Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.072
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(10): 2359-2374.e18, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38653240

RESUMEN

Brown adipose tissue (BAT) is best known for thermogenesis. Rodent studies demonstrated that enhanced BAT thermogenesis is tightly associated with increased energy expenditure, reduced body weight, and improved glucose homeostasis. However, human BAT is protective against type 2 diabetes, independent of body weight. The mechanism underlying this dissociation remains unclear. Here, we report that impaired mitochondrial catabolism of branched-chain amino acids (BCAAs) in BAT, by deleting mitochondrial BCAA carriers (MBCs), caused systemic insulin resistance without affecting energy expenditure and body weight. Brown adipocytes catabolized BCAA in the mitochondria as nitrogen donors for the biosynthesis of non-essential amino acids and glutathione. Impaired mitochondrial BCAA-nitrogen flux in BAT resulted in increased oxidative stress, decreased hepatic insulin signaling, and decreased circulating BCAA-derived metabolites. A high-fat diet attenuated BCAA-nitrogen flux and metabolite synthesis in BAT, whereas cold-activated BAT enhanced the synthesis. This work uncovers a metabolite-mediated pathway through which BAT controls metabolic health beyond thermogenesis.


Asunto(s)
Tejido Adiposo Pardo , Aminoácidos de Cadena Ramificada , Resistencia a la Insulina , Mitocondrias , Nitrógeno , Termogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Aminoácidos de Cadena Ramificada/metabolismo , Ratones , Nitrógeno/metabolismo , Mitocondrias/metabolismo , Masculino , Humanos , Metabolismo Energético , Ratones Endogámicos C57BL , Estrés Oxidativo , Insulina/metabolismo , Dieta Alta en Grasa , Adipocitos Marrones/metabolismo , Transducción de Señal
2.
Cell ; 184(10): 2537-2564, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33989548

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide. Its more advanced subtype, nonalcoholic steatohepatitis (NASH), connotes progressive liver injury that can lead to cirrhosis and hepatocellular carcinoma. Here we provide an in-depth discussion of the underlying pathogenetic mechanisms that lead to progressive liver injury, including the metabolic origins of NAFLD, the effect of NAFLD on hepatic glucose and lipid metabolism, bile acid toxicity, macrophage dysfunction, and hepatic stellate cell activation, and consider the role of genetic, epigenetic, and environmental factors that promote fibrosis progression and risk of hepatocellular carcinoma in NASH.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Carcinoma Hepatocelular/patología , Humanos , Hígado/patología , Cirrosis Hepática/patología , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/patología
3.
Cell ; 181(5): 1112-1130.e16, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32470399

RESUMEN

Acute physical activity leads to several changes in metabolic, cardiovascular, and immune pathways. Although studies have examined selected changes in these pathways, the system-wide molecular response to an acute bout of exercise has not been fully characterized. We performed longitudinal multi-omic profiling of plasma and peripheral blood mononuclear cells including metabolome, lipidome, immunome, proteome, and transcriptome from 36 well-characterized volunteers, before and after a controlled bout of symptom-limited exercise. Time-series analysis revealed thousands of molecular changes and an orchestrated choreography of biological processes involving energy metabolism, oxidative stress, inflammation, tissue repair, and growth factor response, as well as regulatory pathways. Most of these processes were dampened and some were reversed in insulin-resistant participants. Finally, we discovered biological pathways involved in cardiopulmonary exercise response and developed prediction models revealing potential resting blood-based biomarkers of peak oxygen consumption.


Asunto(s)
Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Anciano , Biomarcadores/metabolismo , Femenino , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Leucocitos Mononucleares/metabolismo , Estudios Longitudinales , Masculino , Metaboloma , Persona de Mediana Edad , Oxígeno/metabolismo , Consumo de Oxígeno , Proteoma , Transcriptoma
4.
Immunity ; 57(2): 303-318.e6, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38309273

RESUMEN

Production of amphiregulin (Areg) by regulatory T (Treg) cells promotes repair after acute tissue injury. Here, we examined the function of Treg cells in non-alcoholic steatohepatitis (NASH), a setting of chronic liver injury. Areg-producing Treg cells were enriched in the livers of mice and humans with NASH. Deletion of Areg in Treg cells, but not in myeloid cells, reduced NASH-induced liver fibrosis. Chronic liver damage induced transcriptional changes associated with Treg cell activation. Mechanistically, Treg cell-derived Areg activated pro-fibrotic transcriptional programs in hepatic stellate cells via epidermal growth factor receptor (EGFR) signaling. Deletion of Areg in Treg cells protected mice from NASH-dependent glucose intolerance, which also was dependent on EGFR signaling on hepatic stellate cells. Areg from Treg cells promoted hepatocyte gluconeogenesis through hepatocyte detection of hepatic stellate cell-derived interleukin-6. Our findings reveal a maladaptive role for Treg cell-mediated tissue repair functions in chronic liver disease and link liver damage to NASH-dependent glucose intolerance.


Asunto(s)
Intolerancia a la Glucosa , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Anfirregulina/genética , Anfirregulina/metabolismo , Receptores ErbB/metabolismo , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/patología , Linfocitos T Reguladores/metabolismo
5.
Immunity ; 57(6): 1289-1305.e9, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38772366

RESUMEN

Adipose tissue group 2 innate lymphoid cells (ILC2s) help maintain metabolic homeostasis by sustaining type 2 immunity and promoting adipose beiging. Although impairment of the ILC2 compartment contributes to obesity-associated insulin resistance, the underlying mechanisms have not been elucidated. Here, we found that ILC2s in obese mice and humans exhibited impaired liver kinase B1 (LKB1) activation. Genetic ablation of LKB1 disrupted ILC2 mitochondrial metabolism and suppressed ILC2 responses, resulting in exacerbated insulin resistance. Mechanistically, LKB1 deficiency induced aberrant PD-1 expression through activation of NFAT, which in turn enhanced mitophagy by suppressing Bcl-xL expression. Blockade of PD-1 restored the normal functions of ILC2s and reversed obesity-induced insulin resistance in mice. Collectively, these data present the LKB1-PD-1 axis as a promising therapeutic target for the treatment of metabolic disease.


Asunto(s)
Tejido Adiposo , Homeostasis , Resistencia a la Insulina , Linfocitos , Mitocondrias , Obesidad , Receptor de Muerte Celular Programada 1 , Proteínas Serina-Treonina Quinasas , Animales , Resistencia a la Insulina/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Mitocondrias/metabolismo , Humanos , Tejido Adiposo/metabolismo , Tejido Adiposo/inmunología , Obesidad/inmunología , Obesidad/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Inmunidad Innata , Masculino , Mitofagia/inmunología , Quinasas de la Proteína-Quinasa Activada por el AMP
6.
Cell ; 175(1): 146-158.e15, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30100182

RESUMEN

Pathogen virulence exists on a continuum. The strategies that drive symptomatic or asymptomatic infections remain largely unknown. We took advantage of the concept of lethal dose 50 (LD50) to ask which component of individual non-genetic variation between hosts defines whether they survive or succumb to infection. Using the enteric pathogen Citrobacter, we found no difference in pathogen burdens between healthy and symptomatic populations. Iron metabolism-related genes were induced in asymptomatic hosts compared to symptomatic or naive mice. Dietary iron conferred complete protection without influencing pathogen burdens, even at 1000× the lethal dose of Citrobacter. Dietary iron induced insulin resistance, increasing glucose levels in the intestine that were necessary and sufficient to suppress pathogen virulence. A short course of dietary iron drove the selection of attenuated Citrobacter strains that can transmit and asymptomatically colonize naive hosts, demonstrating that environmental factors and cooperative metabolic strategies can drive conversion of pathogens toward commensalism.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Hierro/metabolismo , Virulencia/fisiología , Animales , Infecciones Asintomáticas , Citrobacter rodentium/metabolismo , Citrobacter rodentium/patogenicidad , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/microbiología , Suplementos Dietéticos , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Femenino , Resistencia a la Insulina/fisiología , Intestino Delgado/microbiología , Hierro/farmacología , Dosificación Letal Mediana , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos DBA
7.
Cell ; 172(4): 731-743.e12, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29425491

RESUMEN

The noncanonical IKK family member TANK-binding kinase 1 (TBK1) is activated by pro-inflammatory cytokines, but its role in controlling metabolism remains unclear. Here, we report that the kinase uniquely controls energy metabolism. Tbk1 expression is increased in adipocytes of HFD-fed mice. Adipocyte-specific TBK1 knockout (ATKO) attenuates HFD-induced obesity by increasing energy expenditure; further studies show that TBK1 directly inhibits AMPK to repress respiration and increase energy storage. Conversely, activation of AMPK under catabolic conditions can increase TBK1 activity through phosphorylation, mediated by AMPK's downstream target ULK1. Surprisingly, ATKO also exaggerates adipose tissue inflammation and insulin resistance. TBK1 suppresses inflammation by phosphorylating and inducing the degradation of the IKK kinase NIK, thus attenuating NF-κB activity. Moreover, TBK1 mediates the negative impact of AMPK activity on NF-κB activation. These data implicate a unique role for TBK1 in mediating bidirectional crosstalk between energy sensing and inflammatory signaling pathways in both over- and undernutrition.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Metabolismo Energético , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos/patología , Tejido Adiposo/patología , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Línea Celular Transformada , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteínas Serina-Treonina Quinasas/genética , Quinasa de Factor Nuclear kappa B
8.
Cell ; 171(2): 372-384.e12, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28942920

RESUMEN

MiRNAs are regulatory molecules that can be packaged into exosomes and secreted from cells. Here, we show that adipose tissue macrophages (ATMs) in obese mice secrete miRNA-containing exosomes (Exos), which cause glucose intolerance and insulin resistance when administered to lean mice. Conversely, ATM Exos obtained from lean mice improve glucose tolerance and insulin sensitivity when administered to obese recipients. miR-155 is one of the miRNAs overexpressed in obese ATM Exos, and earlier studies have shown that PPARγ is a miR-155 target. Our results show that miR-155KO animals are insulin sensitive and glucose tolerant compared to controls. Furthermore, transplantation of WT bone marrow into miR-155KO mice mitigated this phenotype. Taken together, these studies show that ATMs secrete exosomes containing miRNA cargo. These miRNAs can be transferred to insulin target cell types through mechanisms of paracrine or endocrine regulation with robust effects on cellular insulin action, in vivo insulin sensitivity, and overall glucose homeostasis.


Asunto(s)
Tejido Adiposo/citología , Resistencia a la Insulina , Macrófagos/metabolismo , MicroARNs/metabolismo , Adipocitos/metabolismo , Animales , Células Cultivadas , Glucosa/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Transducción de Señal
9.
Cell ; 171(4): 824-835.e18, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29056338

RESUMEN

Insulin resistance is a hallmark of diabetes and an unmet clinical need. Insulin inhibits hepatic glucose production and promotes lipogenesis by suppressing FOXO1-dependent activation of G6pase and inhibition of glucokinase, respectively. The tight coupling of these events poses a dual conundrum: mechanistically, as the FOXO1 corepressor of glucokinase is unknown, and clinically, as inhibition of glucose production is predicted to increase lipogenesis. Here, we report that SIN3A is the insulin-sensitive FOXO1 corepressor of glucokinase. Genetic ablation of SIN3A abolishes nutrient regulation of glucokinase without affecting other FOXO1 target genes and lowers glycemia without concurrent steatosis. To extend this work, we executed a small-molecule screen and discovered selective inhibitors of FOXO-dependent glucose production devoid of lipogenic activity in hepatocytes. In addition to identifying a novel mode of insulin action, these data raise the possibility of developing selective modulators of unliganded transcription factors to dial out adverse effects of insulin sensitizers.


Asunto(s)
Proteína Forkhead Box O1/antagonistas & inhibidores , Glucosa/metabolismo , Hepatocitos/metabolismo , Resistencia a la Insulina , Acetilación , Animales , Células Cultivadas , Proteína Forkhead Box O1/química , Glucoquinasa/genética , Glucoquinasa/metabolismo , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Células HEK293 , Hepatocitos/enzimología , Histona Desacetilasas/metabolismo , Humanos , Lipogénesis/efectos de los fármacos , Ratones , Ratones Noqueados , Fosforilación , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3
10.
Cell ; 169(1): 148-160.e15, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28340340

RESUMEN

Type 2 diabetes (T2D) is a worldwide epidemic with a medical need for additional targeted therapies. Suppression of hepatic glucose production (HGP) effectively ameliorates diabetes and can be exploited for its treatment. We hypothesized that targeting PGC-1α acetylation in the liver, a chemical modification known to inhibit hepatic gluconeogenesis, could be potentially used for treatment of T2D. Thus, we designed a high-throughput chemical screen platform to quantify PGC-1α acetylation in cells and identified small molecules that increase PGC-1α acetylation, suppress gluconeogenic gene expression, and reduce glucose production in hepatocytes. On the basis of potency and bioavailability, we selected a small molecule, SR-18292, that reduces blood glucose, strongly increases hepatic insulin sensitivity, and improves glucose homeostasis in dietary and genetic mouse models of T2D. These studies have important implications for understanding the regulatory mechanisms of glucose metabolism and treatment of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Gluconeogénesis/efectos de los fármacos , Hipoglucemiantes/administración & dosificación , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/antagonistas & inhibidores , Acetilación , Animales , Glucemia/metabolismo , Células Cultivadas , Glucosa/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Ensayos Analíticos de Alto Rendimiento , Resistencia a la Insulina , Ratones , Factores de Transcripción p300-CBP/metabolismo
11.
Cell ; 167(4): 973-984.e12, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27814523

RESUMEN

In obesity, macrophages and other immune cells accumulate in insulin target tissues, promoting a chronic inflammatory state and insulin resistance. Galectin-3 (Gal3), a lectin mainly secreted by macrophages, is elevated in both obese subjects and mice. Administration of Gal3 to mice causes insulin resistance and glucose intolerance, whereas inhibition of Gal3, through either genetic or pharmacologic loss of function, improved insulin sensitivity in obese mice. In vitro treatment with Gal3 directly enhanced macrophage chemotaxis, reduced insulin-stimulated glucose uptake in myocytes and 3T3-L1 adipocytes and impaired insulin-mediated suppression of glucose output in primary mouse hepatocytes. Importantly, we found that Gal3 can bind directly to the insulin receptor (IR) and inhibit downstream IR signaling. These observations elucidate a novel role for Gal3 in hepatocyte, adipocyte, and myocyte insulin resistance, suggesting that Gal3 can link inflammation to decreased insulin sensitivity. Inhibition of Gal3 could be a new approach to treat insulin resistance.


Asunto(s)
Galectina 3/sangre , Galectina 3/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Animales , Quimiotaxis , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Galectina 3/antagonistas & inhibidores , Galectina 3/genética , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Insulina/sangre , Resistencia a la Insulina , Macrófagos/inmunología , Macrófagos/patología , Ratones , Ratones Noqueados , Células Musculares/metabolismo , Células Musculares/patología , Obesidad/inmunología , Obesidad/metabolismo , Obesidad/patología
12.
Cell ; 167(4): 1052-1066.e18, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27814504

RESUMEN

It is widely believed that inflammation associated with obesity has an important role in the development of type 2 diabetes. IκB kinase beta (IKKß) is a crucial kinase that responds to inflammatory stimuli such as tumor necrosis factor α (TNF-α) by initiating a variety of intracellular signaling cascades and is considered to be a key element in the inflammation-mediated development of insulin resistance. We show here, contrary to expectation, that IKKß-mediated inflammation is a positive regulator of hepatic glucose homeostasis. IKKß phosphorylates the spliced form of X-Box Binding Protein 1 (XBP1s) and increases the activity of XBP1s. We have used three experimental approaches to enhance the IKKß activity in the liver of obese mice and observed increased XBP1s activity, reduced ER stress, and a significant improvement in insulin sensitivity and consequently in glucose homeostasis. Our results reveal a beneficial role of IKKß-mediated hepatic inflammation in glucose homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Estrés del Retículo Endoplásmico , Glucosa/metabolismo , Quinasa I-kappa B/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Línea Celular Tumoral , Homeostasis , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Fosforilación , Estabilidad Proteica
13.
Genes Dev ; 35(5-6): 307-328, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649162

RESUMEN

Obesity is the most common cause of insulin resistance, and the current obesity epidemic is driving a parallel rise in the incidence of T2DM. It is now widely recognized that chronic, subacute tissue inflammation is a major etiologic component of the pathogenesis of insulin resistance and metabolic dysfunction in obesity. Here, we summarize recent advances in our understanding of immunometabolism. We discuss the characteristics of chronic inflammation in the major metabolic tissues and how obesity triggers these events, including a focus on the role of adipose tissue hypoxia and macrophage-derived exosomes. Last, we also review current and potential new therapeutic strategies based on immunomodulation.


Asunto(s)
Inflamación , Enfermedades Metabólicas/fisiopatología , Tejido Adiposo/citología , Tejido Adiposo/fisiopatología , Hipoxia de la Célula , Enfermedad Crónica , Exosomas/metabolismo , Humanos , Inmunomodulación , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/inmunología , Enfermedades Metabólicas/terapia
14.
Physiol Rev ; 101(3): 907-993, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33356916

RESUMEN

Lipodystrophies have been recognized since at least the nineteenth century and, despite their rarity, tended to attract considerable medical attention because of the severity and somewhat paradoxical nature of the associated metabolic disease that so closely mimics that of obesity. Within the last 20 yr most of the monogenic subtypes have been characterized, facilitating family genetic screening and earlier disease detection as well as providing important insights into adipocyte biology and the systemic consequences of impaired adipocyte function. Even more recently, compelling genetic studies have suggested that subtle partial lipodystrophy is likely to be a major factor in prevalent insulin-resistant type 2 diabetes mellitus (T2DM), justifying the longstanding interest in these disorders. This progress has also underpinned novel approaches to treatment that, in at least some patients, can be of considerable therapeutic benefit.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Dislipidemias/metabolismo , Lipodistrofia/metabolismo , Obesidad/metabolismo , Animales , Humanos , Resistencia a la Insulina/fisiología
15.
EMBO J ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965418

RESUMEN

The gut microbiota and their metabolites are closely linked to obesity-related diseases, such as type 2 diabetes, but their causal relationship and underlying mechanisms remain largely elusive. Here, we found that dysbiosis-induced tyramine (TA) suppresses high-fat diet (HFD)-mediated insulin resistance in both Drosophila and mice. In Drosophila, HFD increases cytosolic Ca2+ signaling in enterocytes, which, in turn, suppresses intestinal lipid levels. 16 S rRNA sequencing and metabolomics revealed that HFD leads to increased prevalence of tyrosine decarboxylase (Tdc)-expressing bacteria and resulting tyramine production. Tyramine acts on the tyramine receptor, TyrR1, to promote cytosolic Ca2+ signaling and activation of the CRTC-CREB complex to transcriptionally suppress dietary lipid digestion and lipogenesis in enterocytes, while promoting mitochondrial biogenesis. Furthermore, the tyramine-induced cytosolic Ca2+ signaling is sufficient to suppress HFD-induced obesity and insulin resistance in Drosophila. In mice, tyramine intake also improves glucose tolerance and insulin sensitivity under HFD. These results indicate that dysbiosis-induced tyramine suppresses insulin resistance in both flies and mice under HFD, suggesting a potential therapeutic strategy for related metabolic disorders, such as diabetes.

16.
Genes Dev ; 34(5-6): 321-340, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32029456

RESUMEN

Poly(ADP-ribose) polymerases (PARPs or ARTDs), originally described as DNA repair factors, have metabolic regulatory roles. PARP1, PARP2, PARP7, PARP10, and PARP14 regulate central and peripheral carbohydrate and lipid metabolism and often channel pathological disruptive metabolic signals. PARP1 and PARP2 are crucial for adipocyte differentiation, including the commitment toward white, brown, or beige adipose tissue lineages, as well as the regulation of lipid accumulation. Through regulating adipocyte function and organismal energy balance, PARPs play a role in obesity and the consequences of obesity. These findings can be translated into humans, as evidenced by studies on identical twins and SNPs affecting PARP activity.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Diferenciación Celular , Poli(ADP-Ribosa) Polimerasas/metabolismo , Metabolismo de los Hidratos de Carbono , Humanos , Metabolismo de los Lípidos/fisiología
17.
EMBO J ; 42(23): e114086, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37807855

RESUMEN

The immune response is an energy-demanding process that must be coordinated with systemic metabolic changes redirecting nutrients from stores to the immune system. Although this interplay is fundamental for the function of the immune system, the underlying mechanisms remain elusive. Our data show that the pro-inflammatory polarization of Drosophila macrophages is coupled to the production of the insulin antagonist ImpL2 through the activity of the transcription factor HIF1α. ImpL2 production, reflecting nutritional demands of activated macrophages, subsequently impairs insulin signaling in the fat body, thereby triggering FOXO-driven mobilization of lipoproteins. This metabolic adaptation is fundamental for the function of the immune system and an individual's resistance to infection. We demonstrated that analogically to Drosophila, mammalian immune-activated macrophages produce ImpL2 homolog IGFBP7 in a HIF1α-dependent manner and that enhanced IGFBP7 production by these cells induces mobilization of lipoproteins from hepatocytes. Hence, the production of ImpL2/IGFBP7 by macrophages represents an evolutionarily conserved mechanism by which macrophages alleviate insulin signaling in the central metabolic organ to secure nutrients necessary for their function upon bacterial infection.


Asunto(s)
Infecciones Bacterianas , Proteínas de Drosophila , Resistencia a la Insulina , Animales , Antagonistas de Insulina/metabolismo , Antagonistas de Insulina/farmacología , Drosophila/metabolismo , Insulina/metabolismo , Macrófagos/metabolismo , Infecciones Bacterianas/metabolismo , Mamíferos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteínas de Drosophila/metabolismo
18.
Proc Natl Acad Sci U S A ; 121(17): e2320934121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38630726

RESUMEN

Cullin RING E3 ligases (CRL) have emerged as key regulators of disease-modifying pathways and therapeutic targets. Cullin3 (Cul3)-containing CRL (CRL3) has been implicated in regulating hepatic insulin and oxidative stress signaling. However, CRL3 function in liver pathophysiology is poorly defined. Here, we report that hepatocyte Cul3 knockout results in rapid resolution of steatosis in obese mice. However, the remarkable resistance of hepatocyte Cul3 knockout mice to developing steatosis does not lead to overall metabolic improvement but causes systemic metabolic disturbances. Liver transcriptomics analysis identifies that CRL3 inactivation causes persistent activation of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant defense pathway, which also reprograms the lipid transcriptional network to prevent TG storage. Furthermore, global metabolomics reveals that NRF2 activation induces numerous NAD+-consuming aldehyde dehydrogenases to increase the cellular NADH/NAD+ ratio, a redox imbalance termed NADH reductive stress that inhibits the glycolysis-citrate-lipogenesis axis in Cul3 knockout livers. As a result, this NRF2-induced cellular lipid storage defect promotes hepatic ceramide accumulation, elevates circulating fatty acids, and worsens systemic insulin resistance in a vicious cycle. Hepatic lipid accumulation is restored, and liver injury and hyperglycemia are attenuated when NRF2 activation and NADH reductive stress are abolished in hepatocyte Cul3/Nrf2 double-knockout mice. The resistance to hepatic steatosis, hyperglycemia, and NADH reductive stress are observed in hepatocyte Keap1 knockout mice with NRF2 activation. In summary, our study defines a critical role of CRL3 in hepatic metabolic regulation and demonstrates that the CRL3 downstream NRF2 overactivation causes hepatic metabolic maladaptation to obesity and insulin resistance.


Asunto(s)
Hígado Graso , Hiperglucemia , Resistencia a la Insulina , Animales , Ratones , Ubiquitina-Proteína Ligasas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , NAD/metabolismo , Proteínas Cullin/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Ratones Noqueados , Lípidos
19.
Proc Natl Acad Sci U S A ; 121(17): e2401716121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625937

RESUMEN

Serine phosphorylations on insulin receptor substrate 1 (IRS-1) by diverse kinases aoccur widely during obesity-, stress-, and inflammation-induced conditions in models of insulin resistance and type 2 diabetes. In this study, we define a region within the human IRS-1, which is directly C-terminal to the PTB domain encompassing numerous serine phosphorylation sites including Ser307 (mouse Ser302) and Ser312 (mouse 307) creating a phosphorylation insulin resistance (PIR) domain. We demonstrate that the IRS-1 PTB-PIR with its unphosphorylated serine residues interacts with the insulin receptor (IR) but loses the IR-binding when they are phosphorylated. Surface plasmon resonance studies further confirm that the PTB-PIR binds stronger to IR than just the PTB domain, and that phosphorylations at Ser307, Ser312, Ser315, and Ser323 within the PIR domain result in abrogating the binding. Insulin-responsive cells containing the mutant IRS-1 with all these four serines changed into glutamates to mimic phosphorylations show decreased levels of phosphorylations in IR, IRS-1, and AKT compared to the wild-type IRS-1. Hydrogen-deuterium exchange mass spectrometry experiments indicating the PIR domain interacting with the N-terminal lobe and the hinge regions of the IR kinase domain further suggest the possibility that the IRS-1 PIR domain protects the IR from the PTP1B-mediated dephosphorylation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Ratones , Humanos , Animales , Fosforilación , Serina/metabolismo , Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Línea Celular , Fosfoproteínas/metabolismo , Insulina/metabolismo
20.
Annu Rev Physiol ; 85: 363-381, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36260807

RESUMEN

Insulin action is impaired in type 2 diabetes. The functions of the hormone are an integrated product of insulin secretion from pancreatic ß-cells and insulin clearance by receptor-mediated endocytosis and degradation, mostly in liver (hepatocytes) and, to a lower extent, in extrahepatic peripheral tissues. Substantial evidence indicates that genetic or acquired abnormalities of insulin secretion or action predispose to type 2 diabetes. In recent years, along with the discovery of the molecular foundation of receptor-mediated insulin clearance, such as through the membrane glycoprotein CEACAM1, a consensus has begun to emerge that reduction of insulin clearance contributes to the disease process. In this review, we consider the evidence suggesting a pathogenic role for reduced insulin clearance in insulin resistance, obesity, hepatic steatosis, and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Insulina/metabolismo , Hígado/metabolismo , Obesidad , Enfermedad del Hígado Graso no Alcohólico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA