Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Oecologia ; 204(1): 119-132, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172416

RESUMEN

Mismatches between current and potential species distributions are commonplace due to lags in the response of populations to changing environmental conditions. The prevailing mating system may contribute to such lags where it leads to mating failure at the range edge, but how active dispersers might mitigate these lags using social information to inform dispersal strategies warrants greater exploration. We used an individual-based model to explore how different mating systems for species that actively search for habitat can impose a filter on the ability to colonise empty, fragmented landscapes, and explored how using social information during dispersal can mitigate the lags caused by more constrained mating systems. The mate-finding requirements implemented in two-sex models consistently led to slower range expansion compared to those that were not mate limited (i.e., female only models), even when mating was polygynous. A mate-search settlement strategy reduced the proportion of unmated females at the range edge but had little impact on rate of spread. In contrast, a negative density-dependent settlement strategy resulted in much faster spread, which could be explained by a greater number of long-distance dispersal events. Our findings suggest that even low rates of mating failure at the range edge can lead to considerable lags in range expansion, though dispersal strategies that favour colonising more distant, sparsely occupied habitat patches may effectively mitigate these lags.


Asunto(s)
Ecosistema , Conducta Sexual Animal , Femenino , Animales
2.
New Phytol ; 225(2): 653-658, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31403702

RESUMEN

Plant dispersal mechanisms rely on anatomical and morphological adaptations for the use of physical or biological dispersal vectors. Recently, studies of interactions between the dispersal unit and physical environment have uncovered fluid dynamic mechanisms of seed flight, protective measures against fire, and release mechanisms of explosive dispersers. Although environmental conditions generally dictate dispersal distances, plants are not purely passive players in these processes. Evidence suggests that some plants may enact informed dispersal, where dispersal-related traits are modified according to the environment. This can occur via developmental regulation, but also on shorter timescales via structural remodelling in relation to water availability and temperature. Linking interactions between dispersal mechanisms and environmental conditions will be essential to fully understand population dynamics and distributions.


Asunto(s)
Dispersión de Semillas/fisiología , Animales , Fenómenos Biomecánicos , Ambiente , Modelos Biológicos , Desarrollo de la Planta
3.
Am J Bot ; 107(6): 864-875, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32462674

RESUMEN

PREMISE: Adaptive seed dispersal mechanisms are fundamental to plant fitness, but dispersal advantage is scale-dependent. We tested the hypothesis that informed dispersal in response to an environmental cue enables dispersal by wind on a local scale for Astragalus holmgreniorum, a desert species restricted to swales and wash skirts with overland flow, but prevents longer-distance dispersal by water into unfavorable wash habitats. METHODS: Pod biomechanics in A. holmgreniorum lead to major shape modifications with changes in moisture content. We performed laboratory experiments to examine the interaction of pod shape with wind and water, and conducted field experiments in A. holmgreniorum habitat evaluating the roles of wind, water, and seed predators on dispersal. RESULTS: Dry pods exhibit a flattened crescent shape with partial dehiscence that facilitated wind dispersal by ground tumbling and seed scattering in laboratory experiments. Rain simulation experiments showed that even small precipitation events returned wetted pods to their cylindrical shape and opened the dorsal suture, exposing the seeds. In the field experiments, dry pods were moved locally by wind, whereas rain caused pod opening and washing out of seeds in place. Seed predators had minimal effect on pod movement. CONCLUSIONS: Astragalus holmgreniorum exhibits pod structural remodeling in response to environmental change in a striking and novel demonstration of informed dispersal. Wind-driven movement of dry pods facilitates local seed dispersal, but rain causes pods to open and release seeds, ensuring that they are not transported out of suitable habitats and into active washes where they would be lost from the seed bank.


Asunto(s)
Planta del Astrágalo , Dispersión de Semillas , Ecología , Ecosistema , Semillas , Navíos
4.
Ecol Lett ; 22(1): 45-55, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30450720

RESUMEN

Dispersal is a key ecological process that is strongly influenced by both phenotype and environment. Here, we show that juvenile environment influences dispersal not only by shaping individual phenotypes, but also by changing the phenotypes of neighbouring conspecifics, which influence how individuals disperse. We used a model system (Tribolium castaneum, red flour beetles) to test how the past environment of dispersing individuals and their neighbours influences how they disperse in their current environment. We found that individuals dispersed especially far when exposed to a poor environment as adults if their phenotype, or even one-third of their neighbours' phenotypes, were shaped by a poor environment as juveniles. Juvenile environment therefore shapes dispersal both directly, by influencing phenotype, as well as indirectly, by influencing the external social environment. Thus, the juvenile environment of even a minority of individuals in a group can influence the dispersal of the entire group.


Asunto(s)
Ambiente , Tribolium , Animales , Fenotipo
5.
J Anim Ecol ; 87(3): 838-849, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29344939

RESUMEN

Dispersal is a key process governing the dynamics of socially and spatially structured populations and involves three distinct stages: emigration, transience and settlement. At each stage, individuals have to make movement decisions, which are influenced by social, environmental and individual factors. Yet, a comprehensive understanding of the drivers that influence such decisions is still lacking, particularly for the transient stage during which free-living individuals are inherently difficult to follow. Social circumstances such as the likelihood of encountering conspecifics can be expected to strongly affects decision-making during dispersal, particularly in territorial species where encounters with resident conspecifics are antagonistic. Here, we analysed the movement trajectories of 47 dispersing coalitions of Kalahari meerkats Suricata suricatta through a landscape occupied by constantly monitored resident groups, while simultaneously taking into account environmental and individual characteristics. We used GPS locations collected on resident groups to create a georeferenced social landscape representing the likelihood of encountering resident groups. We used a step-selection function to infer the effect of social, environmental and individual covariates on habitat selection during dispersal. Finally, we created a temporal mismatch between the social landscape and the dispersal event of interest to identify the temporal scale at which dispersers perceive the social landscape. Including information about the social landscape considerably improved our representation of the dispersal trajectory compared to analyses that only accounted for environmental variables. The latter were only marginally selected or avoided by dispersers. Before leaving their natal territory, dispersers selected areas frequently used by their natal group. In contrast, after leaving their natal territory, they selectively used areas where they were less likely to encounter unrelated groups. This pattern was particularly marked in larger dispersing coalitions and when unrelated males were part of the dispersing coalition. Our results suggest that, in socially and spatially structured species, dispersers gather and process social information during dispersal, and that reducing risk of aggression from unrelated resident groups outweighs benefits derived from conspecific attraction. Finally, our work underlines the intimate link between the social structure of a population and dispersal, which affect each other reciprocally.


Asunto(s)
Distribución Animal , Ecosistema , Herpestidae/fisiología , Conducta Social , Animales , Femenino , Masculino , Modelos Biológicos , Dinámica Poblacional , Sudáfrica
6.
Ecology ; 98(10): 2684-2697, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28746975

RESUMEN

Habitat selection theory predicts that natural selection should favor mechanisms allowing individuals to choose habitats associated with the highest fitness prospects. However, identifying sources of information on habitat quality that individuals use to choose their breeding habitat has proved to be difficult. It has also proven difficult to identify dispersal costs that prevent individuals from joining the highest-quality sites. A synthesis that integrates dispersal costs and habitat selection mechanisms across space has remained elusive. Because costs of dispersal are generally distance-dependent, we suggest that a habitat selection strategy of sequential proximity search (SPS) can be favored by natural selection. This strategy requires that animals make decisions at multiple scales: whether to stay or leave the previous breeding site, depending on reproductive success; then, if dispersal is chosen, use information on neighborhood habitat quality to decide whether to stay in the neighborhood or leave, expanding the search area until the nearest suitable site is chosen. SPS minimizes distance-dependent dispersal costs while maximizing benefits of gaining a better habitat. We found evidence of breeding dispersal behavior consistent with this strategy in a kittiwake population stratified into a spatial hierarchy from colonies to nest sites. We used a mixed sequential regression model to study dispersal decisions, indexed by breeding dispersal movement, of 2,558 individuals over 32 yr. Scale-dependent dispersal propensities of kittiwakes varied according to breeding status, breeding experience, sex and individual identity. We suggest that distance-dependent dispersal costs result from strong competition among kittiwakes for nest sites. Individual decisions regarding dispersal (whether to leave or not, and where to go) depend on nesting habitat quality as well as the competitive ability required to keep territory ownership in a previous site, or to acquire a new site; this ability varies according to distance between sites and individual characteristics. Additional studies are needed to establish the generality of SPS in habitat selection.


Asunto(s)
Charadriiformes/fisiología , Ecosistema , Reproducción , Animales , Cruzamiento
7.
Am Nat ; 187(1): 143-50, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27277411

RESUMEN

Previous results showing that lack of information on local population density leads to higher emigration probabilities in unpredictable environments but to lower emigration probabilities in constant or highly predictable scenarios have recently been challenged by Poethke et al. By reimplementing both our model and that of Poethke and colleagues, we demonstrate that our original results indeed hold to the presented critiques and do not contradict previous findings. The comment by Poethke and colleagues does, however, present potentially intriguing results suggesting that negative density-dependent dispersal evolves under white noise for some model formulations. Here, through intermodel comparison, we seek to better understand the source of the differences in results obtained in our study and theirs. We conclude that the apparent negative density dependence reported by Poethke et al. is effectively density independence and that the shape of the reaction norm they obtain is a model artefact. Further, this response provides an opportunity to elaborate on some important issues in evolutionary and ecological modeling regarding (i) the importance of carefully considering different models' assumptions in comparisons among models, (ii) the need to consider the role of stochasticity and uncertainty when presenting and interpreting results from stochastic individual-based models, (iii) the adequate choice of the underlying ecological model that creates the selective pressures determining the evolution of behavioral reaction norms, and (iv) the appropriate choice of mutation models.


Asunto(s)
Distribución Animal , Evolución Biológica , Fenómenos Ecológicos y Ambientales , Densidad de Población , Animales , Simulación por Computador , Modelos Teóricos
8.
Oecologia ; 181(4): 1117-28, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27139427

RESUMEN

Dispersal movements, i.e. movements leading to gene flow, are key behaviours with important, but only partially understood, consequences for the dynamics and evolution of populations. In particular, density-dependent dispersal has been widely described, yet how it is determined by the interaction with individual traits, and whether density effects differ between the three steps of dispersal (departure, transience, and settlement), remains largely unknown. Using a semi-natural landscape, we studied dispersal choices of Cornu aspersum land snails, a species in which negative effects of crowding are well documented, and analysed them using dispersal discrete choice models, a new method allowing the analysis of dispersal decisions by explicitly considering the characteristics of all available alternatives and their interaction with individual traits. Subadults were more dispersive than adults, confirming existing results. In addition, departure and settlement were both density dependent: snails avoided crowded patches at both ends of the dispersal process, and subadults were more reluctant to settle into crowded patches than adults. Moreover, we found support for carry-over effects of release density on subsequent settlement decisions: snails from crowded contexts were more sensitive to density in their subsequent immigration choices. The fact that settlement decisions were informed indicates that costs of prospecting are not as important as previously thought in snails, and/or that snails use alternative ways to collect information, such as indirect social information (e.g. trail following). The observed density-dependent dispersal dynamics may play an important role in the ability of C. aspersum to successfully colonise frequently human-disturbed habitats around the world.


Asunto(s)
Evolución Biológica , Caracoles , Animales , Trastornos del Desarrollo Sexual , Ecosistema , Modelos Teóricos
9.
Evol Ecol ; 33(4): 613-623, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31404198

RESUMEN

Parents can influence offspring dispersal through breeding site selection, competition, or by directly moving their offspring during parental care. Many animals move their young, but the potential role of this behavior in dispersal has rarely been investigated. Neotropical poison frogs (Dendrobatidae) are well known for shuttling their tadpoles from land to water, but the associated movements have rarely been quantified and the potential function of tadpole transport in dispersal has not been addressed. We used miniature radio-transmitters to track the movements of two poison frog species during tadpole transport, and surveyed pool availability in the study area. We found that parental males move farther than expected by the distance to the nearest pool and spread their offspring across multiple pools. We argue that these movement patterns cannot be fully explained by pool quality and availability, and suggest that adaptive benefits related to offspring dispersal also shape the spatial behavior of parental frogs.

10.
Ecol Evol ; 9(7): 4129-4137, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31015993

RESUMEN

Fungal communities often form on ephemeral substrates and dispersal is critical for the persistence of fungi among the islands that form these metacommunities. Within each substrate, competition for space and resources is vital for the local persistence of fungi. The capacity to detect and respond by dispersal away from unfavorable conditions may confer higher fitness in fungi. Informed dispersal theory posits that organisms are predicted to detect information about their surroundings which may trigger a dispersal response. As such, we expect that fungi will increase allocation to dispersal in the presence of a strong competitor.In a laboratory setting, we tested how competition with other filamentous fungi affected the development of conidial pycnidiomata (asexual fruiting bodies) in Phacidium lacerum over 10 days. Phacidium lacerum was not observed to produce more asexual fruiting bodies or produce them earlier when experiencing interspecific competition with other filamentous fungi. However, we found that a trade-off existed between growth rate and allocation to dispersal. We also observed a defensive response to specific interspecific competitors in the form of hyphal melanization of the colony which may have an impact on the growth rate and dispersal trade-off.Our results suggest that P. lacerum have the capacity to detect and respond to competitors by changing their allocation to dispersal and growth. However, allocation to defence may come at a cost to growth and dispersal. Thus, it is likely that optimal life history allocation in fungi constrained to ephemeral resources will depend on the competitive strength of neighbors surrounding them.

11.
Evolution ; 70(11): 2595-2610, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27641712

RESUMEN

Why sexually mature individuals stay in groups as nonreproductive subordinates is central to the evolution of sociality and cooperative breeding. To understand such delayed dispersal, its costs and benefits need to be compared with those of permanently leaving to float through the population. However, comprehensive comparisons, especially regarding differences in future breeding opportunities, are rare. Moreover, extraterritorial prospecting by philopatric individuals has generally been ignored, even though the factors underlying this route to independent breeding may differ from those of strict philopatry or floating. We use a comprehensive predictive framework to explore how various costs, benefits and intrinsic, environmental and social factors explain philopatry, prospecting, and floating in Seychelles warblers (Acrocephalus sechellensis). Not only floaters more likely obtained an independent breeding position before the next season than strictly philopatric individuals, but also suffered higher mortality. Prospecting yielded similar benefits to floating but lower mortality costs, suggesting that it is overall more beneficial than floating and strict philopatry. While prospecting is probably individual-driven, although limited by resource availability, floating likely results from eviction by unrelated breeders. Such differences in proximate and ultimate factors underlying each route to independent breeding highlight the need for simultaneous consideration when studying the evolution of delayed dispersal.


Asunto(s)
Migración Animal , Cruzamiento , Evolución Molecular , Pájaros Cantores/genética , Animales , Femenino , Masculino , Reproducción/genética , Pájaros Cantores/fisiología
12.
PeerJ ; 3: e707, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25648908

RESUMEN

Protandry (prior emergence of males) in insect populations is usually considered to be the result of natural selection acting directly on eclosion timing. When females are monandrous (mate once), males in high density populations benefit from early emergence in the intense scramble competition for mates. In low density populations, however, scramble competition is reduced or absent, and theoretical models predict that protandry will be less favoured. This raises the question of how males behave in heterogeneous landscapes characterized by high density core populations in a low density continuum. We hypothesized that disadvantaged late emerging males in a core population would disperse to the continuum to find mates. We tested this idea using the protandrous, monandrous, pierid butterfly Anthocharis cardamines (the orange-tip) in a core population in Cheshire, northwest England. Over a six-year period, predicted male fitness (the number of matings a male can expect during his residence time, determined by the daily ratio of virgin females to competing males) consistently declined to <1 in late season. This decline affected a large proportion (∼44%) of males in the population and was strongly associated with decreased male recapture-rates, which we attribute to dispersal to the surrounding continuum. In contrast, reanalysis of mark-release-recapture data from an isolated population in Durham, northeast England, showed that in the absence of a continuum very few males (∼3%) emerged when fitness declined to <1 in late season. Hence the existence of a low density continuum may lead to the evolution of plastic dispersal behaviour in high density core populations, maintaining late emerging males which would otherwise be eliminated by selection. This has important theoretical consequences, since a truncated male emergence curve is a key prediction in game theoretic models of emergence timing which has so far received limited support. Our results have implications for conservation, since plastic dispersal behaviour in response to imperfect emergence timing in core (source) populations could help to maintain sink populations in heterogeneous landscapes which would otherwise be driven to extinction by low mate encounter-rates (Allee effects).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA