunotherapy. We further found that FANCD2 significantly promotes the proliferation, invasion, and migration abilities of lung adenocarcinoma cells and that its ability to promote cancer cell proliferation may be achieved by modulating the cell cycle. The findings indicate that FANCD2 is a potential biomarker and therapeutic target in cancer treatment by analyzing the oncogenic role of FANCD2 in different tumors.


Asunto(s)
Carcinogénesis , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi , Neoplasias , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Carcinogénesis/genética , Daño del ADN , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Neoplasias/genética , Neoplasias/patología
14.
J Cell Mol Med ; 28(6): e18156, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38429902

RESUMEN

This study aimed to identify genes shared by metabolic dysfunction-associated fatty liver disease (MASH) and diabetic nephropathy (DN) and the effect of extracellular matrix (ECM) receptor interaction genes on them. Datasets with MASH and DN were downloaded from the Gene Expression Omnibus (GEO) database. Pearson's coefficients assessed the correlation between ECM-receptor interaction genes and cross talk genes. The coexpression network of co-expression pairs (CP) genes was integrated with its protein-protein interaction (PPI) network, and machine learning was employed to identify essential disease-representing genes. Finally, immuno-penetration analysis was performed on the MASH and DN gene datasets using the CIBERSORT algorithm to evaluate the plausibility of these genes in diseases. We found 19 key CP genes. Fos proto-oncogene (FOS), belonging to the IL-17 signalling pathway, showed greater centrality PPI network; Hyaluronan Mediated Motility Receptor (HMMR), belonging to ECM-receptor interaction genes, showed most critical in the co-expression network map of 19 CP genes; Forkhead Box C1 (FOXC1), like FOS, showed a high ability to predict disease in XGBoost analysis. Further immune infiltration showed a clear positive correlation between FOS/FOXC1 and mast cells that secrete IL-17 during inflammation. Combining the results of previous studies, we suggest a FOS/FOXC1/HMMR regulatory axis in MASH and DN may be associated with mast cells in the acting IL-17 signalling pathway. Extracellular HMMR may regulate the IL-17 pathway represented by FOS through the Mitogen-Activated Protein Kinase 1 (ERK) or PI3K-Akt-mTOR pathway. HMMR may serve as a signalling carrier between MASH and DN and could be targeted for therapeutic development.


Asunto(s)
Nefropatías Diabéticas , Interleucina-17 , Humanos , Fosfatidilinositol 3-Quinasas , Biología Computacional , Aprendizaje Automático
15.
J Cell Mol Med ; 28(7): 1-20, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38506098

RESUMEN

YARS is responsible for catalysing the binding of tyrosine to its cognate tRNA and plays a crucial role in basic biosynthesis. However, its biological functions in bladder cancer remains to be proven. We analysed variations in YARS1 expression and survival in bladder cancer using multiple data sets, including TCGA-BLCA, GSE13507 and bladder cancer-specific tissue microarrays. Furthermore, we explored the biological functions of YARS1 using transcriptome data. Our findings revealed a noteworthy correlation between YARS1 and immune infiltration in bladder cancer, as determined using the XCELL algorithm and single-cell analysis. In addition, we employed the TIDE algorithm to evaluate the responsiveness of different cohorts to immune checkpoint therapy. We investigated the regulatory associations between YARS1 and various aspects of bladder cancer, including senescence, ferroptosis and stemness. Finally, we established a ceRNA network that is directly linked to the overall prognosis, YARS1 can serve as a prognostic biomarker for bladder cancer; its interaction with MYC has implications for bladder cancer cell senescence, ferroptosis and stemness. Moreover, the identified ceRNA network has potential as a therapeutic target in bladder cancer.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Humanos , Pronóstico , Neoplasias de la Vejiga Urinaria/genética , Algoritmos , Catálisis , ARN Endógeno Competitivo , Biomarcadores
16.
J Cell Mol Med ; 28(8): e18260, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520216

RESUMEN

Ovarian cancer (OC) is a deadly disease with limited treatment options and poor overall survival rates. This study aimed to investigate the role of histone modification-related genes in predicting the prognosis of OC patients. Transcriptome data from multiple cohorts, including bulk RNA-Seq data and single-cell scRNA-Seq data, were collected. Gene set enrichment analysis was used to identify enriched gene sets in the histone modification pathway. Differentially expressed genes (DEGs) between histone modification-high and histone modification-low groups were identified using Lasso regression. A prognostic model was constructed using five selected prognostic genes from the DEGs in the TCGA-OV cohort. The study found enrichment of gene sets in the histone modification pathway and identified five prognostic genes associated with OC prognosis. The constructed risk score model based on histone modification-related genes was correlated with immune infiltration of T cells and M1 macrophages. Mutations are more prevalent in the high-risk group compared to the low-risk group. Several drugs were screened against the model genes. Through in vitro experiments, we confirmed the expression patterns of the model genes. LBX2 facilitates the proliferation of OC. Histone modification-related genes have the potential to serve as biomarkers for predicting OC prognosis. Targeting these genes may lead to the development of more effective therapies for OC. Additionally, LBX2 represents a novel cell proliferation promoter in OC carcinogenesis.


Asunto(s)
Código de Histonas , Neoplasias Ováricas , Femenino , Humanos , Carcinogénesis , Proliferación Celular/genética , Código de Histonas/genética , Neoplasias Ováricas/genética , Pronóstico
17.
J Cell Mol Med ; 28(12): e18475, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898693

RESUMEN

Aurora kinase B (AURKB), an essential regulator in the process of mitosis, has been revealed through various studies to have a significant role in cancer development and progression. However, the specific mechanisms remain poorly understood. This study, therefore, seeks to elucidate the multifaceted role of AURKB in diverse cancer types. This study utilized bioinformatics techniques to examine the transcript, protein, promoter methylation and mutation levels of AURKB. The study further analysed associations between AURKB and factors such as prognosis, pathological stage, biological function, immune infiltration, tumour mutational burden (TMB) and microsatellite instability (MSI). In addition, immunohistochemical staining data of 50 cases of renal clear cell carcinoma and its adjacent normal tissues were collected to verify the difference in protein expression of AURKB in the two tissues. The results show that AURKB is highly expressed in most cancers, and the protein level of AURKB and the methylation level of its promoter vary among cancer types. Survival analysis showed that AURKB was associated with overall survival in 12 cancer types and progression-free survival in 11 cancer types. Elevated levels of AURKB were detected in the advanced stages of 10 different cancers. AURKB has a potential impact on cancer progression through its effects on cell cycle regulation as well as inflammatory and immune-related pathways. We observed a strong association between AURKB and immune cell infiltration, immunomodulatory factors, TMB and MSI. Importantly, we confirmed that the AURKB protein is highly expressed in kidney renal clear cell carcinoma (KIRC). Our study reveals that AURKB may be a potential biomarker for pan-cancer and KIRC.


Asunto(s)
Aurora Quinasa B , Biomarcadores de Tumor , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias , Regiones Promotoras Genéticas , Humanos , Pronóstico , Aurora Quinasa B/metabolismo , Aurora Quinasa B/genética , Regiones Promotoras Genéticas/genética , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/mortalidad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Inestabilidad de Microsatélites , Mutación/genética , Femenino , Biología Computacional/métodos
18.
J Cell Mol Med ; 28(6): e18135, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38429900

RESUMEN

Lung adenocarcinoma (LUAD) is characterized by a high incidence rate and mortality. Recently, POC1 centriolar protein A (POC1A) has emerged as a potential biomarker for various cancers, contributing to cancer onset and development. However, the association between POC1A and LUAD remains unexplored. We extracted The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data sets to analyse the differential expression of POC1A and its relationship with clinical stage. Additionally, we performed diagnostic receiver operator characteristic (ROC) curve analysis and Kaplan-Meier (KM) survival analysis to assess the diagnostic and prognostic value of POC1A in LUAD. Furthermore, we investigated the correlation between POC1A expression and immune infiltration, tumour mutation burden (TMB), immune checkpoint expression and drug sensitivity. Finally, we verified POC1A expression using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). Cell experiments were conducted to validate the effect of POC1A expression on the proliferation, migration and invasion of lung cancer cells. POC1A exhibited overexpression in most tumour tissues, and its overexpression in LUAD was significantly correlated with late-stage presentation and poor prognosis. The high POC1A expression group showed lower levels of immune infiltration but higher levels of immune checkpoint expression and TMB. Moreover, the high POC1A expression group demonstrated sensitivity to multiple drugs. In vitro experiments confirmed that POC1A knockdown led to decreased proliferation, migration, and invasion of lung cancer cells. Our findings suggest that POC1A may contribute to tumour development by modulating the cell cycle and immune cell infiltration. It also represents a potential therapeutic target and marker for the diagnosis and prognosis of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Neoplasias Pulmonares/genética , Regulación hacia Arriba/genética
19.
J Cell Mol Med ; 28(11): e18463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847472

RESUMEN

Accumulating evidence suggests that a wide variety of cell deaths are deeply involved in cancer immunity. However, their roles in glioma have not been explored. We employed a logistic regression model with the shrinkage regularization operator (LASSO) Cox combined with seven machine learning algorithms to analyse the patterns of cell death (including cuproptosis, ferroptosis, pyroptosis, apoptosis and necrosis) in The Cancer Genome Atlas (TCGA) cohort. The performance of the nomogram was assessed through the use of receiver operating characteristic (ROC) curves and calibration curves. Cell-type identification was estimated by using the cell-type identification by estimating relative subsets of known RNA transcripts (CIBERSORT) and single sample gene set enrichment analysis methods. Hub genes associated with the prognostic model were screened through machine learning techniques. The expression pattern and clinical significance of MYD88 were investigated via immunohistochemistry (IHC). The cell death score represents an independent prognostic factor for poor outcomes in glioma patients and has a distinctly superior accuracy to that of 10 published signatures. The nomogram performed well in predicting outcomes according to time-dependent ROC and calibration plots. In addition, a high-risk score was significantly related to high expression of immune checkpoint molecules and dense infiltration of protumor cells, these findings were associated with a cell death-based prognostic model. Upregulated MYD88 expression was associated with malignant phenotypes and undesirable prognoses according to the IHC. Furthermore, high MYD88 expression was associated with poor clinical outcomes and was positively related to CD163, PD-L1 and vimentin expression in the in-horse cohort. The cell death score provides a precise stratification and immune status for glioma. MYD88 was found to be an outstanding representative that might play an important role in glioma.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Glioma , Aprendizaje Automático , Nomogramas , Humanos , Glioma/genética , Glioma/inmunología , Glioma/patología , Pronóstico , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/mortalidad , Muerte Celular/genética , Masculino , Femenino , Curva ROC , Perfilación de la Expresión Génica , Persona de Mediana Edad , Transcriptoma , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo
20.
J Cell Mol Med ; 28(12): e18387, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38924680

RESUMEN

We aimed to explore whether the genes associated with both platinum-based therapy and polyamine metabolism could predict the prognosis of LUAD. We searched for the differential expression genes (DEGs) associated with platinum-based therapy, then we interacted them with polyamine metabolism-related genes to obtain hub genes. Subsequently, we analysed the main immune cell populations in LUAD using the scRNA-seq data, and evaluated the activity of polyamine metabolism of different cell subpopulations. The DEGs between high and low activity groups were screened to identify key DEGs to establish prognostic risk score model. We further elucidated the landscape of immune cells, mutation and drug sensitivity analysis in different risk groups. Finally, we got 10 hub genes associated with both platinum-based chemotherapy and polyamine metabolism, and found that these hub genes mainly affected signalling transduction pathways. B cells and mast cells with highest polyamine metabolism activity, while NK cells were found with lowest polyamine metabolism activity based on scRNA-seq data. DEGs between high and low polyamine metabolism activity groups were identified, then 6 key genes were screened out to build risk score, which showed a good predictive power. The risk score showed a universal negative correlation with immunotherapy checkpoint genes and the cytotoxic T cells infiltration. The mutation rates of EGFR in low-risk group was significantly higher than that of high-risk group. In conclusion, we developed a risk score based on key genes associated with platinum-based therapy and polyamine metabolism, which provide a new perspective for prognosis prediction of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Poliaminas , Humanos , Poliaminas/metabolismo , Pronóstico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Mutación , Perfilación de la Expresión Génica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA