Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Ther ; 30(8): 2785-2799, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35462042

RESUMEN

The inefficient tumor penetration of therapeutic antibodies has hampered their effective use in treating solid tumors. Here, we report the identification of a fully human single-domain antibody (UdAb), designated as n501, targeting the oncofetal antigen 5T4. The high-resolution crystal structure indicates that n501 adopts a compact structure very similar to that of camelid nanobodies, and binds tightly to all eight leucine-rich repeats of 5T4. Furthermore, the UdAb n501 exhibits exceptionally high stability, with no apparent activity changes over 4 weeks of storage at various temperatures. Importantly, the UdAb-based antibody-drug conjugate (n501-SN38) showed much deeper tumor penetration, significantly higher tumor uptake, and faster accumulation at tumor sites than conventional IgG1-based antibody-drug conjugate (m603-SN38), resulting in improved tumor inhibition. These results highlight the potential of UdAb-based antibody-drug conjugates as a potential class of antitumor therapeutics with characteristics of high stability and strong tumor penetration for the effective treatment of solid tumors.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Anticuerpos de Dominio Único , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/uso terapéutico
2.
Cancer Immunol Immunother ; 66(4): 415-426, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27757559

RESUMEN

The natural history of a patient's cancer is often characterised by genetic diversity and sequential sweeps of clonal dominance. It is therefore not surprising that identifying the most appropriate tumour-associated antigen for targeted intervention is challenging. The 5T4 oncofoetal antigen was identified by searching for surface molecules shared between human trophoblast and cancer cells with the rationale that they may function to allow survival of the foetus as a semi-allograft in the mother or a tumour in its host. The 5T4 protein is expressed by many different cancers but rarely in normal adult tissues. 5T4 molecules are 72 kD, heavily N-glycosylated proteins with several leucine-rich repeats which are often associated with protein-protein interactions. 5T4 expression is associated with the directional movement of cells through epithelial mesenchymal transition, potentiation of CXCL12/CXCR4 chemotaxis and inhibition of canonical Wnt/beta-catenin while favouring non-canonical pathway signalling; all processes which help drive the spread of cancer cells. The selective pattern of 5T4 tumour expression, association with a tumour-initiating phenotype plus a mechanistic involvement with cancer spread have underwritten the clinical development of different immunotherapeutic strategies including a vaccine, a tumour-targeted superantigen and an antibody drug conjugate. In addition, a chimeric antigen receptor T cell approach targeting 5T4 expressing tumour cells is in pre-clinical development. A key challenge will include how best to combine each 5T4 targeted immunotherapy with the most appropriate standard of care treatment (or adjunct therapy) to maximise the recovery of immune control and ultimately eliminate the tumour.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Vacunas contra el Cáncer/inmunología , Inmunoterapia/métodos , Glicoproteínas de Membrana/metabolismo , Neoplasias/terapia , Animales , Antígenos de Neoplasias/inmunología , Movimiento Celular , Transición Epitelial-Mesenquimal , Humanos , Glicoproteínas de Membrana/inmunología , Terapia Molecular Dirigida , Neoplasias/inmunología , Neoplasias/patología
3.
Mol Pharm ; 14(5): 1501-1516, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28245132

RESUMEN

Antibody-drug conjugates (ADCs) are a class of biopharmaceuticals that combine the specificity of antibodies with the high-potency of cytotoxic drugs. Engineering cysteine residues in the antibodies using mutagenesis is a common method to prepare site-specific ADCs. With this approach, solvent accessible amino acids in the antibody have been selected for substitution with cysteine for conjugating maleimide-bearing cytotoxic drugs, resulting in homogeneous and stable site-specific ADCs. Here we describe a cysteine engineering approach based on the insertion of cysteines before and after selected sites in the antibody, which can be used for site-specific preparation of ADCs. Cysteine-inserted antibodies have expression level and monomeric content similar to the native antibodies. Conjugation to a pyrrolobenzodiazepine dimer (SG3249) resulted in comparable efficiency of site-specific conjugation between cysteine-inserted and cysteine-substituted antibodies. Cysteine-inserted ADCs were shown to have biophysical properties, FcRn, and antigen binding affinity similar to the cysteine-substituted ADCs. These ADCs were comparable for serum stability to the ADCs prepared using cysteine-mutagenesis and had selective and potent cytotoxicity against human prostate cancer cells. Two of the cysteine-inserted variants abolish binding of the resulting ADCs to FcγRs in vitro, thereby potentially preventing non-target mediated uptake of the ADCs by cells of the innate immune system that express FcγRs, which may result in mitigating off-target toxicities. A selected cysteine-inserted ADC demonstrated potent dose-dependent anti-tumor activity in a xenograph tumor mouse model of human breast adenocarcinoma expressing the oncofetal antigen 5T4.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Cisteína/química , Animales , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/uso terapéutico , Línea Celular Tumoral , Femenino , Humanos , Inmunoconjugados/química , Inmunoconjugados/uso terapéutico , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Ratones , Ratones Desnudos , Trastuzumab/química , Trastuzumab/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cancer Cell ; 40(1): 53-69.e9, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34971569

RESUMEN

Pediatric cancers often mimic fetal tissues and express proteins normally silenced postnatally that could serve as immune targets. We developed T cells expressing chimeric antigen receptors (CARs) targeting glypican-2 (GPC2), a fetal antigen expressed on neuroblastoma (NB) and several other solid tumors. CARs engineered using standard designs control NBs with transgenic GPC2 overexpression, but not those expressing clinically relevant GPC2 site density (∼5,000 molecules/cell, range 1-6 × 103). Iterative engineering of transmembrane (TM) and co-stimulatory domains plus overexpression of c-Jun lowered the GPC2-CAR antigen density threshold, enabling potent and durable eradication of NBs expressing clinically relevant GPC2 antigen density, without toxicity. These studies highlight the critical interplay between CAR design and antigen density threshold, demonstrate potent efficacy and safety of a lead GPC2-CAR candidate suitable for clinical testing, and credential oncofetal antigens as a promising class of targets for CAR T cell therapy of solid tumors.


Asunto(s)
Glipicanos/inmunología , Inmunoterapia Adoptiva , Neuroblastoma/tratamiento farmacológico , Receptores de Antígenos de Linfocitos T/metabolismo , Animales , Línea Celular Tumoral , Glipicanos/metabolismo , Humanos , Inmunoterapia/métodos , Neuroblastoma/patología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
5.
Cancers (Basel) ; 14(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35892887

RESUMEN

Keratinocyte carcinomas are among the most prevalent malignancies worldwide. Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) are the two cancers recognized as keratinocyte carcinomas. The standard of care for treating these cancers includes surgery and ablative therapies. However, in recent years, targeted therapies (e.g., cetuximab for cSCC and vismodegib/sonidegib for BCC) have been used to treat advanced disease as well as immunotherapy (e.g., cemiplimab). These treatments are expensive and have significant toxicities with objective response rates approaching ~50-65%. Hence, there is a need to dissect the molecular pathogenesis of these cancers to identify novel biomarkers and therapeutic targets to improve disease management. Several cancer-testis antigens (CTA) and developmental genes (including embryonic stem cell factors and fetal genes) are ectopically expressed in BCC and cSCC. When ectopically expressed in malignant tissues, functions of these genes may be recaptured to promote tumorigenesis. CTAs and developmental genes are emerging as important players in the pathogenesis of BCC and cSCC, positioning themselves as attractive candidate biomarkers and therapeutic targets requiring rigorous testing. Herein, we review the current research and offer perspectives on the contributions of CTAs and developmental genes to the pathogenesis of keratinocyte carcinomas.

6.
Biology (Basel) ; 10(4)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33917111

RESUMEN

The anti-Müllerian hormone (AMH) belongs to the TGF-ß family and plays a key role during fetal sexual development. Various reports have described the expression of AMH type II receptor (AMHRII) in human gynecological cancers including ovarian tumors. According to qRT-PCR results confirmed by specific In-Situ Hybridization (ISH) experiments, AMHRII mRNA is expressed in an extremely restricted number of normal tissues. By performing ISH on tissue microarray of solid tumor samples AMHRII mRNA was unexpectedly detected in several non-gynecological primary cancers including lung, breast, head and neck, and colorectal cancers. AMHRII protein expression, evaluated by immunohistochemistry (IHC) was detected in approximately 70% of epithelial ovarian cancers. Using the same IHC protocol on more than 900 frozen samples covering 18 different cancer types we detected AMHRII expression in more than 50% of hepato-carcinomas, colorectal, lung, and renal cancer samples. AMHRII expression was not observed in neuroendocrine lung tumor samples nor in non-Hodgkin lymphoma samples. Complementary analyses by immunofluorescence and flow cytometry confirmed the detection of AMHRII on a panel of ovarian and colorectal cancers displaying comparable expression levels with mean values of 39,000 and 50,000 AMHRII receptors per cell, respectively. Overall, our results suggest that this embryonic receptor could be a suitable target for treating AMHRII-expressing tumors with an anti-AMHRII selective agent such as murlentamab, also named 3C23K or GM102. This potential therapeutic intervention was confirmed in vivo by showing antitumor activity of murlentamab against AMHRII-expressing colorectal cancer and hepatocarcinoma Patient-Derived tumor Xenografts (PDX) models.

7.
Front Immunol ; 10: 1510, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31338094

RESUMEN

Over a century ago, it was reported that immunization with embryonic/fetal tissue could lead to the rejection of transplanted tumors in animals. Subsequent studies demonstrated that vaccination of embryonic materials in animals induced cellular and humoral immunity against transplantable tumors and carcinogen-induced tumors. Therefore, it has been hypothesized that the shared antigens between tumors and embryonic/fetal tissues (oncofetal antigens) are the key to anti-tumor immune responses in these studies. However, early oncofetal antigen-based cancer vaccines usually utilize xenogeneic or allogeneic embryonic stem cells or tissues, making it difficult to tease apart the anti-tumor immunity elicited by the oncofetal antigens vs. graft-vs.-host responses. Recently, one oncofetal antigen-based cancer vaccine using autologous induced pluripotent stem cells (iPSCs) demonstrated marked prophylactic and therapeutic potential, suggesting critical roles of oncofetal antigens in inducing anti-tumor immunity. In this review, we present an overview of recent studies in the field of oncofetal antigen-based cancer vaccines, including single peptide-based cancer vaccines, embryonic stem cell (ESC)- and iPSC-based whole-cell vaccines, and provide insights on future directions.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Células Madre Pluripotentes Inducidas/inmunología , Animales , Antígenos de Neoplasias/inmunología , Células Madre Embrionarias/inmunología , Humanos , Vacunación/métodos
8.
Front Cell Neurosci ; 13: 343, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417363

RESUMEN

Background: Multicellular taste buds located within taste papillae on the tongue mediate taste sensation. In taste papillae, taste bud cells (TBCs), such as taste receptor cells and taste precursor cells, and the surrounding lingual epithelium including epithelial progenitors (also called taste stem/progenitor cells) are maintained by continuous cell turnover throughout life. However, it remains unknown how the cells constituting taste buds proliferate and differentiate to maintain taste bud tissue. Based on in situ hybridization (ISH) screening, we demonstrated that the oncofetal antigen 5T4 (also known as trophoblast glycoprotein: TPBG) gene is expressed in the adult mouse tongue. Results: In immunohistochemistry of coronal tongue sections, 5T4 protein was detected at a low level exclusively in the basal part of the lingual epithelium in developing and adult mice, and at a high level particularly in foliate papillae and circumvallate papillae (CVPs). Furthermore, immunohistochemistry of the basal part of CVPs indicated that the proliferation marker PCNA (proliferating cell nuclear antigen) co-localized with 5T4. 5T4 was strongly expressed in Krt5+ epithelial progenitors and Shh+ taste precursor cells, but weakly in mature taste receptor cells. The number of proliferating cells in the CVP was higher in 5T4-knockout mice than in wild-type (WT) mice, while neither cell differentiation nor the size of taste buds differed between these two groups of mice. Notably, X-ray irradiation enhanced cell proliferation more in 5T4-knockout mice than in WT mice. Conclusion: Our results suggest that 5T4, expressed in epithelial progenitors (taste stem/progenitor cells), and taste precursor cells, may influence the maintenance of taste papillae under both normal and injury conditions.

9.
Expert Opin Biol Ther ; 16(8): 979-87, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27094818

RESUMEN

INTRODUCTION: Monoclonal antibodies (mAbs) are potent cancer therapeutic agents, but exclusively recognize cell-surface targets whereas most cancer-associated proteins are found intracellularly. Hence, potential cancer therapy targets such as over expressed self-proteins, activated oncogenes, mutated tumor suppressors, and translocated gene products are not accessible to traditional mAb therapy. An emerging approach to target these epitopes is the use of TCR mimic mAbs (TCRm) that recognize epitopes similar to those of T cell receptors (TCR). AREAS COVERED: TCRm antigens are composed of a linear peptide sequence derived from degraded proteins and presented in the context of cell-surface MHC molecules. We discuss how the nature of the TCRm epitopes provides both advantages (absolute tumor specificity and access to a new universe of important targets) and disadvantages (low density, MHC restriction, MHC down-regulation, and cross-reactive linear epitopes) to conventional mAb therapy. We will also discuss potential solutions to these obstacles. EXPERT OPINION: TCRm combine the specificity of TCR recognition with the potency, pharmacologic properties, and versatility of mAbs. The structure and presentation of a TCRm epitope has important consequences related to the choice of targets, mAb design, available peptides and MHC subtype restrictions, possible cross-reactivity, and therapeutic activity.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Anticuerpos Antineoplásicos/inmunología , Epítopos/inmunología , Humanos , Imitación Molecular
10.
Ther Adv Med Oncol ; 8(1): 4-31, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26753003

RESUMEN

The clinical success of monoclonal antibody immune checkpoint modulators such as ipilimumab, which targets cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), and the recently approved agents nivolumab and pembrolizumab, which target programmed cell death receptor 1 (PD-1), has stimulated renewed enthusiasm for anticancer immunotherapy, which was heralded by Science as 'Breakthrough of the Year' in 2013. As the potential of cancer immunotherapy has been recognized since the 1890s when William Coley showed that bacterial products could be beneficial in cancer patients, leveraging the immune system in the treatment of cancer is certainly not a new concept; however, earlier attempts to develop effective therapeutic vaccines and antibodies against solid tumors, for example, melanoma, frequently met with failure due in part to self-tolerance and the development of an immunosuppressive tumor microenvironment. Increased knowledge of the mechanisms through which cancer evades the immune system and the identification of tumor-associated antigens (TAAs) and negative immune checkpoint regulators have led to the development of vaccines and monoclonal antibodies targeting specific tumor antigens and immune checkpoints such as CTLA-4 and PD-1. This review first discusses the established targets of currently approved cancer immunotherapies and then focuses on investigational cancer antigens and their clinical potential. Because of the highly heterogeneous nature of tumors, effective anticancer immunotherapy-based treatment regimens will likely require a personalized combination of therapeutic vaccines, antibodies and chemotherapy that fit the specific biology of a patient's disease.

11.
Cancer Biol Ther ; 16(5): 724-32, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25799942

RESUMEN

The oncofetal antigen - immature laminin receptor protein (OFA/iLRP) has been linked to metastatic tumor spread for several years. The present study, in which 2 highly-specific, high-affinity OFA/iLRP-reactive mouse monoclonal antibodies were examined for ability to suppress tumor cell growth and metastatic spread in the A20 B-cell leukemia model and the B16 melanoma model, provides the first direct evidence that targeting OFA/iLRP with exogenous antibodies can have therapeutic benefit. While the antibodies were modestly effective at preventing tumor growth at the primary injection site, both antibodies strongly suppressed end-organ tumor formation following intravenous tumor cell injection. Capacity of anti-OFA/iLRP antibodies to suppress tumor spread through the blood in the leukemia model suggests their use as a therapy for individuals with leukemic disease (either for patients in remission or even as part of an induction therapy). The results also suggest use against metastatic spread with solid tumors.


Asunto(s)
Antígenos de Neoplasias/inmunología , Melanoma Experimental/inmunología , Receptores de Laminina/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Antígenos de Neoplasias/genética , Modelos Animales de Enfermedad , Melanoma Experimental/genética , Ratones , Receptores de Laminina/genética
12.
Curr Oncol ; 19(1): e1-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22328843

RESUMEN

The alpha-fetoprotein (afp) receptor (recaf) is an oncofetal antigen found in most types of cancer. Using a competitive radioimmunoassay, we measured the concentration of serum recaf in three sets of samples.Set 1 was blind and consisted of 119 normal subjects, 43 breast cancer patients (stages i and ii), and 20 patients with benign breast conditions. In this set, the assay discriminated normal from cancer samples with a receiver operating characteristic for the area under the curve (ROC(AUC)) of 0.983; with 95% specificity and 93% sensitivity at a cut-off of 4.6 K (arbitrary) recaf units; and with 72% sensitivity and 100% specificity at a cut-off of 7.3 K units. At 7.3 K units, the specificity for benign breast conditions was 85%, and the sensitivity was 72% (ROC(AUC) was 0.773). Carcinoembryonic antigen and cancer antigen 15-3 respectively showed 39% and 41% sensitivity, with 95% specificity in comparisons of normal with cancer samples, and 34% and 44% sensitivity, with 85% specificity in comparisons of benign with cancer samples. Set 2 consisted of 353 normal, 30 benign, and 64 cancer samples (stages ii and iii). The recaf assay sensitivity in discriminating normal from cancer samples was 97%, with 97% specificity. Benign compared with cancer samples showed 87% sensitivity, with 97% specificity. Set 3 included only 40 normal and 40 cancer samples. The assay sensitivity was 89%, with 100% specificity. Sets 2 and 3 were not tested with carcinoembryonic antigen and cancer antigen 15-3.These results strongly suggest that the recaf assay could be used for detecting breast cancer in its early stages.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA