Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.745
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 176(1-2): 306-317.e16, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30503212

RESUMEN

Trypanosome parasites control their virulence and spread by using quorum sensing (QS) to generate transmissible "stumpy forms" in their host bloodstream. However, the QS signal "stumpy induction factor" (SIF) and its reception mechanism are unknown. Although trypanosomes lack G protein-coupled receptor signaling, we have identified a surface GPR89-family protein that regulates stumpy formation. TbGPR89 is expressed on bloodstream "slender form" trypanosomes, which receive the SIF signal, and when ectopically expressed, TbGPR89 drives stumpy formation in a SIF-pathway-dependent process. Structural modeling of TbGPR89 predicts unexpected similarity to oligopeptide transporters (POT), and when expressed in bacteria, TbGPR89 transports oligopeptides. Conversely, expression of an E. coli POT in trypanosomes drives parasite differentiation, and oligopeptides promote stumpy formation in vitro. Furthermore, the expression of secreted trypanosome oligopeptidases generates a paracrine signal that accelerates stumpy formation in vivo. Peptidase-generated oligopeptide QS signals being received through TbGPR89 provides a mechanism for both trypanosome SIF production and reception.


Asunto(s)
Proteínas de Transporte de Membrana/fisiología , Percepción de Quorum/fisiología , Trypanosoma/metabolismo , Diferenciación Celular , Secuencia Conservada/genética , Proteínas de Unión al GTP/metabolismo , Proteínas de Transporte de Membrana/genética , Oligopéptidos/genética , Oligopéptidos/fisiología , Filogenia , Proteínas Protozoarias/metabolismo , Percepción de Quorum/genética , Transducción de Señal , Trypanosoma/fisiología , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/parasitología , Virulencia/fisiología
2.
Annu Rev Cell Dev Biol ; 36: 511-528, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32634325

RESUMEN

Pediatric allergic disease is a significant health concern worldwide, and the prevalence of childhood eczema, asthma, allergic rhinitis, and food allergy continues to increase. Evidence to support specific interventions for the prevention of eczema, asthma, and allergic rhinitis is limited, and no consensus on prevention strategies has been reached. Randomized controlled trials investigating the prevention of food allergy via oral tolerance induction and the early introduction of allergenic foods have been successful in reducing peanut and egg allergy prevalence. Infant weaning guidelines in the United Sates were recently amended to actively encourage the introduction of peanut for prevention of peanut allergy.


Asunto(s)
Hipersensibilidad a los Alimentos/inmunología , Tolerancia Inmunológica , Animales , Niño , Humanos , Inmunoterapia , Modelos Biológicos , Hipersensibilidad al Cacahuete/inmunología , Guías de Práctica Clínica como Asunto
3.
Cell ; 175(4): 1105-1118.e17, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30343898

RESUMEN

Neural induction in vertebrates generates a CNS that extends the rostral-caudal length of the body. The prevailing view is that neural cells are initially induced with anterior (forebrain) identity; caudalizing signals then convert a proportion to posterior fates (spinal cord). To test this model, we used chromatin accessibility to define how cells adopt region-specific neural fates. Together with genetic and biochemical perturbations, this identified a developmental time window in which genome-wide chromatin-remodeling events preconfigure epiblast cells for neural induction. Contrary to the established model, this revealed that cells commit to a regional identity before acquiring neural identity. This "primary regionalization" allocates cells to anterior or posterior regions of the nervous system, explaining how cranial and spinal neurons are generated at appropriate axial positions. These findings prompt a revision to models of neural induction and support the proposed dual evolutionary origin of the vertebrate CNS.


Asunto(s)
Ensamble y Desensamble de Cromatina , Inducción Embrionaria , Neurogénesis , Animales , Línea Celular , Células Cultivadas , Embrión de Pollo , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo
4.
EMBO J ; 42(23): e113279, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881155

RESUMEN

The immune system is in place to assist in ensuring tissue homeostasis, which can be easily perturbed by invading pathogens or nonpathogenic stressors causing tissue damage. Extracellular nucleotides are well known to contribute to innate immune signaling specificity and strength, but how their signaling is relayed downstream of cell surface receptors and how this translates into antiviral immunity is only partially understood. Here, we systematically investigated the responses of human macrophages to extracellular nucleotides, focusing on the nucleotide-sensing GPRC receptors of the P2Y family. Time-resolved transcriptomic analysis showed that adenine- and uridine-based nucleotides induce a specific, immediate, and transient cytokine response through the MAPK signaling pathway that regulates transcriptional activation by AP-1. Using receptor trans-complementation, we identified a subset of P2Ys (P2Y1, P2Y2, P2Y6, and P2Y11) that govern inflammatory responses via cytokine induction, while others (P2Y4, P2Y11, P2Y12, P2Y13, and P2Y14) directly induce antiviral responses. Notably, P2Y11 combined both activities, and depletion or inhibition of this receptor in macrophages impaired both inflammatory and antiviral responses. Collectively, these results highlight the underappreciated functions of P2Y receptors in innate immune processes.


Asunto(s)
Nucleótidos , Transducción de Señal , Humanos , Citocinas , Inmunidad , Macrófagos/metabolismo , Nucleótidos/metabolismo , Replicación Viral
5.
EMBO J ; 42(14): e112907, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37367474

RESUMEN

Interferons (IFNs) are antiviral cytokines that play a key role in the innate immune response to viral infections. In response to viral stimuli, cells produce and release interferons, which then act on neighboring cells to induce the transcription of hundreds of genes. Many of these gene products either combat the viral infection directly, e.g., by interfering with viral replication, or help shape the following immune response. Here, we review how viral recognition leads to the production of different types of IFNs and how this production differs in spatial and temporal manners. We then continue to describe how these IFNs play different roles in the ensuing immune response depending on when and where they are produced or act during an infection.


Asunto(s)
Interferones , Virosis , Humanos , Factor 3 Regulador del Interferón/metabolismo , Antivirales/farmacología , Inmunidad Innata , Citocinas , Virosis/tratamiento farmacológico
6.
Development ; 151(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39250420

RESUMEN

In vivo and in vitro studies argue that concentration-dependent Wnt signaling regulates mammalian nephron progenitor cell (NPC) programs. Canonical Wnt signaling is regulated through the stabilization of ß-catenin, a transcriptional co-activator when complexed with Lef/Tcf DNA-binding partners. Using the GSK3ß inhibitor CHIR99021 (CHIR) to block GSK3ß-dependent destruction of ß-catenin, we examined dose-dependent responses to ß-catenin in mouse NPCs, using mRNA transduction to modify gene expression. Low CHIR-dependent proliferation of NPCs was blocked on ß-catenin removal, with evidence of NPCs arresting at the G2-M transition. While NPC identity was maintained following ß-catenin removal, mRNA-seq identified low CHIR and ß-catenin dependent genes. High CHIR activated nephrogenesis. Nephrogenic programming was dependent on Lef/Tcf factors and ß-catenin transcriptional activity. Molecular and cellular features of early nephrogenesis were driven in the absence of CHIR by a mutated stabilized form of ß-catenin. Chromatin association studies indicate low and high CHIR response genes are likely direct targets of canonical Wnt transcriptional complexes. Together, these studies provide evidence for concentration-dependent Wnt signaling in the regulation of NPCs and provide new insight into Wnt targets initiating mammalian nephrogenesis.


Asunto(s)
Nefronas , Células Madre , Vía de Señalización Wnt , beta Catenina , Animales , Nefronas/metabolismo , Nefronas/citología , beta Catenina/metabolismo , Ratones , Células Madre/metabolismo , Células Madre/citología , Pirimidinas/farmacología , Piridinas/farmacología , Regulación del Desarrollo de la Expresión Génica , Proliferación Celular , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Organogénesis/genética , Transcripción Genética
7.
Development ; 151(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39344436

RESUMEN

In the developing mammalian kidney, nephron formation is initiated by a subset of nephron progenitor cells (NPCs). Wnt input activates a ß-catenin (Ctnnb1)-driven, transcriptional nephrogenic program and the mesenchymal to epithelial transition (MET) of NPCs. Using an in vitro mouse NPC culture model, we observed that activation of the Wnt pathway results in the aggregation of induced NPCs, which is an initiating step in the MET program. Genetic removal showed aggregation was dependent on ß-catenin. Modulating extracellular Ca2+ levels showed cell-cell contacts were Ca2+ dependent, suggesting a role for cadherin (Cdh)-directed cell adhesion. Molecular analysis identified Cdh2, Cdh4 and Cdh11 in NPCs, and the ß-catenin directed upregulation of Cdh3 and Cdh4 accompanying the MET of induced NPCs. Mutational analysis of ß-catenin supported a role for a Lef/Tcf-ß-catenin-mediated transcriptional response in the cell aggregation process. Genetic removal of all four cadherins, and independent removal of α-catenin or of ß-catenin-α-catenin interactions, abolished aggregation, but not the inductive response to Wnt pathway activation. These findings, and data in an accompanying article highlight the role of ß-catenin in linking transcriptional programs to the morphogenesis of NPCs in mammalian nephrogenesis.


Asunto(s)
Cadherinas , Agregación Celular , Transición Epitelial-Mesenquimal , Nefronas , Células Madre , Vía de Señalización Wnt , beta Catenina , Animales , Cadherinas/metabolismo , Cadherinas/genética , Nefronas/metabolismo , Nefronas/citología , Células Madre/metabolismo , Células Madre/citología , beta Catenina/metabolismo , beta Catenina/genética , Ratones , Transición Epitelial-Mesenquimal/genética , Adhesión Celular , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Células Cultivadas
8.
Semin Cell Dev Biol ; 155(Pt A): 48-58, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36889996

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) are two enzymes of the Calvin Benson cycle that stand out for some peculiar properties they have in common: (i) they both use the products of light reactions for catalysis (NADPH for GAPDH, ATP for PRK), (ii) they are both light-regulated through thioredoxins and (iii) they are both involved in the formation of regulatory supramolecular complexes in the dark or low photosynthetic conditions, with or without the regulatory protein CP12. In the complexes, enzymes are transiently inactivated but ready to recover full activity after complex dissociation. Fully active GAPDH and PRK are in large excess for the functioning of the Calvin-Benson cycle, but they can limit the cycle upon complex formation. Complex dissociation contributes to photosynthetic induction. CP12 also controls PRK concentration in model photosynthetic organisms like Arabidopsis thaliana and Chlamydomonas reinhardtii. The review combines in vivo and in vitro data into an integrated physiological view of the role of GAPDH and PRK dark complexes in the regulation of photosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fotosíntesis/fisiología
9.
Development ; 150(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37982496

RESUMEN

Tissue interactions are essential for guiding organ development and regeneration. Hair follicle formation relies on inductive signalling between two tissues, the embryonic surface epithelium and the adjacent mesenchyme. Although previous research has highlighted the hair-inducing potential of the mesenchymal component of the hair follicle - the dermal papilla and its precursor, the dermal condensate - the source and nature of the primary inductive signal before dermal condensate formation have remained elusive. Here, we performed epithelial-mesenchymal tissue recombination experiments using hair-forming back skin and glabrous plantar skin from mouse embryos to unveil that the back skin mesenchyme is inductive even before dermal condensate formation. Moreover, the naïve, unpatterned mesenchyme was sufficient to trigger hair follicle formation even in the oral epithelium. Building on previous knowledge, we explored the hair-inductive ability of the Wnt agonist R-spondin 1 and a Bmp receptor inhibitor in embryonic skin explants. Although R-spondin 1 instigated precocious placode-specific transcriptional responses, it was insufficient for hair follicle induction, either alone or in combination with Bmp receptor inhibition. Our findings pave the way for identifying the hair follicle-inducing cue.


Asunto(s)
Folículo Piloso , Cabello , Ratones , Animales , Folículo Piloso/fisiología , Piel , Mesodermo/fisiología , Receptores de Proteínas Morfogenéticas Óseas
10.
Genes Dev ; 32(23-24): 1537-1549, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30463901

RESUMEN

Human globin gene production transcriptionally "switches" from fetal to adult synthesis shortly after birth and is controlled by macromolecular complexes that enhance or suppress transcription by cis elements scattered throughout the locus. The DRED (direct repeat erythroid-definitive) repressor is recruited to the ε-globin and γ-globin promoters by the orphan nuclear receptors TR2 (NR2C1) and TR4 (NR2C2) to engender their silencing in adult erythroid cells. Here we found that nuclear receptor corepressor-1 (NCoR1) is a critical component of DRED that acts as a scaffold to unite the DNA-binding and epigenetic enzyme components (e.g., DNA methyltransferase 1 [DNMT1] and lysine-specific demethylase 1 [LSD1]) that elicit DRED function. We also describe a potent new regulator of γ-globin repression: The deubiquitinase BRCA1-associated protein-1 (BAP1) is a component of the repressor complex whose activity maintains NCoR1 at sites in the ß-globin locus, and BAP1 inhibition in erythroid cells massively induces γ-globin synthesis. These data provide new mechanistic insights through the discovery of novel epigenetic enzymes that mediate γ-globin gene repression.


Asunto(s)
Regulación de la Expresión Génica/genética , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , gamma-Globinas/genética , Sitios de Unión , Línea Celular , Activación Enzimática/genética , Epigénesis Genética/genética , Células Eritroides/metabolismo , Silenciador del Gen , Células HEK293 , Humanos , Células K562 , Miembro 1 del Grupo C de la Subfamilia 2 de Receptores Nucleares/metabolismo , Dominios Proteicos , Receptores de Esteroides/metabolismo , Receptores de Hormona Tiroidea/metabolismo
11.
J Biol Chem ; : 107883, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39395806

RESUMEN

The human IRGM gene has been linked to inflammatory diseases including sepsis and Crohn's disease. Decreased expression of human IRGM, or of the mouse orthologues Irgm1 and Irgm2, leads to increased production of a number of inflammatory chemokines and cytokines in vivo and/or in cultured macrophages. Prior work has indicated that increased cytokine production is instigated by metabolic alterations and by changes in mitochondrial homeostasis; however, a comprehensive mechanism has not been elucidated. In the studies presented here, RNA deep sequencing and quantitative PCR were used to show that increases in cytokine production, as well as most changes in the transcriptional profile of Irgm1-/- bone marrow-derived macrophages (BMM), are dependent on increased type I IFN production seen in those cells. Metabolic alterations that drive increased cytokines in Irgm1-/- BMM - specifically increases in glycolysis and increased accumulation of acyl-carnitines - were unaffected by quenching type I IFN signaling. Dysregulation of peroxisomal homeostasis was identified as a novel upstream pathway that governs type I IFN production and inflammatory cytokine production. Collectively, these results enhance our understanding of the complex biochemical changes that are triggered by lack of Irgm1 and contribute to inflammatory disease seen with Irgm1-deficiency.

12.
J Biol Chem ; 300(2): 105620, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176648

RESUMEN

Sterile alpha and HEAT/armadillo motif-containing protein (SARM1) was recently described as a NAD+-consuming enzyme and has previously been shown to regulate immune responses in macrophages. Neuronal SARM1 is known to contribute to axon degeneration due to its NADase activity. However, how SARM1 affects macrophage metabolism has not been explored. Here, we show that macrophages from Sarm1-/- mice display elevated NAD+ concentrations and lower cyclic ADP-ribose, a known product of SARM1-dependent NAD+ catabolism. Further, SARM1-deficient macrophages showed an increase in the reserve capacity of oxidative phosphorylation and glycolysis compared to WT cells. Stimulation of macrophages to a proinflammatory state by lipopolysaccharide (LPS) revealed that SARM1 restricts the ability of macrophages to upregulate glycolysis and limits the expression of the proinflammatory gene interleukin (Il) 1b, but boosts expression of anti-inflammatory Il10. In contrast, we show macrophages lacking SARM1 induced to an anti-inflammatory state by IL-4 stimulation display increased oxidative phosphorylation and glycolysis, and reduced expression of the anti-inflammatory gene, Fizz1. Overall, these data show that SARM1 fine-tunes immune gene transcription in macrophages via consumption of NAD+ and altered macrophage metabolism.


Asunto(s)
Proteínas del Dominio Armadillo , Proteínas del Citoesqueleto , Neuronas , Animales , Ratones , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Axones/metabolismo , ADP-Ribosa Cíclica/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , NAD/metabolismo , Neuronas/metabolismo
13.
J Virol ; 98(9): e0099324, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39162432

RESUMEN

The cucumber mosaic virus (CMV) 2b protein is a potent counter-defense factor and symptom determinant that inhibits antiviral silencing by titrating short double-stranded RNAs. Expression of the CMV subgroup IA strain Fny-CMV 2b protein in transgenic Arabidopsis thaliana plants disrupts microRNA-mediated cleavage of host mRNAs by binding Argonaute 1 (AGO1), leading to symptom-like phenotypes. This also triggers AGO2-mediated antiviral resistance and resistance to CMV's aphid vectors. However, in authentic viral infections, the Fny-CMV 1a protein modulates 2b-AGO1 interactions, inhibiting induction of AGO2-mediated virus resistance and aphid resistance. Contrastingly, 2b proteins encoded by the subgroup II strain LS-CMV and the recently discovered subgroup IA strain Ho-CMV induce no symptoms. Confocal laser scanning microscopy, bimolecular fluorescence complementation, and co-immunoprecipitation showed that Fny-CMV and Ho-CMV 2b proteins interact with Fny-CMV and LS-CMV 1a proteins, while the CMV-LS 2b protein cannot. However, Fny-CMV, Ho-CMV, and LS-CMV 2b proteins, all interacted with AGO1, but while AGO1-Fny2b complexes occurred in the nucleus and cytoplasm, corresponding AGO1-2b complexes for LS-CMV and Ho-CMV accumulated almost exclusively in nuclei. AGO2 transcript accumulation was used to assess the inhibition of AGO1-mediated mRNA degradation. Fny-CMV 2b induced a fivefold increase in AGO2 accumulation, but LS-CMV and Ho-CMV 2b proteins induced only twofold increases. Thus, these 2b proteins bind AGO1 but are less effective at inhibiting AGO1 activity. We conclude that the intracellular localization of 2b-AGO1 complexes influences the degree to which a 2b protein inhibits microRNA-mediated host mRNA degradation and that cytoplasmic AGO1 has the strongest influence on miRNA-mediated cellular mRNA turnover. IMPORTANCE: The cucumber mosaic virus (CMV) 2b protein was among the first discovered viral suppressors of RNA silencing. It has additional pro-viral functions through effects on plant defensive signaling pathways mediated by salicylic acid and jasmonic acid, the abscisic acid pathway and virus-induced drought resistance, and on host plant interactions with insect vectors. Many of these effects occur due to interaction with the important host RNA silencing component Argonaute 1 (AGO1). It was thought that only 2b proteins of "severe" CMV strains interacted with AGO1 and inhibited its microRNA-mediated "slicing" of cellular mRNAs and that the lack of interaction with AGO1 explained the moderate symptoms typically seen in plants infected with mild CMV strains. Our work overthrows this paradigm by showing that mild strain CMV 2b proteins can interact with AGO1, but their in vivo localization prevents them from interacting with AGO1 molecules present in the infected cell cytoplasm.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , Cucumovirus , Proteínas Virales , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Cucumovirus/metabolismo , Arabidopsis/virología , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Enfermedades de las Plantas/virología , Interacciones Huésped-Patógeno , Plantas Modificadas Genéticamente , MicroARNs/metabolismo , MicroARNs/genética , Metiltransferasas
14.
Annu Rev Microbiol ; 74: 1-19, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32453973

RESUMEN

Two strains of good fortune in my career were to stumble upon the Watson-Gilbert laboratory at Harvard when I entered graduate school in 1964, and to study gene regulation in bacteriophage λ when I was there. λ was almost entirely a genetic item a few years before, awaiting biochemical incarnation. Throughout my career I was a relentless consumer of the work of previous and current generations of λ geneticists. Empowered by this background, my laboratory made contributions in two areas. The first was regulation of early gene transcription in λ, the study of which began with the discovery of the Rho transcription termination factor, and the regulatory mechanism of transcription antitermination by the λ N protein, subjects of my thesis work. This was developed into a decades-long program during my career at Cornell, studying the mechanism of transcription termination and antitermination. The second area was the classic problem of prophage induction in response to cellular DNA damage, the study of which illuminated basic cellular processes to survive DNA damage.


Asunto(s)
Bacteriófago lambda/genética , Daño del ADN , ADN , Transcripción Genética , Bacteriófago lambda/fisiología , Regulación de la Expresión Génica , Historia del Siglo XX , Humanos , Masculino , ARN Viral/genética , Investigación/historia , Factores de Transcripción
15.
Stem Cells ; 42(2): 146-157, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37952119

RESUMEN

The expression of large conductance calcium-activated potassium channels (BK channels) in adipose tissue has been identified for years. BK channel deletion can improve metabolism in vivo, but the relative mechanisms remain unclear. Here, we examined the effects of BK channels on the differentiation of adipose-derived stem cells (ADSCs) and the related mechanisms. BKα and ß1 subunits were expressed on adipocytes. We found that both deletion of the KCNMA1 gene, encoding the pore forming α subunit of BK channels, and the BK channel inhibitor paxilline increased the expression of key genes in the peroxisome proliferator activated receptor (PPAR) pathway and promoted adipogenetic differentiation of ADSCs. We also observed that the MAPK-ERK pathway participates in BK channel deficiency-promoted adipogenic differentiation of ADSCs and that ERK inhibitors blocked the differentiation-promoting effect of BK channel deficiency. Hyperplasia of adipocytes is considered beneficial for metabolic health. These results indicate that BK channels play an important role in adipose hyperplasia by regulating the differentiation of ADSCs and may become an important target for studying the pathogenesis and treatment strategies of metabolic disorder-related diseases.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio , Sistema de Señalización de MAP Quinasas , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Hiperplasia , Diferenciación Celular , Adipocitos/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34992136

RESUMEN

Various physical tweezers for manipulating liquid droplets based on optical, electrical, magnetic, acoustic, or other external fields have emerged and revolutionized research and application in medical, biological, and environmental fields. Despite notable progress, the existing modalities for droplet control and manipulation are still limited by the extra responsive additives and relatively poor controllability in terms of droplet motion behaviors, such as distance, velocity, and direction. Herein, we report a versatile droplet electrostatic tweezer (DEST) for remotely and programmatically trapping or guiding the liquid droplets under diverse conditions, such as in open and closed spaces and on flat and tilted surfaces as well as in oil medium. DEST, leveraging on the coulomb attraction force resulting from its electrostatic induction to a droplet, could manipulate droplets of various compositions, volumes, and arrays on various substrates, offering a potential platform for a series of applications, such as high-throughput surface-enhanced Raman spectroscopy detection with single measuring time less than 20 s.


Asunto(s)
Pinzas Ópticas , Electricidad Estática , Acústica , Magnetismo , Espectrometría Raman
17.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074868

RESUMEN

A major goal of linguistics and cognitive science is to understand what class of learning systems can acquire natural language. Until recently, the computational requirements of language have been used to argue that learning is impossible without a highly constrained hypothesis space. Here, we describe a learning system that is maximally unconstrained, operating over the space of all computations, and is able to acquire many of the key structures present in natural language from positive evidence alone. We demonstrate this by providing the same learning model with data from 74 distinct formal languages which have been argued to capture key features of language, have been studied in experimental work, or come from an interesting complexity class. The model is able to successfully induce the latent system generating the observed strings from small amounts of evidence in almost all cases, including for regular (e.g., an , [Formula: see text], and [Formula: see text]), context-free (e.g., [Formula: see text], and [Formula: see text]), and context-sensitive (e.g., [Formula: see text], and xx) languages, as well as for many languages studied in learning experiments. These results show that relatively small amounts of positive evidence can support learning of rich classes of generative computations over structures. The model provides an idealized learning setup upon which additional cognitive constraints and biases can be formalized.


Asunto(s)
Aprendizaje/fisiología , Lingüística/métodos , Humanos , Lenguaje
18.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35115404

RESUMEN

A critical spintronics challenge is to develop molecular wires that render efficiently spin-polarized currents. Interplanar torsional twisting, driven by chiral binucleating ligands in highly conjugated molecular wires, gives rise to large near-infrared rotational strengths. The large scalar product of the electric and magnetic dipole transition moments ([Formula: see text]), which are evident in the low-energy absorptive manifolds of these wires, makes possible enhanced chirality-induced spin selectivity-derived spin polarization. Magnetic-conductive atomic force microscopy experiments and spin-Hall devices demonstrate that these designs point the way to achieve high spin selectivity and large-magnitude spin currents in chiral materials.

19.
BMC Biol ; 22(1): 219, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39343898

RESUMEN

BACKGROUND: Small RNA (sRNAs)- mediated RNA silencing is emerging as a key player in host-microbe interactions. However, its role in fungus-plant interactions relevant to biocontrol of plant diseases is yet to be explored. This study aimed to investigate Dicer (DCL)-mediated endogenous and cross-kingdom gene expression regulation in the biocontrol fungus Clonostachys rosea and wheat roots during interactions. RESULTS: C. rosea Δdcl2 strain exhibited significantly higher root colonization than the WT, whereas no significant differences were observed for Δdcl1 strains. Dual RNA-seq revealed the upregulation of CAZymes, membrane transporters, and effector coding genes in C. rosea, whereas wheat roots responded with the upregulation of stress-related genes and the downregulation of growth-related genes. The expression of many of these genes was downregulated in wheat during the interaction with DCL deletion strains, underscoring the influence of fungal DCL genes on wheat defense response. sRNA sequencing identified 18 wheat miRNAs responsive to C. rosea, and three were predicted to target the C. rosea polyketide synthase gene pks29. Two of these miRNAs (mir_17532_x1 and mir_12061_x13) were observed to enter C. rosea from wheat roots with fluorescence analyses and to downregulate the expression of pks29, showing plausible cross-kingdom RNA silencing of the C. rosea gene by wheat miRNAs. CONCLUSIONS: We provide insights into the mechanisms underlying the interaction between biocontrol fungi and plant roots. Moreover, the study sheds light on the role of sRNA-mediated gene expression regulation in C. rosea-wheat interactions and provides preliminary evidence of cross-kingdom RNA silencing between plants and biocontrol fungi.


Asunto(s)
Hypocreales , Interferencia de ARN , Triticum , Triticum/microbiología , Triticum/genética , Hypocreales/genética , Hypocreales/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Regulación Fúngica de la Expresión Génica , Raíces de Plantas/microbiología , MicroARNs/genética , MicroARNs/metabolismo
20.
Nano Lett ; 24(37): 11567-11572, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39230046

RESUMEN

Rewarming cryopreserved samples requires fast heating to avoid devitrification, a challenge previously attempted by magnetic nanoparticle-mediated hyperthermia. Here, we introduce Fe3O4@SiO2 nanorods as the heating elements to manipulate the heating profile to ensure safe rewarming and address the issue of uneven heating due to inhomogeneous particle distribution. The magnetic anisotropy of the nanorods allows their prealignment in the cryoprotective agent (CPA) during cooling and promotes subsequent rapid rewarming in an alternating magnetic field with the same orientation to prevent devitrification. More importantly, applying an orthogonal static magnetic field at a later stage could decelerate heating, effectively mitigating local overheating and reducing CPA toxicity. Furthermore, this orientational configuration offers more substantial heating deceleration in areas of initially higher heating rates, therefore reducing temperature variations across the sample. The efficacy of this method in regulating heating rate and improving rewarming uniformity has been validated using both gel and porcine artery models.


Asunto(s)
Nanotubos , Animales , Nanotubos/química , Porcinos , Dióxido de Silicio/química , Crioprotectores/química , Criopreservación/métodos , Calefacción , Campos Magnéticos , Calor , Nanopartículas de Magnetita/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA