Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.680
Filtrar
1.
Cell ; 177(5): 1201-1216.e19, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31031005

RESUMEN

Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DCs) are exacerbated by a high-fatty-acid (FA) metabolic environment. FAs suppress the TLR-induced hexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changes enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein response (UPR), leading to a distinct transcriptomic signature with IL-23 as hallmark. Interestingly, chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response. Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23 expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR.


Asunto(s)
Microambiente Celular/inmunología , Células Dendríticas/inmunología , Inmunidad Innata , Mitocondrias/inmunología , Especies Reactivas de Oxígeno/inmunología , Respuesta de Proteína Desplegada/inmunología , Animales , Microambiente Celular/genética , Ciclo del Ácido Cítrico/genética , Ciclo del Ácido Cítrico/inmunología , Células Dendríticas/patología , Hexoquinasa/genética , Hexoquinasa/inmunología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Ratones , Ratones Noqueados , Mitocondrias/genética , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Respuesta de Proteína Desplegada/genética , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/inmunología
2.
Immunity ; 57(9): 2077-2094.e12, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38906145

RESUMEN

Tissues are exposed to diverse inflammatory challenges that shape future inflammatory responses. While cellular metabolism regulates immune function, how metabolism programs and stabilizes immune states within tissues and tunes susceptibility to inflammation is poorly understood. Here, we describe an innate immune metabolic switch that programs long-term intestinal tolerance. Intestinal interleukin-18 (IL-18) stimulation elicited tolerogenic macrophages by preventing their proinflammatory glycolytic polarization via metabolic reprogramming to fatty acid oxidation (FAO). FAO reprogramming was triggered by IL-18 activation of SLC12A3 (NCC), leading to sodium influx, release of mitochondrial DNA, and activation of stimulator of interferon genes (STING). FAO was maintained in macrophages by a bistable switch that encoded memory of IL-18 stimulation and by intercellular positive feedback that sustained the production of macrophage-derived 2'3'-cyclic GMP-AMP (cGAMP) and epithelial-derived IL-18. Thus, a tissue-reinforced metabolic switch encodes durable immune tolerance in the gut and may enable reconstructing compromised immune tolerance in chronic inflammation.


Asunto(s)
Tolerancia Inmunológica , Interleucina-18 , Macrófagos , Nucleótidos Cíclicos , Interleucina-18/metabolismo , Interleucina-18/inmunología , Animales , Ratones , Nucleótidos Cíclicos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Humanos , Ratones Endogámicos C57BL , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Ratones Noqueados , Ácidos Grasos/metabolismo , Intestinos/inmunología , Inmunidad Innata , Inflamación/inmunología , Inflamación/metabolismo , Glucólisis , Oxidación-Reducción
3.
Cell ; 169(7): 1327-1341.e23, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28622513

RESUMEN

Liver cancer has the second highest worldwide cancer mortality rate and has limited therapeutic options. We analyzed 363 hepatocellular carcinoma (HCC) cases by whole-exome sequencing and DNA copy number analyses, and we analyzed 196 HCC cases by DNA methylation, RNA, miRNA, and proteomic expression also. DNA sequencing and mutation analysis identified significantly mutated genes, including LZTR1, EEF1A1, SF3B1, and SMARCA4. Significant alterations by mutation or downregulation by hypermethylation in genes likely to result in HCC metabolic reprogramming (ALB, APOB, and CPS1) were observed. Integrative molecular HCC subtyping incorporating unsupervised clustering of five data platforms identified three subtypes, one of which was associated with poorer prognosis in three HCC cohorts. Integrated analyses enabled development of a p53 target gene expression signature correlating with poor survival. Potential therapeutic targets for which inhibitors exist include WNT signaling, MDM4, MET, VEGFA, MCL1, IDH1, TERT, and immune checkpoint proteins CTLA-4, PD-1, and PD-L1.


Asunto(s)
Carcinoma Hepatocelular/genética , Genómica , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/virología , Metilación de ADN , Humanos , Isocitrato Deshidrogenasa/genética , Neoplasias Hepáticas/virología , MicroARNs/genética , Mutación
4.
Trends Biochem Sci ; 49(9): 791-803, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38937222

RESUMEN

Atherosclerosis, a chronic inflammatory condition, remains a leading cause of death globally, necessitating innovative approaches to target pro-atherogenic pathways. Recent advancements in the field of immunometabolism have highlighted the crucial interplay between metabolic pathways and immune cell function in atherogenic milieus. Macrophages and T cells undergo dynamic metabolic reprogramming to meet the demands of activation and differentiation, influencing plaque progression. Furthermore, metabolic intermediates intricately regulate immune cell responses and atherosclerosis development. Understanding the metabolic control of immune responses in atherosclerosis, known as athero-immunometabolism, offers new avenues for preventive and therapeutic interventions. This review elucidates the emerging intricate interplay between metabolism and immunity in atherosclerosis, underscoring the significance of metabolic enzymes and metabolites as key regulators of disease pathogenesis and therapeutic targets.


Asunto(s)
Aterosclerosis , Macrófagos , Aterosclerosis/metabolismo , Aterosclerosis/inmunología , Humanos , Animales , Macrófagos/metabolismo , Macrófagos/inmunología , Linfocitos T/metabolismo , Linfocitos T/inmunología
5.
Physiol Rev ; 101(3): 1371-1426, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33599151

RESUMEN

Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves cross talk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin, and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge of their cellular, tissue, as well as systemic functions in metabolism. Nevertheless, our knowledge of the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging, and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review discusses the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders, and aging.


Asunto(s)
Glucólisis/fisiología , Metabolismo de los Lípidos/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Animales , Humanos , Transducción de Señal/fisiología
6.
Immunity ; 50(3): 600-615.e15, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30824325

RESUMEN

CCR7 chemokine receptor stimulation induces rapid but transient dendritic cell (DC) migration toward draining lymph nodes, which is critical for the initiation of protective immunity and maintenance of immune homeostasis. The mechanisms for terminating CCR7-mediated DC migration remain incompletely understood. Here we have identified a long non-coding RNA lnc-Dpf3 whose feedback restrained CCR7-mediated DC migration. CCR7 stimulation upregulated lnc-Dpf3 via removing N6-methyladenosine (m6A) modification to prevent RNA degradation. DC-specific lnc-Dpf3 deficiency increased CCR7-mediated DC migration, leading to exaggerated adaptive immune responses and inflammatory injuries. Mechanistically, CCR7 stimulation activated the HIF-1α transcription factor pathway in DCs, leading to metabolic reprogramming toward glycolysis for DC migration. lnc-Dpf3 directly bound to HIF-1α and suppressed HIF-1α-dependent transcription of the glycolytic gene Ldha, thus inhibiting DC glycolytic metabolism and migratory capacity. We demonstrate a critical role for CCR7-inducible lnc-Dpf3 in coupling epigenetic and metabolic pathways to feedback-control DC migration and inflammatory responses.


Asunto(s)
Movimiento Celular/genética , Proteínas de Unión al ADN/genética , Glucólisis/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Receptores CCR7/genética , Factores de Transcripción/genética , Inmunidad Adaptativa/genética , Animales , Línea Celular , Células Dendríticas/patología , Epigénesis Genética/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Inflamación/genética , Inflamación/patología , Ganglios Linfáticos/patología , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos C57BL , Transcripción Genética/genética , Regulación hacia Arriba/genética
7.
Immunol Rev ; 323(1): 19-39, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38459782

RESUMEN

Natural Killer (NK) cells are a top contender in the development of adoptive cell therapies for cancer due to their diverse antitumor functions and ability to restrict their activation against nonmalignant cells. Despite their success in hematologic malignancies, NK cell-based therapies have been limited in the context of solid tumors. Tumor cells undergo various metabolic adaptations to sustain the immense energy demands that are needed to support their rapid and uncontrolled proliferation. As a result, the tumor microenvironment (TME) is depleted of nutrients needed to fuel immune cell activity and contains several immunosuppressive metabolites that hinder NK cell antitumor functions. Further, we now know that NK cell metabolic status is a main determining factor of their effector functions. Hence, the ability of NK cells to withstand and adapt to these metabolically hostile conditions is imperative for effective and sustained antitumor activity in the TME. With this in mind, we review the consequences of metabolic hostility in the TME on NK cell metabolism and function. We also discuss tumor-like metabolic programs in NK cell induced by STAT3-mediated expansion that adapt NK cells to thrive in the TME. Finally, we examine how other approaches can be applied to enhance NK cell metabolism in tumors.


Asunto(s)
Células Asesinas Naturales , Neoplasias , Microambiente Tumoral , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Humanos , Microambiente Tumoral/inmunología , Animales , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/terapia , Inmunoterapia Adoptiva/métodos , Adaptación Fisiológica , Factor de Transcripción STAT3/metabolismo , Metabolismo Energético , Escape del Tumor
8.
Trends Immunol ; 45(7): 486-494, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876831

RESUMEN

Immunotherapies have revolutionized the treatment of certain cancers, but challenges remain in overcoming immunotherapy resistance. Research shows that metabolic modulation of the tumor microenvironment can enhance antitumor immunity. Here, we discuss recent preclinical and clinical evidence for the efficacy of combining metabolic modifiers with immunotherapies. While this combination holds great promise, a few key areas must be addressed, which include identifying the effects of metabolic modifiers on immune cell metabolism, the putative biomarkers of therapeutic efficacy, the efficacy of modifiers on tumors harboring metabolic heterogeneity, and the potential development of resistance due to tumor reliance on alternative metabolic pathways. We propose solutions to these problems and posit that assessing these parameters is crucial for considering the potential of metabolic modifiers in sensitizing tumors to immunotherapies.


Asunto(s)
Resistencia a Antineoplásicos , Inmunoterapia , Redes y Vías Metabólicas , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/metabolismo , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Animales , Resistencia a Antineoplásicos/inmunología
9.
Immunity ; 48(6): 1144-1159.e5, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29884460

RESUMEN

PKCß-null (Prkcb-/-) mice are severely immunodeficient. Here we show that mice whose B cells lack PKCß failed to form germinal centers and plasma cells, which undermined affinity maturation and antibody production in response to immunization. Moreover, these mice failed to develop plasma cells in response to viral infection. At the cellular level, we have shown that Prkcb-/- B cells exhibited defective antigen polarization and mTORC1 signaling. While altered antigen polarization impaired antigen presentation and likely restricted the potential of GC development, defective mTORC1 signaling impaired metabolic reprogramming, mitochondrial remodeling, and heme biosynthesis in these cells, which altogether overwhelmingly opposed plasma cell differentiation. Taken together, our study reveals mechanistic insights into the function of PKCß as a key regulator of B cell polarity and metabolic reprogramming that instructs B cell fate.


Asunto(s)
Linfocitos B/inmunología , Diferenciación Celular/inmunología , Activación de Linfocitos/inmunología , Células Plasmáticas/inmunología , Proteína Quinasa C beta/inmunología , Animales , Hemo/biosíntesis , Ratones , Ratones Noqueados , Mitocondrias/inmunología , Mitocondrias/metabolismo , Células Plasmáticas/citología
10.
Proc Natl Acad Sci U S A ; 121(19): e2315348121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38701117

RESUMEN

Ovarian cancer is an aggressive gynecological tumor characterized by a high relapse rate and chemoresistance. Ovarian cancer exhibits the cancer hallmark of elevated glycolysis, yet effective strategies targeting cancer cell metabolic reprogramming to overcome therapeutic resistance in ovarian cancer remain elusive. Here, we revealed that epigenetic silencing of Otubain 2 (OTUB2) is a driving force for mitochondrial metabolic reprogramming in ovarian cancer, which promotes tumorigenesis and chemoresistance. Mechanistically, OTUB2 silencing destabilizes sorting nexin 29 pseudogene 2 (SNX29P2), which subsequently prevents hypoxia-inducible factor-1 alpha (HIF-1α) from von Hippel-Lindau tumor suppressor-mediated degradation. Elevated HIF-1α activates the transcription of carbonic anhydrase 9 (CA9) and drives ovarian cancer progression and chemoresistance by promoting glycolysis. Importantly, pharmacological inhibition of CA9 substantially suppressed tumor growth and synergized with carboplatin in the treatment of OTUB2-silenced ovarian cancer. Thus, our study highlights the pivotal role of OTUB2/SNX29P2 in suppressing ovarian cancer development and proposes that targeting CA9-mediated glycolysis is an encouraging strategy for the treatment of ovarian cancer.


Asunto(s)
Anhidrasa Carbónica IX , Silenciador del Gen , Mitocondrias , Neoplasias Ováricas , Tioléster Hidrolasas , Animales , Femenino , Humanos , Ratones , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Anhidrasa Carbónica IX/metabolismo , Anhidrasa Carbónica IX/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Reprogramación Metabólica , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico , Tioléster Hidrolasas/genética
11.
Immunity ; 46(4): 675-689, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28423341

RESUMEN

Activated T cells produce reactive oxygen species (ROS), which trigger the antioxidative glutathione (GSH) response necessary to buffer rising ROS and prevent cellular damage. We report that GSH is essential for T cell effector functions through its regulation of metabolic activity. Conditional gene targeting of the catalytic subunit of glutamate cysteine ligase (Gclc) blocked GSH production specifically in murine T cells. Gclc-deficient T cells initially underwent normal activation but could not meet their increased energy and biosynthetic requirements. GSH deficiency compromised the activation of mammalian target of rapamycin-1 (mTOR) and expression of NFAT and Myc transcription factors, abrogating the energy utilization and Myc-dependent metabolic reprogramming that allows activated T cells to switch to glycolysis and glutaminolysis. In vivo, T-cell-specific ablation of murine Gclc prevented autoimmune disease but blocked antiviral defense. The antioxidative GSH pathway thus plays an unexpected role in metabolic integration and reprogramming during inflammatory T cell responses.


Asunto(s)
Glutamato-Cisteína Ligasa/deficiencia , Glutatión/metabolismo , Inflamación/metabolismo , Linfocitos T/metabolismo , Animales , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Metabolismo Energético/genética , Glutamato-Cisteína Ligasa/genética , Glutamina/metabolismo , Glucólisis , Immunoblotting , Inflamación/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción NFATC/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo
12.
Crit Rev Biochem Mol Biol ; 58(1): 81-97, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37125817

RESUMEN

The tricarboxylic acid (TCA) cycle is a primordial metabolic pathway that is conserved from bacteria to humans. Although this network is often viewed primarily as an energy producing engine fueling ATP synthesis via oxidative phosphorylation, mounting evidence reveals that this metabolic hub orchestrates a wide variety of pivotal biological processes. It plays an important part in combatting cellular stress by modulating NADH/NADPH homeostasis, scavenging ROS (reactive oxygen species), producing ATP by substrate-level phosphorylation, signaling and supplying metabolites to quell a range of cellular disruptions. This review elaborates on how the reprogramming of this network prompted by such abiotic stress as metal toxicity, oxidative tension, nutrient challenge and antibiotic insult is critical for countering these conditions in mostly microbial systems. The cross-talk between the stressors and the participants of TCA cycle that results in changes in metabolite and nucleotide concentrations aimed at combatting the abiotic challenge is presented. The fine-tuning of metabolites mediated by disparate enzymes associated with this metabolic hub is discussed. The modulation of enzymatic activities aimed at generating metabolic moieties dedicated to respond to the cellular perturbation is explained. This ancient metabolic network has to be recognized for its ability to execute a plethora of physiological functions beyond its well-established traditional roles.


Asunto(s)
Ciclo del Ácido Cítrico , Redes y Vías Metabólicas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Ácidos Tricarboxílicos
13.
Semin Cancer Biol ; 98: 31-50, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38123029

RESUMEN

Cancer progression is a multifaceted process that entails several stages and demands the persistent expression or activation of transcription factors (TFs) to facilitate growth and survival. TFs are a cluster of proteins with DNA-binding domains that attach to promoter or enhancer DNA strands to start the transcription of genes by collaborating with RNA polymerase and other supporting proteins. They are generally acknowledged as the major regulatory molecules that coordinate biological homeostasis and the appropriate functioning of cellular components, subsequently contributing to human physiology. TFs proteins are crucial for controlling transcription during the embryonic stage and development, and the stability of different cell types depends on how they function in different cell types. The development and progression of cancer cells and tumors might be triggered by any anomaly in transcription factor function. It has long been acknowledged that cancer development is accompanied by the dysregulated activity of TF alterations which might result in faulty gene expression. Recent studies have suggested that dysregulated transcription factors play a major role in developing various human malignancies by altering and rewiring metabolic processes, modifying the immune response, and triggering oncogenic signaling cascades. This review emphasizes the interplay between TFs involved in metabolic and epigenetic reprogramming, evading immune attacks, cellular senescence, and the maintenance of cancer stemness in cancerous cells. The insights presented herein will facilitate the development of innovative therapeutic modalities to tackle the dysregulated transcription factors underlying cancer.


Asunto(s)
Neoplasias , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias/genética , Neoplasias/patología , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , ADN
14.
J Biol Chem ; 300(7): 107460, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876306

RESUMEN

Obesity is a major risk factor for liver and cardiovascular diseases. However, obesity-driven mechanisms that contribute to the pathogenesis of multiple organ diseases are still obscure and treatment is inadequate. We hypothesized that increased , glucose-6-phosphate dehydrogenase (G6PD), the key rate-limiting enzyme in the pentose shunt, is critical in evoking metabolic reprogramming in multiple organs and is a significant contributor to the pathogenesis of liver and cardiovascular diseases. G6PD is induced by a carbohydrate-rich diet and insulin. Long-term (8 months) high-fat diet (HFD) feeding increased body weight and elicited metabolic reprogramming in visceral fat, liver, and aorta, of the wild-type rats. In addition, HFD increased inflammatory chemokines in visceral fat. Interestingly, CRISPR-edited loss-of-function Mediterranean G6PD variant (G6PDS188F) rats, which mimic human polymorphism, moderated HFD-induced weight gain and metabolic reprogramming in visceral fat, liver, and aorta. The G6PDS188F variant prevented HFD-induced CCL7 and adipocyte hypertrophy. Furthermore, the G6PDS188F variant increased Magel2 - a gene encoding circadian clock-related protein that suppresses obesity associated with Prader-Willi syndrome - and reduced HFD-induced non-alcoholic fatty liver. Additionally, the G6PDS188F variant reduced aging-induced aortic stiffening. Our findings suggest G6PD is a regulator of HFD-induced obesity, adipocyte hypertrophy, and fatty liver.


Asunto(s)
Adipocitos , Dieta Alta en Grasa , Hígado Graso , Glucosafosfato Deshidrogenasa , Hipertrofia , Obesidad , Animales , Glucosafosfato Deshidrogenasa/metabolismo , Glucosafosfato Deshidrogenasa/genética , Masculino , Ratas , Obesidad/metabolismo , Obesidad/genética , Obesidad/patología , Obesidad/etiología , Dieta Alta en Grasa/efectos adversos , Adipocitos/metabolismo , Adipocitos/patología , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Hígado/metabolismo , Hígado/patología , Ratas Sprague-Dawley , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología
15.
Circulation ; 149(20): 1598-1610, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38739695

RESUMEN

Defining mechanisms of cardiomyocyte proliferation should guide the understanding of endogenous cardiac regeneration and could lead to novel treatments for diseases such as myocardial infarction. In the neonatal heart, energy metabolic reprogramming (phenotypic alteration of glucose, fatty acid, and amino acid metabolism) parallels cell cycle arrest of cardiomyocytes. The metabolic reprogramming occurring shortly after birth is associated with alterations in blood oxygen levels, metabolic substrate availability, hemodynamic stress, and hormone release. In the adult heart, myocardial infarction causes metabolic reprogramming but these changes cannot stimulate sufficient cardiomyocyte proliferation to replace those lost by the ischemic injury. Some putative pro-proliferative interventions can induce the metabolic reprogramming. Recent data show that altering the metabolic enzymes PKM2 [pyruvate kinase 2], LDHA [lactate dehydrogenase A], PDK4 [pyruvate dehydrogenase kinase 4], SDH [succinate dehydrogenase], CPT1b [carnitine palmitoyl transferase 1b], or HMGCS2 [3-hydroxy-3-methylglutaryl-CoA synthase 2] is sufficient to partially reverse metabolic reprogramming and promotes adult cardiomyocyte proliferation. How metabolic reprogramming regulates cardiomyocyte proliferation is not clearly defined. The possible mechanisms involve biosynthetic pathways from the glycolysis shunts and the epigenetic regulation induced by metabolic intermediates. Metabolic manipulation could represent a new approach to stimulate cardiac regeneration; however, the efficacy of these manipulations requires optimization, and novel molecular targets need to be defined. In this review, we summarize the features, triggers, and molecular regulatory networks responsible for metabolic reprogramming and discuss the current understanding of metabolic reprogramming as a critical determinant of cardiomyocyte proliferation.


Asunto(s)
Proliferación Celular , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Humanos , Animales , Metabolismo Energético , Reprogramación Celular , Regeneración , Reprogramación Metabólica
16.
Circulation ; 149(25): 1982-2001, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38390737

RESUMEN

BACKGROUND: Reparative macrophages play a crucial role in limiting excessive fibrosis and promoting cardiac repair after myocardial infarction (MI), highlighting the significance of enhancing their reparative phenotype for wound healing. Metabolic adaptation orchestrates the phenotypic transition of macrophages; however, the precise mechanisms governing metabolic reprogramming of cardiac reparative macrophages remain poorly understood. In this study, we investigated the role of NPM1 (nucleophosmin 1) in the metabolic and phenotypic shift of cardiac macrophages in the context of MI and explored the therapeutic effect of targeting NPM1 for ischemic tissue repair. METHODS: Peripheral blood mononuclear cells were obtained from healthy individuals and patients with MI to explore NPM1 expression and its correlation with prognostic indicators. Through RNA sequencing, metabolite profiling, histology, and phenotype analyses, we investigated the role of NPM1 in postinfarct cardiac repair using macrophage-specific NPM1 knockout mice. Epigenetic experiments were conducted to study the mechanisms underlying metabolic reprogramming and phenotype transition of NPM1-deficient cardiac macrophages. The therapeutic efficacy of antisense oligonucleotide and inhibitor targeting NPM1 was then assessed in wild-type mice with MI. RESULTS: NPM1 expression was upregulated in the peripheral blood mononuclear cells from patients with MI that closely correlated with adverse prognostic indicators of MI. Macrophage-specific NPM1 deletion reduced infarct size, promoted angiogenesis, and suppressed tissue fibrosis, in turn improving cardiac function and protecting against adverse cardiac remodeling after MI. Furthermore, NPM1 deficiency boosted the reparative function of cardiac macrophages by shifting macrophage metabolism from the inflammatory glycolytic system to oxygen-driven mitochondrial energy production. The oligomeric NPM1 recruited histone demethylase KDM5b to the promoter of Tsc1 (TSC complex subunit 1), the mTOR (mechanistic target of rapamycin kinase) complex inhibitor, reduced histone H3K4me3 modification, and inhibited TSC1 expression, which then facilitated mTOR-related inflammatory glycolysis and antagonized the reparative function of cardiac macrophages. The in vivo administration of antisense oligonucleotide targeting NPM1 or oligomerization inhibitor NSC348884 substantially ameliorated tissue injury and enhanced cardiac recovery in mice after MI. CONCLUSIONS: Our findings uncover the key role of epigenetic factor NPM1 in impeding postinfarction cardiac repair by remodeling metabolism pattern and impairing the reparative function of cardiac macrophages. NPM1 may serve as a promising prognostic biomarker and a valuable therapeutic target for heart failure after MI.


Asunto(s)
Epigénesis Genética , Macrófagos , Infarto del Miocardio , Proteínas Nucleares , Nucleofosmina , Animales , Macrófagos/metabolismo , Humanos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/genética , Ratones , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ratones Noqueados , Masculino , Reprogramación Celular , Femenino , Glucólisis , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
17.
Gastroenterology ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759843

RESUMEN

Gastrointestinal (GI) cancers are the leading cause of new cancer cases and cancer-related deaths worldwide. The treatment strategies for patients with GI tumors have focused on oncogenic molecular profiles associated with tumor cells. Recent evidence has demonstrated that the tumor cell functions are modulated by its microenvironment, compromising fibroblasts, extracellular matrices, microbiome, immune cells, and the enteric nervous system. Along with the tumor microenvironment components, alterations in key metabolic pathways have emerged as a hallmark of tumor cells. From these perspectives, this review will highlight the functions of different cellular components of the GI tumor microenvironment and their implications for treatment. Furthermore, we discuss the major metabolic reprogramming in GI tumor cells and how understanding metabolic rewiring could lead to new therapeutic strategies. Finally, we briefly summarize the targeted agents currently being studied in GI cancers. Understanding the complex interplay between tumor cell-intrinsic and -extrinsic factors during tumor progression is critical for developing new therapeutic strategies.

18.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37816138

RESUMEN

Immune evasion and metabolism reprogramming have been regarded as two vital hallmarks of the mechanism of carcinogenesis. Thus, targeting the immune microenvironment and the reprogrammed metabolic processes will aid in developing novel anti-cancer drugs. In recent decades, herbal medicine has been widely utilized to treat cancer through the modulation of the immune microenvironment and reprogrammed metabolic processes. However, labor-based herbal ingredient screening is time consuming, laborious and costly. Luckily, some computational approaches have been proposed to screen candidates for drug discovery rapidly. Yet, it has been challenging to develop methods to screen drug candidates exclusively targeting specific pathways, especially for herbal ingredients which exert anti-cancer effects by multiple targets, multiple pathways and synergistic ways. Meanwhile, currently employed approaches cannot quantify the contribution of the specific pathway to the overall curative effect of herbal ingredients. Hence, to address this problem, this study proposes a new computational framework to infer the contribution of the immune microenvironment and metabolic reprogramming (COIMMR) in herbal ingredients against human cancer and specifically screen herbal ingredients targeting the immune microenvironment and metabolic reprogramming. Finally, COIMMR was applied to identify isoliquiritigenin that specifically regulates the T cells in stomach adenocarcinoma and cephaelin hydrochloride that specifically targets metabolic reprogramming in low-grade glioma. The in silico results were further verified using in vitro experiments. Taken together, our approach opens new possibilities for repositioning drugs targeting immune and metabolic dysfunction in human cancer and provides new insights for drug development in other diseases. COIMMR is available at https://github.com/LYN2323/COIMMR.


Asunto(s)
Antineoplásicos , Neoplasias , Plantas Medicinales , Humanos , Neoplasias/metabolismo , Antineoplásicos/uso terapéutico , Linfocitos T , Medicina de Hierbas , Microambiente Tumoral
19.
Trends Immunol ; 43(2): 132-147, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34973923

RESUMEN

Metabolic reprogramming of cancer cells creates a unique tumor microenvironment (TME) characterized by the limited availability of nutrients, which subsequently affects the metabolism, differentiation, and function of tumor-infiltrating T lymphocytes (TILs). TILs can also be inhibited by tumor-derived metabolic waste products and low oxygen. Therefore, a thorough understanding of how such unique metabolites influence mammalian T cell differentiation and function can inform novel anticancer therapeutic approaches. Here, we highlight the importance of these metabolites in modulating various T cell subsets within the TME, dissecting how these changes might alter clinical outcomes. We explore potential TME metabolic determinants that might constitute candidate targets for cancer immunotherapies, ideally leading to future strategies for reprogramming tumor metabolism to potentiate anticancer T cell functions.


Asunto(s)
Neoplasias , Microambiente Tumoral , Animales , Diferenciación Celular , Humanos , Inmunoterapia , Linfocitos Infiltrantes de Tumor/metabolismo , Mamíferos , Neoplasias/metabolismo
20.
FASEB J ; 38(3): e23450, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38294796

RESUMEN

Oncolytic virus immunotherapy as a new tumor therapy has made remarkable achievements in clinical practice. And metabolic reprogramming mediated by oncolytic virus has a significant impact on the immune microenvironment. This review summarized the reprogramming of host cell glucose metabolism, lipid metabolism, oxidative phosphorylation, and glutamine metabolism by oncolytic virus and illustrated the effects of metabolic reprogramming on the immune microenvironment. It was found that oncolytic virus-induced reprogramming of glucose metabolism in tumor cells has both beneficial and detrimental effects on the immune microenvironment. In addition, oncolytic virus can promote fatty acid synthesis in tumor cells, inhibit oxidative phosphorylation, and promote glutamine catabolism, which facilitates the anti-tumor immune function of immune cells. Therefore, targeted metabolic reprogramming is a new direction to improve the efficacy of oncolytic virus immunotherapy.


Asunto(s)
Glutamina , Virus Oncolíticos , Reprogramación Metabólica , Adipogénesis , Glucosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA