Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Eur J Immunol ; 54(4): e2250318, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38072999

RESUMEN

Innate lymphocytes comprise cytotoxic natural killer (NK) cells and tissue-resident innate lymphoid cells (ILC) that are subgrouped according to their cytokine profiles into group 1 ILC (ILC1), ILC2, and ILC3. However, cell surface receptors unambiguously defining or specifically activating such ILC subsets are scarcely known. Here, we report on the physiologic expression of the human activating C-type lectin-like receptor (CTLR) NKp65, a high-affinity receptor for the CTLR keratinocyte-associated C-type lectin (KACL). Tracking rare NKp65 transcripts in human blood, we identify ILC3 to selectively express NKp65. NKp65 expression not only demarcates "bona fide" ILC3 from likewise RORγt-expressing ILC precursors and lymphoid tissue inducer cells but also from mature NK cells which acquire the NKp65-relative NKp80 during a Notch-dependent differentiation from NKp65+ precursor cells. Hence, ILC3 and NK cells mutually exclusively and interdependently express the genetically coupled sibling receptors NKp65 and NKp80. Much alike NKp80, NKp65 promotes cytotoxicity by innate lymphocytes which may become relevant during pathophysiological reprogramming of ILC3. Altogether, we report the selective expression of the activating immunoreceptor NKp65 by ILC3 demarcating ILC3 from mature NK cells and endowing ILC3 with a dedicated immunosensor for the epidermal immune barrier.


Asunto(s)
Técnicas Biosensibles , Inmunidad Innata , Humanos , Inmunoensayo , Células Asesinas Naturales , Lectinas Tipo C/metabolismo
2.
J Biol Chem ; 299(11): 105325, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37805141

RESUMEN

In multicellular organisms, a variety of lipid-protein particles control the systemic flow of triacylglycerides, cholesterol, and fatty acids between cells in different tissues. The chemical modification by oxidation of these particles can trigger pathological responses, mediated by a group of membrane proteins termed scavenger receptors. The lectin-like oxidized low-density lipoprotein (LOX-1) scavenger receptor binds to oxidized low-density lipoprotein (oxLDL) and mediates both signaling and trafficking outcomes. Here, we identified five synthetic proteins termed Affimers from a phage display library, each capable of binding recombinant LOX-1 extracellular (oxLDL-binding) domain with high specificity. These Affimers, based on a phytocystatin scaffold with loop regions of variable sequence, were able to bind to the plasma membrane of HEK293T cells exclusively when human LOX-1 was expressed. Binding and uptake of fluorescently labeled oxLDL by the LOX-1-expressing cell model was inhibited with subnanomolar potency by all 5 Affimers. ERK1/2 activation, stimulated by oxLDL binding to LOX-1, was also significantly inhibited (p < 0.01) by preincubation with LOX-1-specific Affimers, but these Affimers had no direct agonistic effect. Molecular modeling indicated that the LOX-1-specific Affimers bound predominantly via their variable loop regions to the surface of the LOX-1 lectin-like domain that contains a distinctive arrangement of arginine residues previously implicated in oxLDL binding, involving interactions with both subunits of the native, stable scavenger receptor homodimer. These data provide a new class of synthetic tools to probe and potentially modulate the oxLDL/LOX-1 interaction that plays an important role in vascular disease.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Receptores Depuradores de Clase E , Humanos , Receptores Depuradores de Clase E/genética , Receptores Depuradores de Clase E/química , Receptores Depuradores de Clase E/metabolismo , Células HEK293 , Lipoproteínas LDL/metabolismo , Receptores Depuradores/metabolismo , Lectinas/metabolismo
3.
Exp Eye Res ; 238: 109727, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972749

RESUMEN

Obesity is a significant health concern that leads to impaired vascular function and subsequent abnormalities in various organs. The impact of obesity on ocular blood vessels, however, remains largely unclear. In this study, we examined the hypothesis that obesity induced by high-fat diet produces vascular endothelial dysfunction in the ophthalmic artery. Mice were subjected to a high-fat diet for 20 weeks, while age-matched controls were maintained on a standard diet. Reactivity of isolated ophthalmic artery segments was assessed in vitro. Reactive oxygen species (ROS) were quantified in cryosections by dihydroethidium (DHE) staining. Redox gene expression was determined in ophthalmic artery explants by real-time PCR. Furthermore, the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), the receptor for advanced glycation end products (RAGE), and of the lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) was determined in cryosections using immunofluorescence microscopy. Ophthalmic artery segments from mice on a high-fat diet exhibited impaired vasodilation responses to the endothelium-dependent vasodilator acetylcholine, while endothelium-independent responses to nitroprusside remained preserved. DHE staining intensity in the vascular wall was notably stronger in mice on a high-fat diet. Messenger RNA expression for NOX2 was elevated in the ophthalmic artery of mice subjected to high fat diet. Likewise, immunostainings revealed increased expression of NOX2 and of RAGE, but not of LOX-1. These findings suggest that a high-fat diet triggers endothelial dysfunction by inducing oxidative stress in the ophthalmic artery via involvement of RAGE and NOX2.


Asunto(s)
Dieta Alta en Grasa , Arteria Oftálmica , Enfermedades Vasculares , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Endotelio Vascular/metabolismo , Obesidad , Arteria Oftálmica/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Receptores Depuradores de Clase E/genética , Receptores Depuradores de Clase E/metabolismo , Enfermedades Vasculares/metabolismo , Vasodilatación
4.
Gastric Cancer ; 27(3): 506-518, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386237

RESUMEN

BACKGROUND: Advanced gastric cancer (GC) has a poor prognosis. This study aimed to identify novel GC-related genes as potential therapeutic targets. METHODS: Killer cell lectin-like receptor G2 (KLRG2) was identified as a candidate gene by transcriptome analysis of metastatic GC tissues. Small interfering RNA-mediated KLRG2 knockdown in human GC cell lines was used to investigate KLRG2 involvement in signaling pathways and functional behaviors in vitro and in vivo. Clinicopathological data were analyzed in patients stratified according to tumor KLRG2 mRNA expression. RESULTS: KLRG2 knockdown in GC cells decreased cell proliferation, migration, and invasion; caused cell cycle arrest in G2/M phase; induced apoptosis via caspase activation; suppressed JAK/STAT and MAPK-ERK1/2 pathway activities; and upregulated p53 and p38 MAPK activities. In mouse xenograft models of peritoneal metastasis, the number and weight of disseminated GC nodules were decreased by KLRG2 knockdown. High tumor levels of KLRG2 mRNA were significantly associated with lower 5-year overall survival (OS) and relapse-free survival (RFS) rates in patients with Stage I-III GC (5-year OS rate: 64.4% vs. 80.0%, P = 0.009; 5-year RFS rate: 62.8% vs. 78.1%, P = 0.030). CONCLUSIONS: KLRG2 knockdown attenuated the malignant phenotypes of GC cells via downregulation of JAK/STAT and MAPK-ERK1/2 pathway activity and upregulation of p38 MAPK and p53. Targeted suppression of KLRG2 may serve as a new treatment approach for GC.


Asunto(s)
Quinasas Janus , Neoplasias Gástricas , Humanos , Animales , Ratones , Quinasas Janus/genética , Quinasas Janus/metabolismo , Transducción de Señal , Neoplasias Gástricas/patología , Sistema de Señalización de MAP Quinasas , Proteína p53 Supresora de Tumor/genética , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Proliferación Celular/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , ARN Mensajero/metabolismo , Receptores Similares a Lectina de Células NK/genética , Receptores Similares a Lectina de Células NK/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
5.
Thromb J ; 22(1): 27, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504248

RESUMEN

C-type lectin-like receptor-2 (CLEC-2) is a member of the C-type lectin superfamily of cell surface receptors. The first confirmed endogenous and exogenous ligands of CLEC-2 are podoplanin and rhodocytin, respectively. CLEC-2 is expressed on the surface of platelets, which participates in platelet activation and aggregation by binding with its ligands. CLEC-2 and its ligands are involved in pathophysiological processes, such as atherosclerosis, cancer, inflammatory thrombus status, maintenance of vascular wall integrity, and cancer-related thrombosis. In the last 5 years, different anti- podoplanin antibody types have been developed for the treatment of cancers, such as glioblastoma and lung cancer. New tests and new diagnostics targeting CLEC-2 are also discussed. CLEC-2 mediates thrombosis in various pathological states, but CLEC-2-specific deletion does not affect normal hemostasis, which would provide a new therapeutic tool for many thromboembolic diseases. The CLEC-2-podoplanin interaction is a target for cancer treatment. CLEC-2 may be applied in clinical practice and play a therapeutic role.

6.
Platelets ; 34(1): 2281941, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38010137

RESUMEN

Kappa-carrageenan (KCG), which is used to induce thrombosis in laboratory animals for antithrombotic drug screening, can trigger platelet aggregation. However, the cell-surface receptor and related signaling pathways remain unclear. In this study, we investigated the molecular basis of KCG-induced platelet activation using light-transmittance aggregometry, flow cytometry, western blotting, and surface plasmon resonance assays using platelets from platelet receptor-deficient mice and recombinant proteins. KCG-induced tail thrombosis was also evaluated in mice lacking the platelet receptor. We found that KCG induces platelet aggregation with α-granule secretion, activated integrin αIIbß3, and phosphatidylserine exposure. As this aggregation was significantly inhibited by the Src family kinase inhibitor and spleen tyrosine kinase (Syk) inhibitor, a tyrosine kinase-dependent pathway is required. Platelets exposed to KCG exhibited intracellular tyrosine phosphorylation of Syk, linker activated T cells, and phospholipase C gamma 2. KCG-induced platelet aggregation was abolished in platelets from C-type lectin-like receptor-2 (CLEC-2)-deficient mice, but not in platelets pre-treated with glycoprotein VI-blocking antibody, JAQ1. Surface plasmon resonance assays showed a direct association between murine/human recombinant CLEC-2 and KCG. KCG-induced thrombosis and thrombocytopenia were significantly inhibited in CLEC-2-deficient mice. Our findings show that KCG induces platelet activation via CLEC-2.


Thrombosis is a serious medical condition that occurs when blood clots form in the blood vessels and can lead to heart attacks or strokes. Animal models are important for evaluating the effectiveness of drugs in thrombosis treatment. Kappa-carrageenan (KCG) is a food thickener and a substance used to induce clot formation in laboratory animals. In this study, we investigated the molecular basis of KCG-induced platelet activation, which is an important step in thrombosis development. We found that KCG activates platelets via a receptor called C-type lectin-like receptor 2 (CLEC-2), leading to a prothrombotic state in mice. We also showed that KCG-induced tail thrombosis (CTT) is significantly inhibited in CLEC-2 deficient mice. Our findings suggest that CLEC-2-mediated platelet activation plays a key role in the pathogenesis of thrombosis and CLEC-2 May participate in innate immunity as a receptor for sulfate-polysaccharide.Abbreviation; CLEC-2: C-type lectin-like receptor 2; CRP: collagen-related peptide; CTT: KCGN-induced tail thrombosis; DIC: disseminated intravascular coagulation; EDTA: ethylenediaminetetraacetic acid; GPVI: glycoprotein VI; HRP: horseradish peroxidase; KCG: Κ-Carrageenan; LAT: linker activated T cells; LDS: lithium dodecyl sulfate; LTA: light-transmittance aggregometry; MFI: mean fluorescence intensity; PFA: paraformaldehyde; PLCγ2: phospholipase C gamma 2; PS: phosphatidylserine; Syk: spleen tyrosine kinase; Co-HP: Cobalt-hematoporphyrin.


Asunto(s)
Glicoproteínas de Membrana , Trombosis , Animales , Humanos , Ratones , Carragenina/efectos adversos , Carragenina/metabolismo , Glicoproteínas de Membrana/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Cola (estructura animal)/metabolismo , Agregación Plaquetaria , Plaquetas/metabolismo , Activación Plaquetaria , Quinasa Syk/metabolismo , Fosforilación , Proteínas Portadoras/metabolismo , Trombosis/metabolismo
7.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175930

RESUMEN

CLEC16A is emerging as an important genetic risk factor for several autoimmune disorders and for Parkinson disease (PD), opening new avenues for translational research and therapeutic development. While the exact role of CLEC16A in health and disease is still being elucidated, the gene plays a critical role in the regulation of autophagy, mitophagy, endocytosis, intracellular trafficking, immune function, and in biological processes such as insulin secretion and others that are important to cellular homeostasis. As shown in both human and animal modeling studies, CLEC16A hypofunction predisposes to both autoinflammatory phenotype and neurodegeneration. While the two are clearly related, further functional studies are needed to fully understand the mechanisms involved for optimized therapeutic interventions. Based on recent data, mitophagy-inducing drugs may be warranted, and such therapy should be tested in clinical trials as these drugs would tackle the underlying pathogenic mechanism (s) and could treat or prevent symptoms of autoimmunity and neurodegeneration in individuals with CLEC16A risk variants. Accordingly, interventions directed at reversing the dysregulated mitophagy and the consequences of loss of function of CLEC16A without activating other detrimental cellular pathways could present an effective therapy. This review presents the emerging role of CLEC16A in health and disease and provides an update on the disease processes that are attributed to variants located in the CLEC16A gene, which are responsible for autoimmune disorders and neurodegeneration with emphasis on how this information is being translated into practical and effective applications in the clinic.


Asunto(s)
Enfermedades Autoinmunes , Lectinas Tipo C , Animales , Humanos , Enfermedades Autoinmunes/genética , Autoinmunidad/genética , Autofagia/genética , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Factores de Riesgo
8.
BMC Genomics ; 23(1): 480, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768782

RESUMEN

BACKGROUND: Lectin receptor-like kinases (Lec-RLKs), a subfamily of RLKs, have been demonstrated to play an important role in signal transduction from cell wall to the plasma membrane during biotic stresses. Lec-RLKs include legume lectin-like proteins (LLPs), an important group of apoplastic proteins that are expressed in regenerating cell walls and play a role in immune-related responses. However, it is unclear whether LLPs have a function in abiotic stress mitigation and related signaling pathways. Therefore, in this study, we examined the possible role of LLPs in Arabidopsis thaliana (AtLLPs) under various abiotic stresses. RESULTS: The study was initiated by analyzing the chromosomal localization, gene structure, protein motif, peptide sequence, phylogeny, evolutionary divergence, and sub-cellular localization of AtLLPs. Furthermore, the expression profiling of these AtLLPs was performed using publicly accessible microarray datasets under various abiotic stresses, which indicated that all AtLLPs were differently expressed in both root and shoot tissues in response to abiotic stresses. The cis-regulatory elements (CREs) analysis in 500 bp promoter sequences of AtLLPs suggested the presence of multiple important CREs implicated for regulating abiotic stress responses, which was further supported by expressional correlation analysis between AtLLPs and their CREs cognate transcription factors (TFs). qRT-PCR analysis of these AtLLPs after 2, 6, and 12 h of cold, high light, oxidative (MV), UV-B, wound, and ozone stress revealed that all AtLLPs displayed differential expression patterns in most of the tested stresses, supporting their roles in abiotic stress response and signaling again. Out of these AtLLPs, AT1g53070 and AT5g03350 appeared to be important players. Furthermore, the mutant line of AT5g03350 exhibited higher levels of ROS than wild type plants till 12 h of exposure to high light, MV, UV-B, and wound, whereas its overexpression line exhibited comparatively lower levels of ROS, indicating a positive role of this gene in abiotic stress response in A. thaliana. CONCLUSIONS: This study provides basic insights in the involvement of two important representative AtLLPs, AT1g53070 and AT5g03350, in abiotic stress response. However, further research is needed to determine the specific molecular mechanism of these AtLLPs in abiotic stress mitigation and related signaling pathways in A. thaliana.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fabaceae , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Lectinas/genética , Filogenia , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/genética
9.
J Neuroinflammation ; 19(1): 66, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277184

RESUMEN

BACKGROUND: Herpes simplex virus 1 (HSV-1) can induce fatal encephalitis. Cellular factors regulate the host immunity to affect the severity of HSV-1 encephalitis. Recent reports focus on the significance of thrombomodulin (TM), especially the domain 1, lectin-like domain (TM-LeD), which modulates the immune responses to bacterial infections and toxins and various diseases in murine models. Few studies have investigated the importance of TM-LeD in viral infections, which are also regulated by the host immunity. METHODS: In vivo studies comparing wild-type and TM-LeD knockout mice were performed to determine the role of TM-LeD on HSV-1 lethality. In vitro studies using brain microglia cultured from mice or a human microglia cell line to investigate whether and how TM-LeD affects microglia to reduce HSV-1 replication in brain neurons cultured from mice or in a human neuronal cell line. RESULTS: Absence of TM-LeD decreased the mortality, tissue viral loads, and brain neuron apoptosis of HSV-1-infected mice with increases in the number, proliferation, and phagocytic activity of brain microglia. Moreover, TM-LeD deficiency enhanced the phagocytic activity of brain microglia cultured from mice or of a human microglia cell line. Co-culture of mouse primary brain microglia and neurons or human microglia and neuronal cell lines revealed that TM-LeD deficiency augmented the capacity of microglia to reduce HSV-1 replication in neurons. CONCLUSIONS: Overall, TM-LeD suppresses microglia responses to enhance HSV-1 infection.


Asunto(s)
Herpesvirus Humano 1 , Trombomodulina/metabolismo , Animales , Herpesvirus Humano 1/metabolismo , Lectinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo
10.
Cytotherapy ; 24(3): 282-290, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34955406

RESUMEN

BACKGROUND AIMS: Efforts to safely and effectively treat acute myeloid leukemia (AML) by targeting a single leukemia-associated antigen with chimeric antigen receptor (CAR) T cells have met with limited success, due in part to heterogeneous expression of myeloid antigens. The authors hypothesized that T cells expressing CARs directed toward two different AML-associated antigens would eradicate tumors and prevent relapse. METHODS: For co-transduction with the authors' previously optimized CLL-1 CAR currently in clinical study (NCT04219163), the authors generated two CARs targeting either CD123 or CD33. The authors then tested the anti-tumor activity of T cells expressing each of the three CARs either alone or after co-transduction. The authors analyzed CAR T-cell phenotype, expansion and transduction efficacy and assessed function by in vitro and in vivo activity against AML cell lines expressing high (MOLM-13: CD123 high, CD33 high, CLL-1 intermediate), intermediate (HL-60: CD123 low, CD33 intermediate, CLL-1 intermediate/high) or low (KG-1a: CD123 low, CD33 low, CLL-1 low) levels of the target antigens. RESULTS: The in vitro benefit of dual expression was most evident when the target cell line expressed low antigen levels (KG-1a). Mechanistically, dual expression was associated with higher pCD3z levels in T cells compared with single CAR T cells on exposure to KG-1a (P < 0.0001). In vivo, combinatorial targeting with CD123 or CD33 and CLL-1 CAR T cells improved tumor control and animal survival for all lines (KG-1a, MOLM-13 and HL-60); no antigen escape was detected in residual tumors. CONCLUSIONS: Overall, these findings demonstrate that combinatorial targeting of CD33 or CD123 and CLL-1 with CAR T cells can control growth of heterogeneous AML tumors.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Leucemia Mieloide Aguda , Animales , Línea Celular Tumoral , Inmunoterapia Adoptiva , Subunidad alfa del Receptor de Interleucina-3 , Leucemia Mieloide Aguda/terapia , Linfocitos T
11.
BMC Cancer ; 22(1): 823, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902826

RESUMEN

BACKGROUND: As a transmembrane protein, C-type lectin-like receptor 2 (CLEC-2) is mainly expressed on platelets and released into plasma after platelet activation. Activated platelets participate in the regulation of innate immune cells. Patients with different microsatellite statuses have distinct immune profiles. This study aimed to investigate the association of plasma CLEC-2 levels with microsatellite status among colorectal cancer (CRC) patients. METHODS: A cross-sectional analysis of 430 CRC patients from Harbin Medical University Cancer Hospital was conducted. CLEC-2 levels were measured with fasting venous blood samples drawn from each participant before any treatment. The microsatellite status was evaluated with DNA obtained from fresh frozen tumor tissue samples. The other clinical data were collected and recorded based on the medical system records. RESULTS: CLEC-2 levels were significantly higher among patients with high microsatellite instability phenotype than the stable microsatellite group, adjusting for other confounding variables. CONCLUSIONS: The increased CLEC-2 is associated with the high microsatellite instability subtype of CRC.


Asunto(s)
Neoplasias Colorrectales , Lectinas Tipo C , Neoplasias Colorrectales/genética , Estudios Transversales , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana , Inestabilidad de Microsatélites , Activación Plaquetaria
12.
Hepatol Res ; 52(9): 762-772, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35714128

RESUMEN

AIM: Ischemia-reperfusion (IR) injury is one of the most critical complications commonly associated with liver surgery, including liver transplantation. Steatotic livers are particularly vulnerable to IR injury. However, the underlying mechanisms of this increased susceptibility have not fully been understood. In the present study, we used heterogeneous thrombomodulin (TM)-knockout (KO) (TM+/- ) mice, which express about 50% functional activity of TM as compared with wild type, to investigate whether dysregulation of TM enhances IR injury in steatotic livers. METHODS: Steatotic livers were induced using choline-deficient diets (CDD) in mice. The biological activity of TM was assessed using the productivity of protein C. Susceptibility to IR injury was compared between steatotic livers and non-steatotic livers and also assessed in TM-KO mice. We investigated whether recombinant TM (rTM) and the lectin-like domain of TM (rTM-D1) ameliorated IR injury in steatotic livers. RESULTS: Protein C activity was significantly decreased to less than 20% in CDD-fed mice compared with mice with non-steatotic livers. Steatotic livers showed exaggerated IR injury compared with non-steatotic livers. Recombinant TM (rTM) and the lectin-like domain of TM (rTM-D1), which has anti-inflammatory effects, ameliorated IR injury in steatotic livers. TM+/- mice showed increased susceptibility to IR injury, and rTM ameliorated the increased IR injury in TM+/- mice. CONCLUSION: We conclude that downregulation of TM increases susceptibility to hepatic IR injury in steatotic livers and that rTM ameliorates hepatic IR injury through anti-inflammatory action.

13.
Surg Endosc ; 36(4): 2643-2652, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35044516

RESUMEN

BACKGROUND: Early diagnosis of subclinical cardiovascular disease (CVD) in patients with morbid obesity is important. We investigated the effects of sleeve gastrectomy (SG) on serum soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1), oxidized LDL (oxLDL), and other metabolic and inflammatory parameters associated with atherosclerosis in patients with morbid obesity. METHODS: Body mass index (BMI) measurements and assays of metabolic and inflammatory markers were taken in patients in an SG surgery group and a healthy control group and compared at baseline and 12 months after SG. Correlations with changes in these parameters and variations in sLOX-1 were analyzed. RESULTS: Metabolic and inflammatory marker values in the surgery (n = 20) and control (n = 20) groups were significantly different at baseline (p < 0.001). The majority of surgery group biomarker levels significantly decreased with mean BMI loss (- 11.8 ± 9.0, p < 0.001) at 12 months, trending toward control group values. Baseline albumin level as well as percentage reductions in oxLDL and the cholesterol retention fraction (CRF) were found to be significantly correlated with percentage reduction in sLOX-1 at 12 months following SG. CONCLUSION: Metabolic and inflammatory biomarkers elevated at baseline significantly decreased after SG weight loss. Weight loss induced by SG may limit endothelial damage by reducing levels of oxLDL and LOX-1 as assessed by sLOX-1. These findings suggest that sLOX-1 may function as a marker of atherosclerotic disease states in patients with morbid obesity and that metabolic/bariatric surgery can play a meaningful role in CVD prevention.


Asunto(s)
Enfermedades Cardiovasculares , Obesidad Mórbida , Biomarcadores , Gastrectomía , Humanos , Obesidad Mórbida/complicaciones , Obesidad Mórbida/cirugía , Receptores Depuradores de Clase E/metabolismo , Pérdida de Peso
14.
Platelets ; 33(6): 935-944, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35073814

RESUMEN

C-type lectin-like receptor 2 (CLEC-2) is a platelet-activated receptor expressed on the surface of platelet membranes. Soluble CLEC-2 (sCLEC-2) has been receiving attention as a predictive marker for thrombotic predisposition. The present study examined the relationship between sCLEC-2 level and degree of coagulation disorder in septic patients. Seventy septic patients were divided into the sepsis-induced disseminated intravascular coagulation (DIC) (SID) group (n = 44) and non-SID group (n = 26). The sCLEC-2 levels were compared between the two groups. Because we suspected that the sCLEC-2 level was affected by the platelet count, we calculated the sCLEC-2/platelet count ratio (C2PAC index). We further divided septic patients into four groups using the Japanese Association for Acute Medicine (JAAM) DIC scoring system (DIC scores: 0-1, 2-3, 4-5, and 6-8). The C2PAC index was significantly higher in the SID group (2.6 ± 1.7) compared with the non-SID group (1.2 ± 0.5) (P < .001). The C2PAC indexes in the four JAAM DIC score groups were 0.9 ± 0.3, 1.1 ± 0.3, 1.7 ± 0.7, and 3.6 ± 1.0, respectively, and this index increased significantly as the DIC score increased (P < .001). According to the receiver-operating curve analysis, the area under the curve (AUC) and optimal cutoff value for the diagnosis of SID were 0.8051 and 1.4 (sensitivity, 75.0%; specificity, 76.9%), respectively. When the C2PAC index and D-dimer level, one of the main fibrinolytic markers, were selected as predictive markers for SID diagnosis in stepwise multiple logistic regression analysis, it was possible to diagnose SID with a high probability (AUC, 0.9528; sensitivity, 0.9545; specificity, 0.8846). The C2PAC index is a useful predictor of SID progression and diagnosis in septic patients.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Coagulación Intravascular Diseminada , Lectinas Tipo C , Glicoproteínas de Membrana , Sepsis , Biomarcadores/sangre , Trastornos de la Coagulación Sanguínea/complicaciones , Coagulación Intravascular Diseminada/diagnóstico , Coagulación Intravascular Diseminada/etiología , Humanos , Lectinas Tipo C/sangre , Glicoproteínas de Membrana/sangre , Recuento de Plaquetas , Sepsis/complicaciones , Sepsis/diagnóstico
15.
Heart Vessels ; 37(3): 517-527, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34807278

RESUMEN

Genetic lineage tracing studies have shown that phenotypic switching of vascular smooth muscle cells (VSMCs) results in less-differentiated cells, including macrophage-like cells that lack traditional VSMC markers. This switching contributes to the formation of necrotic core in plaques and promotes atherosclerosis, which is important for plaque stability. Niclosamide, a commonly used anti-helminthic drug, has recently attracted attention as an anti-cancer drug that inhibits multiple signaling pathways. The expression of the S100A4 protein is upregulated in synthetic VSMCs and inhibited by niclosamide on metastatic progression in colon cancer. We aimed to test the effect of niclosamide on VSMC phenotype switching and plaque stability. To examine murine atherosclerosis, we induced experimental lesions by blood flow cessation in apolipoprotein E knockout mice fed a high-fat diet. Oral administration of niclosamide changed 4-week-old plaques to collagen-rich and less-necrotic core phenotypes and downregulated the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in vivo. In vitro analysis indicated that niclosamide reduced LOX-1 expression in VSMCs in a concentration-dependent and S100A4-independent manner. The inhibitory effect of niclosamide on LOX-1 and collagen type I was associated with the inactivation of the nuclear factor-κB signaling pathway. We demonstrated that the administration of niclosamide reduced LOX-1 expression and altered the composition of murine carotid plaques. Our results highlight the potential of niclosamide as an atheroprotective agent that enhances atherosclerotic plaque stability.


Asunto(s)
Músculo Liso Vascular , Niclosamida , Placa Aterosclerótica , Receptores Depuradores de Clase E , Animales , Apolipoproteínas E/genética , Células Cultivadas , Regulación hacia Abajo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Niclosamida/farmacología , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Receptores Depuradores de Clase E/metabolismo
16.
Eur Heart J ; 42(18): 1797-1807, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-36282110

RESUMEN

Cardiovascular diseases (CVDs), specifically lipid-driven atherosclerotic CVDs, remain the number one cause of death worldwide. The lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1), a scavenger receptor that promotes endothelial dysfunction by inducing pro-atherogenic signalling and plaque formation via the endothelial uptake of oxidized LDL (oxLDL) and electronegative LDL, contributes to the initiation, progression, and destabilization of atheromatous plaques, eventually leading to the development of myocardial infarction and certain forms of stroke. In addition to its expression in endothelial cells, LOX-1 is expressed in macrophages, cardiomyocytes, fibroblasts, dendritic cells, lymphocytes, and neutrophils, further implicating this receptor in multiple aspects of atherosclerotic plaque formation. LOX-1 holds promise as a novel diagnostic and therapeutic target for certain CVDs; therefore, understanding the molecular structure and function of LOX-1 is of critical importance. In this review, we highlight the latest scientific findings related to LOX-1, its ligands, and their roles in the broad spectrum of CVDs. We describe recent findings from basic research, delineate their translational value, and discuss the potential of LOX-1 as a novel target for the prevention, diagnosis, and treatment of related CVDs.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Placa Aterosclerótica , Humanos , Receptores Depuradores de Clase E/metabolismo , Células Endoteliales/metabolismo , Ligandos , Aterosclerosis/metabolismo , Lipoproteínas LDL/metabolismo , Receptores Depuradores
17.
Eur Heart J ; 42(18): 1797-1807, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33159784

RESUMEN

Cardiovascular diseases (CVDs), specifically lipid-driven atherosclerotic CVDs, remain the number one cause of death worldwide. The lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1), a scavenger receptor that promotes endothelial dysfunction by inducing pro-atherogenic signalling and plaque formation via the endothelial uptake of oxidized LDL (oxLDL) and electronegative LDL, contributes to the initiation, progression, and destabilization of atheromatous plaques, eventually leading to the development of myocardial infarction and certain forms of stroke. In addition to its expression in endothelial cells, LOX-1 is expressed in macrophages, cardiomyocytes, fibroblasts, dendritic cells, lymphocytes, and neutrophils, further implicating this receptor in multiple aspects of atherosclerotic plaque formation. LOX-1 holds promise as a novel diagnostic and therapeutic target for certain CVDs; therefore, understanding the molecular structure and function of LOX-1 is of critical importance. In this review, we highlight the latest scientific findings related to LOX-1, its ligands, and their roles in the broad spectrum of CVDs. We describe recent findings from basic research, delineate their translational value, and discuss the potential of LOX-1 as a novel target for the prevention, diagnosis, and treatment of related CVDs.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Células Endoteliales , Humanos , Lipoproteínas LDL , Receptores de LDL , Receptores Depuradores de Clase E
18.
Ren Fail ; 44(1): 1687-1697, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36226438

RESUMEN

Evidence suggests that intracellular angiotensin II type 1 receptor (AT1) contributes to peritoneal fibrosis (PF) under high glucose (HG)-based dialysates. It is generally believed that AT2 antagonisticly affects AT1 function. The aim of this study was to explore whether AT2 activation is beneficial for attenuating human peritoneal mesothelial cell (HPMC) injury due to HG. We treated a HPMC line with HG to induce extracellular matrix (ECM) formation. AT2 was increased and blocked using CGP42112A and AT2 siRNA. Lipid deposition was detected, signaling molecules associated with lectin-like oxidized lipoprotein receptor-1 (LOX-1) and ECM proteins were evaluated by real-time PCR and western blot. The results showed that HG led to AT2 inhibition in HPMCs, inhibition of AT2 further aggravated the expression of ECM proteins, including α-smooth muscle actin, fibroblast specific protein-1 and collagen I, while AT2 decreased the expression of ECM proteins, even during HG stimulation. Interestingly, there was a parallel change in lipid accumulation and ECM formation when AT2 was increased or depressed. Moreover, AT2-mediated decreased ECM production was associated with reduced lipid accumulation in HPMCs and depended on the downregulation of LOX-1. Further analysis showed that HG increased oxidized low-density lipoprotein (ox-LDL) deposition in HPMCs concomitant with an enhanced expression of ECM components, whereas blocking LOX-1 reversed ox-LDL deposition even in the presence of HG. This effect was also accompanied by the remission of ECM accumulation. Our results suggested that AT2 prevented ECM formation in HG-stimulated HPMCs by ameliorating lipid via LOX-1 suppression.


Asunto(s)
Receptor de Angiotensina Tipo 2 , Receptores de Lipoproteína , Actinas , Angiotensina II , Colágeno Tipo I/genética , Soluciones para Diálisis/farmacología , Matriz Extracelular , Glucosa/farmacología , Humanos , Lectinas/farmacología , Lipoproteínas LDL/metabolismo , ARN Interferente Pequeño , Receptor de Angiotensina Tipo 1 , Receptores Depuradores de Clase E/genética , Receptores Depuradores de Clase E/metabolismo
19.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36012465

RESUMEN

Dyslipidaemia leads to proatherogenic oxidative lipid stress that promotes vascular inflammation and thrombosis, the pathologies that underpin myocardial infarction, stroke, and deep vein thrombosis. These prothrombotic states are driven, at least in part, by platelet hyperactivity, and they are concurrent with the appearancxe of oxidatively modified low-density lipoproteins (LDL) in the circulation. Modified LDL are heterogenous in nature but, in a general sense, constitute a prototype circulating transporter for a plethora of oxidised lipid epitopes that act as danger-associated molecular patterns. It is well-established that oxidatively modified LDL promote platelet activation and arterial thrombosis through a number of constitutively expressed scavenger receptors, which transduce atherogenic lipid stress to a complex array of proactivatory signalling pathways in the platelets. Stimulation of these signalling events underlie the ability of modified LDL to induce platelet activation and blunt platelet inhibitory pathways, as well as promote platelet-mediated coagulation. Accumulating evidence from patients at risk of arterial thrombosis and experimental animal models of disease suggest that oxidised LDL represents a tangible link between the dyslipidaemic environment and increased platelet activation. The aim of this review is to summarise recent advances in our understanding of the pro-thrombotic signalling events induced in platelets by modified LDL ligation, describe the contribution of individual platelet scavenger receptors, and highlight potential future challenges of targeting these pathways.


Asunto(s)
Dislipidemias , Trombosis , Animales , Coagulación Sanguínea , Plaquetas/metabolismo , Dislipidemias/metabolismo , Lipoproteínas LDL/metabolismo , Activación Plaquetaria , Trombosis/metabolismo
20.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955522

RESUMEN

The low-density-lipoprotein receptor (LDLr) removes low-density lipoprotein (LDL), an endovascular transporter that carries cholesterol from the bloodstream to peripheral tissues. The maintenance of cholesterol content in the brain, which is important to protect brain function, is affected by LDLr. LDLr co-localizes with the insulin receptor and complements the internalization of LDL. In LDLr deficiency, LDL blood levels and insulin resistance increase, leading to abnormal cholesterol control and cognitive deficits in atherosclerosis. Defects in brain cholesterol metabolism lead to neuroinflammation and blood-brain-barrier (BBB) degradation. Moreover, interactions between endoplasmic reticulum stress (ER stress) and mitochondria are induced by ox-LDL accumulation, apolipoprotein E (ApoE) regulates the levels of amyloid beta (Aß) in the brain, and hypoxia is induced by apoptosis induced by the LDLr defect. This review summarizes the association between neurodegenerative brain disease and typical cognitive deficits.


Asunto(s)
Encefalopatías Metabólicas , Disfunción Cognitiva , Péptidos beta-Amiloides , Animales , Colesterol/metabolismo , Disfunción Cognitiva/etiología , Humanos , Lipoproteínas LDL , Ratones , Ratones Noqueados , Receptores de LDL/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA