Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.309
Filtrar
1.
Cell ; 178(1): 27-43.e19, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31230713

RESUMEN

When a behavior repeatedly fails to achieve its goal, animals often give up and become passive, which can be strategic for preserving energy or regrouping between attempts. It is unknown how the brain identifies behavioral failures and mediates this behavioral-state switch. In larval zebrafish swimming in virtual reality, visual feedback can be withheld so that swim attempts fail to trigger expected visual flow. After tens of seconds of such motor futility, animals became passive for similar durations. Whole-brain calcium imaging revealed noradrenergic neurons that responded specifically to failed swim attempts and radial astrocytes whose calcium levels accumulated with increasing numbers of failed attempts. Using cell ablation and optogenetic or chemogenetic activation, we found that noradrenergic neurons progressively activated brainstem radial astrocytes, which then suppressed swimming. Thus, radial astrocytes perform a computation critical for behavior: they accumulate evidence that current actions are ineffective and consequently drive changes in behavioral states. VIDEO ABSTRACT.


Asunto(s)
Astrocitos/metabolismo , Conducta Animal/fisiología , Larva/fisiología , Pez Cebra/fisiología , Neuronas Adrenérgicas/metabolismo , Animales , Animales Modificados Genéticamente/fisiología , Astrocitos/citología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico , Calcio/metabolismo , Comunicación Celular/fisiología , Retroalimentación Sensorial/fisiología , Neuronas GABAérgicas/metabolismo , Potenciales de la Membrana/fisiología , Optogenética , Natación/fisiología
2.
Immunity ; 54(5): 1022-1036.e8, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33932356

RESUMEN

The sympathetic nervous system is composed of an endocrine arm, regulating blood adrenaline and noradrenaline, and a local arm, a network of fibers innervating immune organs. Here, we investigated the impact of the local arm of the SNS in an inflammatory response in the colon. Intra-rectal insertion of an optogenetic probe in mice engineered to express channelrhodopsin-2 in tyrosine hydroxylase cells activated colonic sympathetic fibers. In contrast to systemic application of noradrenaline, local activation of sympathetic fibers attenuated experimental colitis and reduced immune cell abundance. Gene expression profiling showed decreased endothelial expression of the adhesion molecule MAdCAM-1 upon optogenetic stimulation; this decrease was sensitive to adrenergic blockers and 6-hydroxydopamine. Antibody blockade of MAdCAM-1 abrogated the optogenetic effect on immune cell extravasation into the colon and the pathology. Thus, sympathetic fibers control colonic inflammation by regulating immune cell extravasation from circulation, a mechanism likely relevant in multiple organs.


Asunto(s)
Colitis/inmunología , Colon/inmunología , Colon/inervación , Organogénesis/inmunología , Sistema Nervioso Simpático/inmunología , Animales , Molécula 1 de Adhesión Intercelular/inmunología , Ratones , Ratones Endogámicos C57BL , Optogenética/métodos
3.
Immunity ; 54(6): 1219-1230.e7, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33915109

RESUMEN

The sympathetic nervous system (SNS) controls various physiological functions via the neurotransmitter noradrenaline. Activation of the SNS in response to psychological or physical stress is frequently associated with weakened immunity. Here, we investigated how adrenoceptor signaling influences leukocyte behavior. Intravital two-photon imaging after injection of noradrenaline revealed transient inhibition of CD8+ and CD4+ T cell locomotion in tissues. Expression of ß-adrenergic receptor in hematopoietic cells was not required for NA-mediated inhibition of motility. Rather, chemogenetic activation of the SNS or treatment with adrenergic receptor agonists induced vasoconstriction and decreased local blood flow, resulting in abrupt hypoxia that triggered rapid calcium signaling in leukocytes and halted cell motility. Oxygen supplementation reversed these effects. Treatment with adrenergic receptor agonists impaired T cell responses induced in response to viral and parasitic infections, as well as anti-tumor responses. Thus, stimulation of the SNS impairs leukocyte mobility, providing a mechanistic understanding of the link between adrenergic receptors and compromised immunity.


Asunto(s)
Adrenérgicos/inmunología , Movimiento Celular/inmunología , Inmunidad/inmunología , Leucocitos/inmunología , Sistema Nervioso Simpático/inmunología , Animales , Señalización del Calcio/inmunología , Línea Celular Tumoral , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptores Adrenérgicos/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología
4.
J Neurosci ; 44(7)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38124020

RESUMEN

The locus ceruleus (LC) is the primary source of neocortical noradrenaline, which is known to be involved in diverse brain functions including sensory perception, attention, and learning. Previous studies have shown that LC stimulation paired with sensory experience can induce task-dependent plasticity in the sensory neocortex and in the hippocampus. However, it remains unknown whether LC activation similarly impacts neural representations in the agranular motor cortical regions that are responsible for movement planning and production. In this study, we test whether optogenetic stimulation of the LC paired with motor performance is sufficient to induce task-relevant plasticity in the somatotopic cortical motor map. Male and female TH-Cre + rats were trained on a skilled reaching lever-pressing task emphasizing the use of the proximal forelimb musculature, and a viral approach was used to selectively express ChR2 in noradrenergic LC neurons. Once animals reached criterial behavioral performance, they received five training sessions in which correct task performance was paired with optogenetic stimulation of the LC delivered at 3, 10, or 30 Hz. After the last stimulation session, motor cortical mapping was performed using intracortical microstimulation. Our results show that lever pressing paired with LC stimulation at 10 Hz, but not at 3 or 30 Hz, drove the expansion of the motor map representation of the task-relevant proximal FL musculature. These findings demonstrate that phasic, training-paired activation of the LC is sufficient to induce experience-dependent plasticity in the agranular motor cortex and that this LC-driven plasticity is highly dependent on the temporal dynamics of LC activation.


Asunto(s)
Locus Coeruleus , Corteza Motora , Ratas , Femenino , Masculino , Animales , Locus Coeruleus/fisiología , Corteza Motora/fisiología , Optogenética , Movimiento/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal
5.
J Neurosci ; 44(22)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684363

RESUMEN

A dynamic environment, such as the one we inhabit, requires organisms to continuously update their knowledge of the setting. While the prefrontal cortex is recognized for its pivotal role in regulating such adaptive behavior, the specific contribution of each prefrontal area remains elusive. In the current work, we investigated the direct involvement of two major prefrontal subregions, the medial prefrontal cortex (mPFC, A32D + A32V) and the orbitofrontal cortex (OFC, VO + LO), in updating pavlovian stimulus-outcome (S-O) associations following contingency degradation in male rats. Specifically, animals had to learn that a particular cue, previously fully predicting the delivery of a specific reward, was no longer a reliable predictor. First, we found that chemogenetic inhibition of mPFC, but not of OFC, neurons altered the rats' ability to adaptively respond to degraded and non-degraded cues. Next, given the growing evidence pointing at noradrenaline (NA) as a main neuromodulator of adaptive behavior, we decided to investigate the possible involvement of NA projections to the two subregions in this higher-order cognitive process. Employing a pair of novel retrograde vectors, we traced NA projections from the locus ceruleus (LC) to both structures and observed an equivalent yet relatively segregated amount of inputs. Then, we showed that chemogenetic inhibition of NA projections to the mPFC, but not to the OFC, also impaired the rats' ability to adaptively respond to the degradation procedure. Altogether, our findings provide important evidence of functional parcellation within the prefrontal cortex and point at mPFC NA as key for updating pavlovian S-O associations.


Asunto(s)
Norepinefrina , Corteza Prefrontal , Animales , Corteza Prefrontal/fisiología , Masculino , Ratas , Norepinefrina/metabolismo , Condicionamiento Clásico/fisiología , Recompensa , Señales (Psicología) , Adaptación Psicológica/fisiología , Transmisión Sináptica/fisiología , Ratas Long-Evans
6.
Brain ; 147(2): 337-351, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37669320

RESUMEN

Disruptions to dopamine and noradrenergic neurotransmission are noted in several neurodegenerative and psychiatric disorders. Neuromelanin-sensitive (NM)-MRI offers a non-invasive approach to visualize and quantify the structural and functional integrity of the substantia nigra and locus coeruleus. This method may aid in the diagnosis and quantification of longitudinal changes of disease and could provide a stratification tool for predicting treatment success of pharmacological interventions targeting the dopaminergic and noradrenergic systems. Given the growing clinical interest in NM-MRI, understanding the contrast mechanisms that generate this signal is crucial for appropriate interpretation of NM-MRI outcomes and for the continued development of quantitative MRI biomarkers that assess disease severity and progression. To date, most studies associate NM-MRI measurements to the content of the neuromelanin pigment and/or density of neuromelanin-containing neurons, while recent studies suggest that the main source of the NM-MRI contrast is not the presence of neuromelanin but the high-water content in the dopaminergic and noradrenergic neurons. In this review, we consider the biological and physical basis for the NM-MRI contrast and discuss a wide range of interpretations of NM-MRI. We describe different acquisition and image processing approaches and discuss how these methods could be improved and standardized to facilitate large-scale multisite studies and translation into clinical use. We review the potential clinical applications in neurological and psychiatric disorders and the promise of NM-MRI as a biomarker of disease, and finally, we discuss the current limitations of NM-MRI that need to be addressed before this technique can be utilized as a biomarker and translated into clinical practice and offer suggestions for future research.


Asunto(s)
Catecolaminas , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Sustancia Negra/diagnóstico por imagen , Melaninas , Dopamina , Biomarcadores
7.
Brain ; 147(4): 1377-1388, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37787503

RESUMEN

Degeneration of the noradrenergic system is now considered a pathological hallmark of Parkinson's disease, but little is known about its consequences in terms of parkinsonian manifestations. Here, we evaluated two aspects of the noradrenergic system using multimodal in vivo imaging in patients with Parkinson's disease and healthy controls: the pigmented cell bodies of the locus coeruleus with neuromelanin sensitive MRI; and the density of α2-adrenergic receptors (ARs) with PET using 11C-yohimbine. Thirty patients with Parkinson's disease and 30 age- and sex-matched healthy control subjects were included. The characteristics of the patients' symptoms were assessed using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Patients showed reduced neuromelanin signal intensity in the locus coeruleus compared with controls and diminished 11C-yohimbine binding in widespread cortical regions, including the motor cortex, as well as in the insula, thalamus and putamen. Clinically, locus coeruleus neuronal loss was correlated with motor (bradykinesia, motor fluctuations, tremor) and non-motor (fatigue, apathy, constipation) symptoms. A reduction of α2-AR availability in the thalamus was associated with tremor, while a reduction in the putamen, the insula and the superior temporal gyrus was associated with anxiety. These results highlight a multifaceted alteration of the noradrenergic system in Parkinson's disease since locus coeruleus and α2-AR degeneration were found to be partly uncoupled. These findings raise important issues about noradrenergic dysfunction that may encourage the search for new drugs targeting this system, including α2-ARs, for the treatment of Parkinson's disease.


Asunto(s)
Melaninas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Temblor/complicaciones , Radioisótopos de Carbono/metabolismo , Tomografía de Emisión de Positrones , Norepinefrina/metabolismo , Locus Coeruleus/metabolismo , Imagen por Resonancia Magnética
8.
J Neurosci ; 43(41): 6898-6908, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37666665

RESUMEN

Prevailing frameworks propose that a key feature of attention-deficit/hyperactivity disorder (ADHD) is lower motivation. An important component of motivation is the willingness to engage in cognitively or physically effortful behavior. However, the degree to which effort sensitivity is impaired in ADHD has rarely been tested, and the efficacy of stimulant medication in ameliorating any such impairments is unclear. Here, we tested 20 individuals with ADHD (11 males, 9 females) who were managed with amphetamine-based medication (dexamfetamine, lisdexamfetamine), and 24 controls (8 males, 16 females). Individuals with ADHD were tested over two counterbalanced sessions, ON and OFF their usual amphetamine-based medication. In each session, participants performed an effort-based decision-making task, in which they were required to choose how much cognitive or physical effort they were willing to engage in return for reward. Our results revealed three main findings. First, individuals with ADHD had lower motivation relative to controls to invest effort in both the cognitive and physical domains. Second, amphetamine increased motivation uniformly across both domains. Finally, the net effect of amphetamine treatment was to mostly restore motivation across both domains of effort relative to healthy controls. These data provide clear evidence for a heightened sensitivity to both cognitive and physical effort in ADHD, and reveal the efficacy of amphetamine-based drugs in restoring effort sensitivity to levels similar to controls. These findings confirm the existence of reduced motivational drive in ADHD, and more broadly provide direct causal evidence for a domain-general role of catecholamines in motivating effortful behavior.SIGNIFICANCE STATEMENT A core feature of attention-deficit/hyperactivity disorder (ADHD) is thought to be a heightened aversion to effort. Surprisingly, however, the degree to which effort sensitivity is impaired in ADHD has rarely been tested. More broadly, the relative efficacy of catecholamines in motivating the investment of cognitive and physical effort is unclear. We tested 20 individuals with ADHD ON and OFF amphetamines, and compared their behavior on an effort-based decision-making task to 24 controls. When tested OFF medication, the ADHD group was less cognitively and physically motivated than controls. However, amphetamines led to a comparable increase in motivation across both domains. This demonstrates the efficacy of catecholamines in facilitating domain-general effort, and highlights the broader potential of such drugs to treat disorders of motivation.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estimulantes del Sistema Nervioso Central , Masculino , Femenino , Humanos , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Motivación , Anfetaminas/farmacología , Anfetaminas/uso terapéutico , Dimesilato de Lisdexanfetamina/farmacología , Dimesilato de Lisdexanfetamina/uso terapéutico , Catecolaminas , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/uso terapéutico
9.
J Neurosci ; 43(47): 7982-7999, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37734949

RESUMEN

Neuronal activity is modulated not only by inputs from other neurons but also by various factors, such as bioactive substances. Noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons) are involved in diverse physiological functions, including sleep/wakefulness and stress responses. Previous studies have identified various substances and receptors that modulate LC-NA neuronal activity through techniques including electrophysiology, calcium imaging, and single-cell RNA sequencing. However, many substances with unknown physiological significance have been overlooked. Here, we established an efficient screening method for identifying substances that modulate LC-NA neuronal activity through intracellular calcium ([Ca2+]i) imaging using brain slices. Using both sexes of mice, we screened 53 bioactive substances, and identified five novel substances: gastrin-releasing peptide, neuromedin U, and angiotensin II, which increase [Ca2+]i, and pancreatic polypeptide and prostaglandin D2, which decrease [Ca2+]i Among them, neuromedin U induced the greatest response in female mice. In terms of the duration of [Ca2+]i change, we focused on prostaglandin E2 (PGE2), since it induces a long-lasting decrease in [Ca2+]i via the EP3 receptor. Conditional knock-out of the receptor in LC-NA neurons resulted in increased depression-like behavior, prolonged wakefulness in the dark period, and increased [Ca2+]i after stress exposure. Our results demonstrate the effectiveness of our screening method for identifying substances that modulate a specific neuronal population in an unbiased manner and suggest that stress-induced prostaglandin E2 can suppress LC-NA neuronal activity to moderate the behavioral response to stressors. Our screening method will contribute to uncovering previously unknown physiological functions of uncharacterized bioactive substances in specific neuronal populations.SIGNIFICANCE STATEMENT Bioactive substances modulate the activity of specific neuronal populations. However, since only a limited number of substances with predicted effects have been investigated, many substances that may modulate neuronal activity have gone unrecognized. Here, we established an unbiased method for identifying modulatory substances by measuring the intracellular calcium signal, which reflects neuronal activity. We examined noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons), which are involved in diverse physiological functions. We identified five novel substances that modulate LC-NA neuronal activity. We also found that stress-induced prostaglandin E2 (PGE2) may suppress LC-NA neuronal activity and influence behavioral outcomes. Our screening method will help uncover previously overlooked functions of bioactive substances and provide insight into unrecognized roles of specific neuronal populations.


Asunto(s)
Neuronas Adrenérgicas , Locus Coeruleus , Masculino , Ratones , Femenino , Animales , Locus Coeruleus/fisiología , Calcio/farmacología , Norepinefrina/farmacología , Prostaglandinas
10.
J Physiol ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38352977

RESUMEN

Cardiac disease is marked by sympathoexcitation and elevated levels of noradrenaline (NA) and cotransmitter neuropeptide Y (NPY). Increased NPY levels are associated with a greater risk of ventricular arrhythmias and mortality. Nonetheless, the factors that cause NPY release remain poorly understood. We hypothesized that circulating catecholamines might lead to NPY release from myocardial sympathetic nerve terminals via a ß-receptor-mediated mechanism that enhances sympathoexcitation. Ventricular interstitial NA and NPY levels were measured in six Yorkshire pigs after i.v. administration of NA (1 mg) and before and after propranolol infusion (1 mg/kg). Real-time interstitial NPY levels were measured using ventricular capacitive immunoprobes (CIs) affixed with NPY antibodies and quantified as the change in CI input current (INPY ) upon binding of NPY. Interstitial NA was measured with adjacent fast-scan cyclic voltammetry probes (INA ). A left ventricular pressure catheter and continuous ECGs were used for haemodynamic recordings, and an epicardial 56-electrode sock was used for measurements of activation recovery interval, a surrogate of action potential duration. Upon administration of NA, heart rate and left ventricular pressure increased, and activation recovery interval shortened. Notably, NA significantly increased interstitial myocardial NPY levels. After propranolol, changes in heart rate and activation recovery interval were largely mitigated. The INA increased to a similar extent post-propranolol vs. pre-propranolol, but changes in INPY were significantly reduced post-propranolol. Coronary sinus plasma analyses confirmed fast-scan cyclic voltammetry and CI findings. Hence, this study demonstrates that circulating NA induces NPY release from ventricular sympathetic nerve terminals, the mechanism for which is mediated via ß-adrenergic receptors and can be blocked by the non-selective ß-blocker, propranolol. KEY POINTS: Cardiovascular disease is characterized by sympathovagal imbalance, with increased plasma noradrenaline (NA) and neuropeptide Y (NPY) concentrations. Increased NPY levels are associated with increased ventricular arrhythmias and mortality in heart failure. Limited data are available on the specific factors that cause NPY release. In this study, fast-scan cyclic voltammetry and capacitive immunoprobes were used to allow for real-time in vivo measurements of interstitial myocardial neurotransmitters and neuropeptides, respectively. Using an in vivo porcine model with cardiac fast-scan cyclic voltammetry and capacitive immunoprobes, it was shown that systemic NA can increase ventricular interstitial NPY levels, suggesting that NA induces NPY release from postganglionic sympathetic nerves. The release of NPY was blocked by administration of the non-selective ß-blocker propranolol, suggesting that release of NPY is dependent on activation of ß-adrenergic receptors by NA.

11.
J Neurophysiol ; 132(1): 68-77, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38838298

RESUMEN

The prepositus hypoglossi nucleus (PHN) and the interstitial nucleus of Cajal (INC) are involved in the control of horizontal and vertical gaze, respectively. A previous study showed that PHN neurons exhibit depolarized or hyperpolarized responses to noradrenaline (NA). However, the adrenoceptor types that participate in NA-induced responses and the effects of NA on INC neurons have not yet been investigated. Furthermore, the relationship between NA-induced responses and neuron types defined by neurotransmitter phenotypes has not been determined. In this study, we investigated NA-induced current responses in PHN and INC neurons and the relationships between these responses and neuron types using whole cell recordings in wild-type and transgenic rat brainstem slices. Local application of NA to the cell soma induced slow inward (SI) and slow outward (SO) currents that were mainly mediated by α1 and α2 adrenoceptors, respectively. These current responses were observed in both PHN and INC neurons, although the proportion of INC neurons that responded to NA was low. Analyses of the distributions of the current responses revealed that in the PHN, all fluorescently identified inhibitory neurons exhibited SI currents, whereas glutamatergic and cholinergic neurons exhibited both SI and SO currents. In the INC, glutamatergic and inhibitory neurons preferentially exhibited SI and SO currents, respectively. When the PHN and INC neurons were characterized by their firing pattern, we found that the proportions of the currents depended on their firing pattern. These results suggest that various modes of noradrenergic modulation in horizontal and vertical neural integrators are dependent on neuron type.NEW & NOTEWORTHY Noradrenergic modulation of oculomotor neural integrators involved in gaze control has not been elucidated. Here, we report that noradrenaline (NA)-induced slow inward (SI) and outward (SO) currents are mediated mainly by α1 and α2 adrenoceptors in neurons that participate in horizontal and vertical gaze control. The NA-induced current responses differed depending on the neurotransmitter phenotype and firing pattern. These results suggest various modes of noradrenergic modulation in horizontal and vertical integrator neurons.


Asunto(s)
Norepinefrina , Animales , Norepinefrina/farmacología , Ratas , Masculino , Ratas Transgénicas , Neuronas/fisiología , Neuronas/efectos de los fármacos , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 1/fisiología , Neuronas Adrenérgicas/fisiología , Neuronas Adrenérgicas/efectos de los fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos alfa 2/fisiología , Técnicas de Placa-Clamp , Tronco Encefálico/fisiología , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Neuronas Colinérgicas/fisiología , Neuronas Colinérgicas/efectos de los fármacos
12.
J Neurochem ; 168(5): 910-954, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38183680

RESUMEN

Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.


Asunto(s)
Encéfalo , Metabolismo Energético , Animales , Humanos , Encéfalo/metabolismo
13.
Eur J Neurosci ; 59(6): 1278-1295, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38052454

RESUMEN

Astrocytes, the most abundant glial cells in the central nervous system, respond to a wide variety of neurotransmitters binding to metabotropic receptors. Here, we investigated the intracellular calcium responses of spinal cord astrocytes to dopamine and noradrenaline, two catecholamines released by specific descending pathways. In a slice preparation from the spinal cord of neonatal mice, puff application of dopamine resulted in intracellular calcium responses that remained in the endfeet. Noradrenaline induced stronger responses that also started in the endfeet but spread to neighbouring compartments. The intracellular calcium responses were unaffected by blocking neuronal activity or inhibiting various neurotransmitter receptors, suggesting a direct effect of dopamine and noradrenaline on astrocytes. The intracellular calcium responses induced by noradrenaline and dopamine were inhibited by the D1 receptor antagonist SCH 23390. We assessed the functional consequences of these astrocytic responses by examining changes in arteriole diameter. Puff application of dopamine or noradrenaline resulted in vasoconstriction of spinal arterioles. However, blocking D1 receptors or manipulating astrocytic intracellular calcium levels did not abolish the vasoconstrictions, indicating that the observed intracellular calcium responses in astrocyte endfeet were not responsible for the vascular changes. Our findings demonstrate a compartmentalized response of spinal cord astrocytes to catecholamines and expand our understanding of astrocyte-neurotransmitter interactions and their potential roles in the physiology of the central nervous system.


Asunto(s)
Dopamina , Norepinefrina , Ratones , Animales , Norepinefrina/farmacología , Norepinefrina/metabolismo , Dopamina/metabolismo , Astrocitos/metabolismo , Calcio/metabolismo , Catecolaminas/metabolismo , Catecolaminas/farmacología
14.
J Neurosci Res ; 102(6): e25360, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847288

RESUMEN

Childhood obesity increases the risk of health and cognitive disorders in adulthood. Consuming high-fat diets (HFD) during critical neurodevelopmental periods, like childhood, impairs cognition and memory in humans and animals, affecting the function and connectivity of brain structures related to emotional memory. However, the underlying mechanisms of such phenomena need to be better understood. This study aimed to investigate the neurochemical profile of the amygdala and hippocampus, brain structures involved in emotional memory, during the acquisition of conditioned odor aversion in male rats that consumed a HFD from weaning to adulthood. The rats gained weight, experienced metabolic changes, and reduced insulin sensitivity and glucose tolerance. Rats showed enhanced odor aversion memory, contrary to the expected cognitive impairments. This memory enhancement was accompanied by increased noradrenergic and glutamatergic neurotransmission in the amygdala and hippocampus. Importantly, this upregulation was specific to stimuli exposure, as basal neurotransmitter levels remained unaltered by the HFD. Our results suggest that HFD modifies cognitive function by altering neurochemical signaling, in this case, upregulating neurotransmitter levels rendering a stronger memory trace, demonstrating that metabolic dysfunctions do not only trigger exclusively detrimental plasticity processes but also render enhanced plastic effects depending on the type of information.


Asunto(s)
Amígdala del Cerebelo , Dieta Alta en Grasa , Ácido Glutámico , Hipocampo , Transmisión Sináptica , Animales , Masculino , Dieta Alta en Grasa/efectos adversos , Hipocampo/metabolismo , Amígdala del Cerebelo/metabolismo , Transmisión Sináptica/fisiología , Ratas , Ácido Glutámico/metabolismo , Norepinefrina/metabolismo , Ratas Wistar , Cognición/fisiología , Reacción de Prevención/fisiología
15.
Clin Exp Allergy ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866583

RESUMEN

In this review, we compare different refractory anaphylaxis (RA) management guidelines focusing on cardiovascular involvement and best practice recommendations, discuss postulated pathogenic mechanisms underlining RA and highlight knowledge gaps and research priorities. There is a paucity of data supporting existing management guidelines. Therapeutic recommendations include the need for the timely administration of appropriate doses of aggressive fluid resuscitation and intravenous (IV) adrenaline in RA. The preferred second-line vasopressor (noradrenaline, vasopressin, metaraminol and dopamine) is unknown. Most guidelines recommend IV glucagon for patients on beta-blockers, despite a lack of evidence. The use of methylene blue or extracorporeal life support (ECLS) is also suggested as rescue therapy. Despite recent advances in understanding the pathogenesis of anaphylaxis, the factors that lead to a lack of response to the initial adrenaline and thus RA are unclear. Genetic factors, such as deficiency in platelet activating factor-acetyl hydrolase or hereditary alpha-tryptasaemia, mastocytosis may modulate reaction severity or response to treatment. Further research into the underlying pathophysiology of RA may help define potential new therapeutic approaches and reduce the morbidity and mortality of anaphylaxis.

16.
Nitric Oxide ; 143: 1-8, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38096948

RESUMEN

6-Nitrodopamine (6-ND) is released from rat and human vas deferens and is considered a major mediator of both tissues contractility. The contractions induced by 6-ND are selectively blocked by both tricyclic antidepressants and α1-adrenoceptor antagonists. Endothelial nitric oxide synthase (eNOS) is the major isoform responsible for 6-ND release in mouse isolated heart, however the origin of 6-ND in the vas deferens is unknown. Here it was investigated by LC-MS/MS the basal release of 6-ND from isolated vas deferens obtained from control, eNOS-/-, nNOS-/-, and iNOS-/- mice. In addition, it was evaluated in vitro vas deferens contractility following electric field stimulation (EFS). Basal release of 6-ND was significantly reduced in nNOS-/- mice compared to control mice, but not decreased when the vas deferens were obtained from either eNOS-/- or iNOS-/- mice. Pre-incubation of the vas deferens with tetrodotoxin (1 µM) significantly reduced the basal release of 6-ND from control, eNOS-/-, and iNOS-/- mice but had no effect on the basal release of 6-ND from nNOS-/- mice. EFS-induced frequency-dependent contractions of the vas deferens, which were significantly reduced when the tissues obtained from control, eNOS-/- and iNOS-/- mice, were pre-incubated with l-NAME, but unaltered when the vas deferens was obtained from nNOS-/- mice. In addition, the EFS-induced contractions were significantly smaller when the vas deferens were obtained from nNOS-/- mice. The results clearly demonstrate that nNOS is the main NO isoform responsible for 6-ND release in mouse vas deferens and reinforces the concept of 6-ND as a major modulator of vas deferens contractility.


Asunto(s)
Dopamina , Norepinefrina , Conducto Deferente , Animales , Humanos , Masculino , Ratones , Ratas , Cromatografía Liquida , Dopamina/análogos & derivados , Contracción Muscular , Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo I , Norepinefrina/farmacología , Espectrometría de Masas en Tándem , Conducto Deferente/fisiología
17.
Neuroimmunomodulation ; 31(1): 1-11, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38008070

RESUMEN

BACKGROUND: The neuro-endocrine regulation of immune functions is based on a complex network of interactions. As part of this series of articles, we refer here to immune-sympathetic interactions that are triggered by different types of immune challenge. SUMMARY: We mention the initial hypothesis that led to the proposal that the sympathetic nervous system (SNS) is involved in immunoregulation. We next refer mainly to our initial work performed at a time when most immunologists were concentrated in clarifying aspects of the immune system that are essential for its regulation from within. The first approach was to explore whether immune responses to innocuous antigens and superantigens can elicit changes in the activity of the SNS, and their potential relevance for the regulation of the activity of the immune system. The following step was to explore whether comparable immune-SNS interactions are detected in different models of diseases with immune components, such as parasitic and viral infections and autoimmune pathologies. KEY MESSAGES: We pose some general considerations that may at least partially explain seemly discrepant findings, and remark the importance of interpreting immunoregulatory effects of the SNS together with other neuro-endocrine inputs that simultaneously occur when the activity of the immune system changes. Finally, we provide some arguments to re-consider the use of the expression "reflex" in immunology.


Asunto(s)
Sistema Inmunológico , Sistema Nervioso Simpático
18.
Fish Shellfish Immunol ; 144: 109278, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072136

RESUMEN

Benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) is the active intermediate metabolite of benzo[a]pyrene (B[a]P) and is considered the ultimate immunotoxicant. The neuroendocrine immunoregulatory network of bivalves is affected under pollutant stress. Besides, bivalves are frequently affected by pollutants in marine environments, yet the combined effects of neuroendocrine factors and detoxification metabolites on bivalves under pollutant stress and the signal pathways that mediate this immunoregulation are not well understood. Therefore, we incubated the hemocytes of Chlamys farreri with the neuroendocrine factor noradrenaline (NA) and the B[a]P detoxification metabolite BPDE, alone or in combination, to examine the immunotoxic effects of NA and BPDE on the hemocytes in C. farreri. Furthermore, the effects of NA and BPDE on the hemocyte signal transduction pathway were investigated by assessing potential downstream targets. The results revealed that NA and BPDE, alone or in combination, resulted in a significant decrease in phagocytic activity, bacteriolytic activity and the total hemocyte count. In addition, the immunotoxicity induced by BPDE was further exacerbated by co-treatment with NA, and the two showed synergistic effects. Analysis of signaling pathway factors showed that NA activated G proteins by binding to α-AR, which transmitted information to the Ca2+-NF-κB signaling pathway to regulate the expression of phagocytosis-associated proteins and regulated cytokinesis through the cAMP signaling pathway. BPDE could activate PTK and affect phagocytosis and cytotoxicity proteins through Ca2+-NF-κB signal pathway, also affect the regulation of phagocytosis and cytotoxicity by inhibiting the AC-cAMP-PKA pathway to down-regulate the expression of NF-κB and CREB. In addition, BPDE and NA may affect the immunity of hemocytes by down-regulating phagocytosis-related proteins through inhibition of the lectin pathway, while regulating the expression of cytotoxicity-related proteins through the C-type lectin. In summary, immune parameters were suppressed through Ca2+ and cAMP dependent pathways exposed to BPDE and the immunosuppressive effects were enhanced by the neuroendocrine factor NA.


Asunto(s)
Contaminantes Ambientales , Pectinidae , Animales , Benzo(a)pireno , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/farmacología , Hemocitos/metabolismo , FN-kappa B , Norepinefrina , Pectinidae/metabolismo
19.
J Fluoresc ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38193952

RESUMEN

Fluorescence intensity and selective recognition ability are crucial factors in determining the analytical techniques for fluorescent probes. In this study, a core-shell fluorescent material, composed of silver nanoparticles@nitrogen-doped graphene quantum dots (Ag NPs@N/GQDs), was synthesised using mango leaves as the raw material through a thermal cracking method, resulting in strong fluorescence luminescence intensity. By employing noradrenaline as a template molecule and using a surface molecular imprinting technique, a molecularly imprinted membrane (MIP) was formed on the surface of the fluorescent material, that was subsequently eluted to obtain a highly specific, fluorescent probe capable of recognising noradrenaline. The probe captured various concentrations of noradrenaline using the MIP, which decreased the fluorescence intensity. Then a method for detecting trace amounts of noradrenaline was established. This method exhibited a linear range from 0.5 -700 pM with a detection limit of 0.154 pM. The proposed method was implemented in banana samples. Satisfactory recoveries were confirmed at four different concentrations. The method presented a relative standard deviation (RSD) of less than 5.0%.

20.
Brain ; 146(6): 2259-2267, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36625030

RESUMEN

The CNS houses naturally occurring pathways that project from the brain to modulate spinal neuronal activity. The noradrenergic locus coeruleus (the A6 nucleus) originates such a descending control whose influence on pain modulation encompasses an interaction with a spinally projecting non-cerulean noradrenergic cell group. Hypothesizing the origin of an endogenous pain inhibitory pathway, our aim was to identify this cell group. A5 and A7 noradrenergic nuclei also spinally project. We probed their activity using an array of optogenetic manipulation techniques during in vivo electrophysiological experimentation. Interestingly, noxious stimulus evoked spinal neuronal firing was decreased upon opto-activation of A5 neurons (two-way ANOVA with Tukey post hoc, P < 0.0001). Hypothesizing that this may reflect activity in the noradrenergic diffuse noxious inhibitory control circuit, itself activated upon application of a conditioning stimulus, we opto-inhibited A5 neurons with concurrent conditioning stimulus application. Surprisingly, no spinal neuronal inhibition was observed; activity in the diffuse noxious inhibitory control circuit was abolished (two-way ANOVA, P < 0.0001). We propose that the A5 nucleus is a critical relay nucleus for mediation of diffuse noxious inhibitory controls. Given the plasticity of diffuse noxious inhibitory controls in disease, and its back and forward clinical translation, our data reveal a potential therapeutic target.


Asunto(s)
Control Inhibidor Nocivo Difuso , Humanos , Control Inhibidor Nocivo Difuso/fisiología , Dolor/metabolismo , Neuronas/metabolismo , Locus Coeruleus/metabolismo , Encéfalo/metabolismo , Norepinefrina/metabolismo , Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA